基本不等式及其综合应用

合集下载

基本不等式及实际应用

基本不等式及实际应用

最小值 2 P .
(2)如果和x+y是定值S,那么当 x=y时积xy有最 大值
1 2 S 4
. 即“一正、二定、三相等”,这三
个条件缺一不可.
思维活动:
4 1函数y x 4 x 0的值域 ______
(2)已知 x 0, y 0,且 x 5 y 20, 求 2
情境二:运输
兴 趣 是 最 好 的 老 师
进货结束后装车运回。所购大米需装6辆 卡车,途径一座长为100米的大桥,假设 卡车均以v(m/s)的速度匀速前进,并出 于安全考虑规定每两辆卡车的间距不得小 v 于 5 m(卡车长忽略不计),则全部卡车 安全过桥最快需多少时间?
2
解:设卡车全部安全过桥共需t 秒,
该厂每天需要饲料200千克,每千克饲料的价格 为1.8元,饲料的保管与其他费用为平均每千克 每天0.03元,购买饲料每次支付运费300元. (1)求该厂多少天购买一次饲料才能使平均每
天支付的总费用最少?
(2)若提供饲料的公司规定,当一次购买饲料 不少于5吨时其价格可享受八五折优惠(即为原
价的85%).问该厂是否可以考虑利用此优惠条
例2:一段长为36米的篱笆围成一个矩形 菜园,问这个矩形的长、宽各为多少时, 菜园的面积最大,最大面积是多少?
例2:一段长为36米的篱笆围成一个矩形 菜园,问这个矩形的长、宽各为多少时, 菜园的面积最大,最大面积是多少?
解:(1)设矩形的长、宽各为 x , ym,由题意可得
2 x y 36且 x 0, y 0 。矩形的面积为 xym
答:当底面的长与宽均 为4米时,用纸最少
例4、李老师花10万元购买了一辆家用汽车,如果每年使用的保险费,养

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题在我们的日常生活中,数学知识看似抽象遥远,但实际上却无处不在,尤其是基本不等式,它能帮助我们解决许多实际问题,让我们做出更明智的决策。

基本不等式,通常表述为对于任意两个正实数 a 和 b,有算术平均数大于等于几何平均数,即(a + b) /2 ≥ √(ab) 。

这个看似简单的公式,却蕴含着丰富的应用价值。

先来说说购物中的应用。

假设我们在商场看到同一款式的 T 恤有两种包装,一种是单件装,售价为x 元;另一种是三件装,售价为y 元。

如果我们打算购买 n 件 T 恤,怎样购买更划算呢?这时候基本不等式就能派上用场。

假设单件购买 m 件,三件装购买 k 套(k 为整数),使得 m + 3k= n 。

那么总花费 C = mx + ky 。

我们希望总花费最小,考虑到均值不等式,C / n =(mx + ky)/ n =(m / n)x +(k / n)y 。

为了使 C / n 最小,我们需要找到合适的 m 和 k 。

通过分析和计算,可以发现当(m / n) =(k / 3n) 时,C / n 可能取得最小值。

再比如,在安排工作任务时,基本不等式也能发挥作用。

假设一项工作总量为 A ,有甲、乙两人合作完成。

甲单独完成这项工作需要 a 小时,乙单独完成需要 b 小时。

那么两人合作完成这项工作所需的时间 t = A /(A / a + A /b) ,化简可得 t = ab /(a + b) 。

根据基本不等式,t = ab /(a +b) ≤ (a + b) / 4 。

这意味着,在分配工作任务时,要考虑到两人的工作效率,合理安排,以达到最快完成工作的目的。

在投资理财方面,基本不等式同样能提供一些思路。

假设我们有一笔资金 P ,可以选择两种投资方式,一种年利率为 r₁,另一种年利率为 r₂。

为了在一定时间内获得最大的收益,我们需要合理分配资金。

设投入第一种投资方式的资金为 x ,投入第二种的为 P x 。

4基本不等式及综合应用

4基本不等式及综合应用

东北师大附中2010-2011学年高三数学(理)第一轮复习导学案032基本不等式及其应用编写教师: 刘桂英 审稿教师: 吕树超一、知识梳理 1.基本不等式:(1)重要不等式:如果,a b R ∈,那么222a b ab +≥,当且仅当a b =时,等号成立. (2)基本不等式:如果,0a b >,那么2a b +≥,当且仅当a b =时,等号成立.可表述为:两个正数的算术平均不小于(即大于或等于)它们的几何平均. 2.常见结论: (1)12(0)a a a +≥>,当且仅当1a =时,等号成立; (2)12(0)a a a +≤-<,当且仅当1a =-时,等号成立; (3)2(0)b a ab a b+≥>,当且仅当a b =时,等号成立;(4)222a b c ab bc ca ++≥++; (5)2,0)112a b a b a b +≤≤>+,当且仅当a b =时,等号成立.3.三个正数的算术——几何平均不等式:(不等式证明选讲) 如果,,a b c R +∈,那么3a b c++≥,当且仅当a b c ==时,等号成立.4.推广:对于n 个正数12,,,n a a a ,它们的算术平均不小于它们的几何平均,即12na a a n++≥12n a a a === 时,等号成立.二、题型探究探究一:利用基本不等式证明不等式利用基本不等式证明不等式,先观察题目条件是否满足基本不等式的应用环境,若不满足,则应通过添项、拆项、配系数、“1”的代换等方法,使其满足应用条件,再结合不等式的基本性质,达到证明的目的.例1 设,,a b c 都是正数,求证:bc ac ab a b c a b c++≥++.证明: ,,a b c 都是正数,,,bc ca aba b c∴都是正数, 2bc ca c a b ∴+≥,当且仅当a b =时等号成立, 2caab a b c +≥,当且仅当b c =时等号成立, 2ab bc b ca+≥,当且仅当a c =时等号成立,三式相加,得2()2()bc ac ab a b c a b c++≥++,即bc ac ab a b c a b c++≥++,当且仅当a b c ==时等号成立.探究二:利用基本不等式求最值(1)若*R x y ∈、,x y S +=(和为定值),则当x y =时,积xy 取得最大值24S;(2)若*R x y ∈、,(xy p =积为定值),则当x y =时,和x y +取得最小值即“和定,积最大;积定,和最小”,这种方法在应用过程中要把握下列三个条件: (1)“一正”——各项为正数; (2)“二定”—— “和”或“积”为定值;(3)“三等”——等号一定能取到.这三个条件缺一不可. 例2 解答下列问题:(1)已知2x >,求42x x +-的最小值;(2)已知02x <<,求函数()(83)f x x x =-的最大值; (3)求函数4sin (0)sin y x x xπ=+<<的最小值;(4)已知0,0x y >>,且1x y +=,求49xy+的最小值.解: (1)6; (2)163;(3)令sin x t =,001x t π<<∴<≤ 4(01)y t t t ∴=+<≤4y t t=+在(]0,1上为减函数,1t ∴=即2x π=时y 取得最小值5,∴当2x π=时函数取得最小值5.(4)494949()()131325y x x y xyxyxy+=++=++≥+=. 当且仅当23,55x y ==时取等号.探究三:三个数的均值不等式 例3 求函数)0x (x3x 2y 2>+=的最小值,下列解法是否正确?为什么?解法1:3322243x2x1x 23x2x1x2x3x 2y =⋅⋅≥++=+=,所以3min 43y =. 解法2:x 62x3x 22x3x 2y 22=⋅≥+=当x3x22=,即212x 3=时,633min 3242123221262y ==⋅=.评注:所给两种解法均有错误.解法1错在取不到“等”,即不存在x 使x2x1x 22==,解法2错在x 62不是定值.正解:对原函数合理拆(添)项,得33322236234923x 23x 23x 23x23x23x 2x 3x2y =⋅=⋅⋅≥++=+=当且仅当x23x22=,即26x 3=时,3min 3623y =.例4 求函数)31x 0)(x 31(x y 2<<-=的最大值.分析:因≠-+)x 31(x 2定值,故需拆凑使其满足定值条件,原函数中有一个因式)x 31(-,为使其余因式2x 与(x 31-)之和为定值,需以(x 31-)为准,将2x 拆成x 23x 2394⋅⋅,这时就有=-++)x 31(x 23x 23定值.解:)x 31(x 23x 2394y -⋅⋅⋅=2434)3)x 31(x 23x 23(943=-++≤. 当且仅当x 31x 23x 23-==,即92x =时,2434y max =.通过以上几例我们体会到:均值定理真重要,用于最值有诀窍,正确理解“正、定、等”,合理进行拆、拼、凑.探究四:基本不等式的实际应用在应用基本不等式解决实际问题时,要注意以下四点:(1)先理解题意,设变量时一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最值问题; (3)在定义域内,求出函数的最值; (4)正确写出答案.例5 某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过a 米,房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用. (1) 把房屋总造价y 表示成x 的函数,并写出该函数的定义域; (2) 当侧面的长度为多少时,房屋的总造价最低?最低总造价是多少? 解: (1) 由题意,可得12y=3(2x 150400)5800x⨯+⨯+16900()5800(0)x x a x=++<≤).(2) 16900()5800900580013000x x++≥⨯=, 当且仅当16x x=,即4x =时取等号,若4a ≥,则当x =4时,y 有最小值13 000; 若04a <<,容易证明函数16900()5800(0)y x x a x=++<≤在(0,]a 上是减函数.∴当x a =时,y 有最小值900(aa 16+)+5 800.综上,若4a ≥,当侧面的长度为4米时,总造价最低,最低总造价是13 000元;若04a <<,当侧面长度为a 米时,总造价最低,最低总造价是900(aa 16+)+5 800元.三、方法提升均值不等式(定理)具有将“和式”与“积式”相互转化的功能,应用比较广泛.为了用好该不等式,首先要正确理解该不等式中的三个条件(三要素):正(各项或各因式均为正值)、定(和或积为定值)、等(各项或各因式都能取得相等的值,即具备等号成立的条件),简称“一正、二定、三相等”,这三条缺一不可,当然还要牢记结论:积定→和最小,和定→积最大.但是在具体问题中,往往所给条件并非“标准”的正、定、等(或隐含于所给条件之中),所以还必须作适当地变形,通过凑、拆(拼)项、添项等技巧,对“原始”条件进行调整、转化,使其符合标准的正、定、等,以保证使用该不等式. 四、反思感悟五、课时作业 (一)选择题(1)下列结论正确的是( B )(A )当0x >且1x ≠时,1lglg x x+2≥ (B )0x >当2≥(C )当2x ≥时,1x x+的最小值为2 (D )02x <≤时,1x x-无最大值(2)已知0,0a b >>,则11ab++ C )(A )2(B ) (C )4(D )5(3)设0,0.a b >>1133aba b+与的等比中项,则的最小值为 ( B )(A ) 8 (B )4 (C )1 (D )14(4) “18a =” 是“对任意的正数x ,21a x x+≥”的( A )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(5) 若0,0>>b a 且4=+b a ,则下列不等式恒成立的是 ( D )(A )211>ab(B )111≤+ba(C )2≥ab (D )81122≤+ba(6)设M =)11)(11)(11(---c b a ,且1a b c ++= (其中,,a b c R +∈), 则M 的取值范围是( D )(A ))81,0[ (B ))0,81[(C ))8,1[ (D )),8[+∞(7)如果正数a b c d ,,,满足4a b cd +==,那么( A )(A )ab c d ≤+,且等号成立时a b c d ,,,的取值唯一 (B )ab c d ≥+,且等号成立时a b c d ,,,的取值唯一 (C )ab c d ≤+,且等号成立时a b c d ,,,的取值不唯一 (D )ab c d ≥+,且等号成立时a b c d ,,,的取值不唯一 (8)已知实数,x y 满足x x y y=-,若0x >,则x 的最小值为( B )(A ) 2 (B )4 (C )6 (D )8 解:当1y =时,x ∈∅;当1y ≠且0y ≠时,由已知得21(1)211yx y y y ==-++--∴当1y >时 ,21(1)2411yx y y y ==-++≥--.(当且仅当2y =时等号成立)当1y <且0y ≠时, 1(1)201x y y ⎡⎤=--++<⎢⎥-⎣⎦,不合题意 (二)填空题(9)若实数,a b 满足2a b +=,则33a b+的最小值是 6 .(10)已知0,0,,,,x y x a b y >>成等差数列,,,,x c d y 成等比数列,则2()a b cd+的最小值是 4 .(11)已知,,a b c 为某一直角三角形的三条边长,c 为斜边,若点(,)m n 在直线20ax by c ++=上,则22m n +的最小值是 .4(12)某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x = 20 吨.(三)解答题(13)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值.解:2222111121025(5)()()a ac c a c a ab ab aba ab aba ab ++-+=-+-+++--211(5)()[()]0224()a c ab a a b aba ab =-+++-+≥++=-当且仅当50,1,()1a c ab a a b -==-=时等号成立,如取25a b c ===满足条件.(14)三个同学对问题:“关于x 的不等式23225|5|x x x ax ++-≥在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路:甲说:“只须不等式左边的最小值不小于右边的最大值”;乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”; 丙说:“把不等式两边看成关于x 的函数,作出函数图像”. 参考上述解题思路,写出你认为正确的解答过程和结论. 解: 由23225|5|x x x ax ++-≥,[1,12]x ∈得,225|5|a x x x x≤++-,而2510x x+≥,等号当且仅当5[1,12]x =∈时成立;且2|5|0x x -≥,等号当且仅当5[1,12]x =∈时成立; 所以,2min 25[|5|]10a x x x x≤++-=,等号当且仅当5[1,12]x =∈时成立; 故(,10]a ∈-∞.(15)求)20(x x cos x sin y 2π∈=,,的最大值.解: 0x cos 0x sin >>,,932274y 274)3xcos x cos x sin2(212xcos x cos x sin2x cos x siny 3222222422=≤=++≤==,此时,2x cot x cos x sin 2222==,,故当cot x =932y max =(16)已知定点(6,4)P 与定直线1:4l y x =,过P 点的直线l 与1l 交于第一象限Q 点,与x 轴正半轴交于点M ,求使OQM ∆面积最小的直线l 方程. 解:设(,4)(0)Q a a a > ①6a ≠时,44:4(6)6P Q a l y x a --=--令0y =,得4(6)560441M a a x a a --=+=>--故1a > 2110110(12)211OQM Q M aS y x a a a ∆=⋅==-++--1121a a -+≥-,110(12)401a a -++≥-(当且仅当2a =时取“=”号)所以当2a =时,m in ()40O Q M S ∆= ②当6a =时,11624724022O Q M Q M S y x ∆=⋅=⨯⨯=>由①②得,当2a =时,m in ()40O Q M S ∆=,此时(2,8)Q ,:100PQ l x y +-=.。

基本不等式及应用

基本不等式及应用

基本不等式及应用的实际应用情况背景介绍基本不等式是数学中常见的一类不等式,它们可以帮助我们描述和解决各种实际问题,从而在许多领域中发挥着重要作用。

基本不等式包括线性不等式、二次函数不等式和绝对值不等式等。

在实际应用中,我们经常需要根据给定的条件和目标,通过建立和求解基本不等式来得到满足特定条件的解集。

应用过程下面将分别介绍线性不等式、二次函数不等式和绝对值不等式的应用过程及效果。

1. 线性不等式线性不等式是形如ax + b > 0或ax + b < 0的一次方程组,其中a、b为已知系数,x为未知数。

线性不等式在实际应用中广泛存在,例如:a. 生产问题假设某工厂生产两种产品A和B,并且单位时间内生产A产品所需的材料成本为10元,生产B产品所需的材料成本为20元。

如果工厂每天最多能使用500元购买原材料,而单位时间内生产A产品利润为5元,生产B产品利润为8元。

我们需要确定每种产品的最大生产量,以最大化利润。

设A产品的生产量为x,B产品的生产量为y。

根据题目中的条件,我们可以列出以下不等式:10x + 20y ≤ 500 (材料成本限制)5x + 8y ≥ 0 (利润要求)通过求解这个线性不等式组,我们可以得到A和B产品的最大生产量,从而实现最大化利润。

b. 资金问题假设某人有两个银行账户A和B,在一段时间内账户A每天存款增加10元,账户B 每天存款增加15元。

如果初始时两个账户的余额分别为1000元和2000元,并且他希望在一定时间后至少有6000元的总余额。

我们需要确定这个时间段内至少需要存款多少天。

设经过x天后,账户A和B的余额分别为a和b。

根据题目中的条件,我们可以列出以下不等式:a = 1000 + 10xb = 2000 + 15x a + b ≥ 6000通过求解这个线性不等式组,我们可以得到至少需要存款多少天才能达到目标总余额。

2. 二次函数不等式二次函数不等式是形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的二次方程,其中a、b、c为已知系数,x为未知数。

高考数学《不等式》复习

高考数学《不等式》复习

ab
ab
2.下列说法正确的有( )
①若 | a | b ,则 a2 b2 ;② a b , c d ,则 a c b d ;③若 a b 0, c d 0 ,则 ac bd ;
④若 a b 0 , c 0 ,则 c c .
ab
A.①④
B.②③
√C.③④
D.①②
对于①,取 a 0 ,b 2,则 a2 b2 ,①错误;对于②,取 a c 0 ,b d 1,则 a c b d ,
2
其中, a b 叫做正数 a,b 的算术平均数, ab 叫做正数 a,b 的几何平均数.
2
(2)基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.
2.几个重要的不等式
(1)a2 b2 2ab(a,b R)
(2) a b 2(a,b 同号) ba
(3)ab
a
2
b
2
(a,
b
R)
ab
ab
(2)有关分式的性质:若 a b 0,m 0 ,则
b b m , b b m (b m 0) a am a am a a m , a a m (b m 0) b bm b bm
4.不等式的解法 (1)二次函数与一元二次方程、不等式的解的对应关系
(2)分式不等式的解法
(3)连续使用基本不等式时,等号要同时成立.
4.不等式的恒成立,能成立,恰成立等问题 (1)恒成立问题:若 f (x) 在区间 D 上存在最小值, 则不等式 f (x) A 在区间 D 上恒成立 f (x)min A(x D) . 若 f (x) 在区间 D 上存在最大值, 则不等式 f (x) B 在区间 D 上恒成立 f (x)max B(x D) .

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

高中数学基础之基本不等式及应用

高中数学基础之基本不等式及应用

当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600

920 3+v+16v00

920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;

y2 2x-1

[2x-1+1]2 y-1

[y-1+1]2 2x-1

42x-1 y-1

4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1

y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,

基本不等式的综合应用

基本不等式的综合应用
1、利用基本不等式求最值、代数式最 值、参数范围、及不等式证明。 2、理解基本不等式注意的条件。
作业布置: 课时作业(二十九)
最大值和最小值。此方法在应用中一定要注意满足 三个条件:一正---各项为正数;二定-----“和”或 “积”为定值;三相等------等号一定能取到。三条 件缺一不可。
题型二:利用基本不等式求代数式的最值
知识归纳:知分式求整式最值或知整式求分式最值 都是巧妙代换,保证式子定值,以便基本不等式应 用的成立。
复习回顾
1.基本不等式的内容是什么?
若a>0,b>0,则
ab≤ a b (a 0,b 0) 2
当且仅当a=b时取等号
2.基本不等式应用应注意什么?
求最值时注意把握 “一正,二定,三相等”
题型一:利用基本不等式求最值
知识归纳:利用基本不等式,通过恒等变形,以及
配凑,造就“和”或“积”为定值,进而求得函数
题型三:利用均值不等式求参数的取值范围
知识归纳:利用基本不等式,构造关于某个变量的 不等式,解此不等式便可求出该变量的取值范围, 再验证等号是否成立,便可确定该变量的最值。
题型四:利用基本不等式证明不等式
知识归纳:把数、式合理地分拆小结回顾:

(完整版)基本不等式及其应用

(完整版)基本不等式及其应用

基本不等式及其应用1.ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数(1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b2,几何平均数为ab .(2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .选择题:设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 解析 22x +y ≤2x +2y =1,∴2x +y ≤14,即2x +y ≤2-2,∴x +y ≤-2若实数x ,y 满足xy >0,则x x +y +2yx +2y的最大值为( ) A .2- 2 B .2+ 2 C .4+2 2 D .4-2 2 解析x x +y+2y x +2y=x (x +2y )+2y (x +y )(x +y )(x +2y )=x 2+4xy +2y 2x 2+3xy +2y 2=1+xy x 2+3xy +2y 2=1+1x y +3+2y x≤1+13+2=4-22,当且仅当x y =2yx ,即x 2=2y 2时取等号若函数()f x =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my (m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4解析 由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y )=13(1+m +y x +mx y )≥13(1+m +2m ),(当且仅当y x =mx y 时取等号),∴13(1+m +2m )=3,解得m =4已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,∴圆心为C (0,1) ∵直线ax +by +c -1=0经过圆心C ,∴a ×0+b ×1+c -1=0,即b +c =1 ∴4b +1c =(b +c )(4b +1c )=4c b +b c +5 ∵b ,c >0,∴4c b +bc ≥24c b ·b c =4,当且仅当4c b =b c 时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256解析 由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, ∴q 2-q -2=0,解得q =2或q =-1(舍去)a m a n =4a 1,∴q m +n -2=16,∴2m +n -2=24,∴m +n =6 ∴1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n )≥16(5+2n m ·4m n )=32当且仅当n m =4m n 时,等号成立,故1m +4n 的最小值等于32在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5a 6的最大值是( ) A .3 B .6 C .9 D .36解析 ∵a 1+a 2+…+a 10=30,∴5(a 1+a 10)=30,即a 1+a 10=a 5+a 6=6,∵a 5+a 6≥2a 5a 6,∴6≥2a 5a 6,即a 5a 6≤9,当且仅当a 5=a 6时取等号,∴a 5a 6的最大值为9若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2 B .2 C .2 2 D .4 解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab,当且仅当1a =2b ,即b =2a 时,“=”成立.∵1a +2b =ab ,∴ab ≥22ab ,即ab ≥22,∴ab 的最小值为2 2已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( ) A .3 B .4 C .5 D .6解析 由题意知:ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10 解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24 解析 由3a +1b ≥m a +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab +6又9b a +ab +6≥29+6=12,∴m ≤12,∴m 的最大值为12已知a >0,b >0,a +b =1a +1b ,则1a +2b 的最小值为( )A .4B .22C .8D .16 解析 由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b ≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b 2时等号成立已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72 B .4 C.92 D .5 解析 依题意,得1a +4b =12(1a +4b )·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4ab ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解析由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,∴⎩⎨⎧a >0,b >0.又log 4(3a +4b )=log 2ab ,∴log 4(3a +4b )=log 4ab ,∴3a +4b =ab ,故4a +3b =1. ∴a +b =(a +b )(4a +3b )=7+3a b +4ba ≥7+23ab ·4b a =7+43,当且仅当3a b =4b a 时取等号若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1,同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,∴最小值为6设()f x =ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .q =r >p C .p =r <q D .p =r >q 解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p ,故p =r <q已知函数()f x =x +px -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为( ) A .1 B .2 C.94 D.74 解析 由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号, ∵f (x )在(1,+∞)上的最小值为4,∴2p +1=4,解得p =94填空题:已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12y =18时,(xy )max =116已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为________解析 ∵m ·n >0,m +n =-1,∴m <0,n <0,∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn=-4,当且仅当m =n =-12时,1m +1n 取得最大值-4已知x <54,则()f x =4x -2+14x -5的最大值为________解析 ∵x <54,∴5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1函数y =x 2+2x -1(x >1)的最小值为________解析 y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2当且仅当(x -1)=3(x -1),即x =3+1时,等号成立函数y =x -1x +3+x -1的最大值为________解析 令t =x -1≥0,则x =t 2+1,∴y =t t 2+1+3+t =tt 2+t +4当t =0,即x =1时,y =0;当t >0,即x >1时,y =1t +4t +1, ∵t +4t ≥24=4(当且仅当t =2时取等号),∴y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________解析 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________ 解析 由已知得x =9-3y1+y ,∵x >0,y >0,∴y <3,∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y=121+y+(3y +3)-6≥2121+y ·(3y +3)-6=6, 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y )min =6已知函数()f x =x 2+ax +11x +1(a ∈R ),若对于任意x ∈N +,()f x ≥3恒成立,则a 的取值范围是______解析 对任意x ∈N +,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3设g(x)=x+8x,x∈N+,则g(2)=6,g(3)=173∵g(2)>g(3),∴g(x)min=173,∴-(x+8x)+3≤-83,∴a≥-83,故a的取值范围是[-83,+∞)已知x>0,y>0,且1x+2y=1,则x+y的最小值是________解析∵x>0,y>0,∴x+y=(x+y)(1x+2y)=3+yx+2xy≥3+22(当且仅当y=2x时取等号),∴当x=2+1,y=2+2时,(x+y)min=3+2 2函数y=1-2x-3x(x<0)的最小值为________解析∵x<0,∴y=1-2x-3x=1+(-2x)+(-3x)≥1+2(-2x)·3-x=1+26,当且仅当x=-62时取等号,故y的最小值为1+2 6若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________解析分离变量得-(4+a)=3x+43x≥4,得a≤-8设a+b=2,b>0,则12|a|+|a|b取最小值时,a的值为________解析∵a+b=2,∴12|a|+|a|b=24|a|+|a|b=a+b4|a|+|a|b=a4|a|+b4|a|+|a|b≥a4|a|+2b4|a|×|a|b=a4|a|+1,当且仅当b4|a|=|a|b时等号成立又a+b=2,b>0,∴当b=-2a,a=-2时,12|a|+|a|b取得最小值若当x>-3时,不等式a≤x+2x+3恒成立,则a的取值范围是________解析设f(x)=x+2x+3=(x+3)+2x+3-3,∵x>-3,所以x+3>0,故f(x)≥2(x+3)×2x+3-3=22-3,当且仅当x=2-3时等号成立,∴a的取值范围是(-∞,22-3]若对于任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________解析 xx 2+3x +1=13+x +1x ,∵x >0,∴x +1x ≥2(当且仅当x =1时取等号),则13+x +1x ≤13+2=15,即x x 2+3x +1的最大值为15,故a ≥15.解答题:已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1,∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时,等号成立.由⎩⎨⎧2x +5y =20,5y x =2xy ,解得⎩⎨⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020专项能力提升设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为( ) A .4 B .4 3 C .9 D .16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立), 即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( ) A .0 B .1 C.94 D .3 解析 由已知得z =x 2-3xy +4y 2,(*)则xyz =xyx 2-3xy +4y2=1x y +4y x -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,∴2x +1y -2z =1y +1y -1y 2=-⎝ ⎛⎭⎪⎫1y -12+1≤1已知m >0,a 1>a 2>0,则使得m 2+1m ≥|a i x -2|(i =1,2)恒成立的x 的取值范围是( )A .[0,2a 1]B .[0,2a 2]C .[0,4a 1]D .[0,4a 2]解析 ∵m 2+1m =m +1m ≥2(当且仅当m =1时等号成立),∴要使不等式恒成立, 则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,∴0≤a i x ≤4, ∵a 1>a 2>0,∴⎩⎪⎨⎪⎧0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1,∴使不等式恒成立的x 的取值范围是[0,4a 1]已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________ 解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号) 综上可知4≤x 2+4y 2≤1211设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为________解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b ≥2+2b a ·a b =4,当且仅当a =b =12时,等号成立点(a ,b )为第一象限内的点,且在圆(x +1)2+(y +1)2=8上,则ab 的最大值为________解析 由题意知a >0,b >0,且(a +1)2+(b +1)2=8,化简得a 2+b 2+2(a +b )=6,则6≥2ab +4ab (当且仅当a =b 时取等号),令t =ab (t >0),则t 2+2t -3≤0,解得0<t ≤1,则0<ab ≤1,∴ab 的最大值为1.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________解析 ∵a >0,b >0,1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥10+29=16,由题意,得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,而x 2-4x -2=(x -2)2-6,∴x 2-4x -2的最小值为-6,∴-6≥-m ,即m ≥6.。

2023年高考数学(文科)一轮复习——基本不等式及其应用

2023年高考数学(文科)一轮复习——基本不等式及其应用

第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。

最新基本不等式的应用

最新基本不等式的应用
二是直接用基本不等式,对本题来说,因已知条件中既有和的形式 ,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩 后,再通过解不等式的途径进行。
方法二:
∵x>0,y>0,且 2x+y+6=xy,
∴xy=6+2x+y≥6+2 2xy当且仅当 2x=y 时取等号.
令 t= xy,则有 t2-2 2t-6≥0,
多次使用基本不等式忽略了考虑等号能否同时成立
练习 5:已知正数 a,b 满足
1 1 a+b=1,则a+a+b+b的最小
5 值是______________.
1 1 1 1 a+ +b+ =a+b+ + 正解: a b a b
a+b a+b =1+ a + b b a =1+1+a+b+1 ≥3+2 ba a·=5. b
[( x 1) 4 4 ] 5 2 ( x 1) 5 9 x 1 x 1
当且仅当 x 1
4 ,即 x 1 时,等号成立. x 1
∴当 x 1 时, f ( x ) 取得最小值 9 .
状元360第 41

示范4 (2)
x2+5 练习 4:求函数 y= 2 的值域: x +1
练习 6.(2010· 安徽卷)若 a>0,b>0,a+b=2,则下列不等式对一切 满足条件的 a,b 恒成立的是________(写出所有正确命题的编号). 1 1 ①ab≤1;② a+ b≤ 2;③a2+b2≥2;④a3+b3≥3;⑤ + ≥2. a b
解析 两个正数,和为定值,积有最大值, a+b2 即 ab≤ =1, 4 当且仅当 a=b 时取等号,故①正确; ( a+ b)2=a+b+2 ab=2+2 ab≤4, 当且仅当 a=b 时取等号,得 a+ b≤2,故②错误;

基本不等式及其应用

基本不等式及其应用

题组三 易错排查 4.“x>0”是“x+1x≥2 成立”的( A.充分不必要条件 C.充要条件
) B.必要不充分条件 D.既不充分也不必要条件
解析:当 x>0 时,x+1x≥2 x·1x=2. 因为 x,1x同号,所以若 x+1x≥2,则 x>0,1x>0,所以“x>0”是“x+1x≥2 成立”的 充要条件,故选 C.
B.4
8 C.3
D.130
解析:∵A→P=A→B+B→P =A→B+23(A→C-A→B) =13A→B+23A→C =31mA→M+32nA→N,
∵M,P,N 三点共线,∴31m+32n=1, ∴m+2n=(m+2n)31m+32n =13+43+32mn +23mn ≥53+2 32mn ×32mm =53+43=3, 当且仅当 m=n=1 时等号成立.
基本不等式及其应用
1.基本不等式: ab≤a+2 b (1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b 时取等号.
2.几个重要的不等式 (1)a2+b2≥ 2ab (a,b∈R).
(2)ba+ab≥ 2 (a,b 同号). a+b2
(3)ab≤____2___ _(a,b∈R). (4)a2+2 b2≥___a_+_2_b__2___ (a,b∈R).
答案:4
命题点 2 常数代换法 例 2 (1)(2020·青岛模拟)已知 x>0,y>0,lg2x+lg8y=lg2,则1x+31y的最小值是 ________. 解析:(1)因为 lg2x+lg8y=lg2,所以 x+3y=1,所以1x+31y=1x+31y(x+3y)=2+ 32y+3xy≥4 当且仅当3xy=3xy,即 x=12,y=16时取等号. 答案:4

高一基本不等式及其应用

高一基本不等式及其应用

基本不等式及其应用知识点归纳1、在不等式的应用中,经常使用的不等式公式有02≥a ;0||≥a ;)0(0≥≥a a ; ca bc ab c b a ++≥++222;若R b a ∈,,那么ab b a 222≥+,当且仅当b a =时等号成立。

若+∈R b a ,,那么ab b a 2≥+,当且仅当b a =时等号成立。

若+∈R c b a ,,,那么33abc c b a ⋅≥++,当且仅当c b a ==时等号成立。

推广:如果}0{,,,,321⋃∈⋅⋅⋅+R a a a a n ,那么nn n a a a a na a a a ⋅⋅⋅≥+⋅⋅⋅+++321321(当且仅当n a a a a =⋅⋅⋅===321时取“=”)2、注意:①应用公式的条件;②取等号的条件;③广义地理解公式中的字母a 、b ;④公式的逆用、变用:2211222b a b a ab ba +≤+≤≤+。

定和定积原理:若n 个正数的和为定值,则当且仅当这n 各正数相等时积取到最大值; 若n 个正数的积为定值,则当且仅当这n 个正数相等时和取到最小值。

3、应用不等式知识解题,关键是建立不等量关系,其途径有: 利用题设中的不等量大小;利用不等式基本性质;利用所涉及对象的概念内涵外延所赋予的不等量大小;利用变量的有界性;利用几何意义;利用判别式;利用不等式基本公式等等 题型讲解例1. (1)求2216x x y +=的最小值。

(2)求18++=x x y 的最小值。

(3)若0<x<52, 求x(2-5x)的最大值。

解:(1)2216x x y +=≥216=8,当且仅当2x =216x 即x=±2时原式有最小值8。

(2)18++=x x y =(x +1)+18+x -1≥28-1=42-1;当且仅当x +1=18+x 即x=9-42时原式有最小值42-1。

(3)∵0<x<52, ∴2-5x>0,∴当且仅当5x=2-5x ,即x=51时,原式有最大值51。

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法(原创版4篇)目录(篇1)一、基本不等式的概念和性质二、应用基本不等式解决实际问题的方法1.求解最值问题2.证明不等式3.解决实际生活中的问题三、基本不等式在实际问题中的应用案例1.求解最大利润问题2.证明不等式关系3.解决实际生活中的财务问题正文(篇1)一、基本不等式的概念和性质基本不等式是数学中的一个重要概念,主要用于研究不等式之间的联系和关系。

基本不等式有两个基本性质,分别是对称性和传递性。

对称性指的是对于任意的实数 a 和 b,都有 a*b<=b*a,即乘法满足交换律。

传递性指的是对于任意的实数 a、b 和 c,如果 a<=b 且 b<=c,那么 a<=c。

二、应用基本不等式解决实际问题的方法基本不等式在实际问题中有广泛的应用,主要包括以下三种方法:1.求解最值问题:利用基本不等式可以方便地求解最值问题。

例如,对于函数 f(x)=x^2+ax+b,当 a^2-4b<=0 时,函数的最小值等于 b;当a^2-4b>0 时,函数的最小值等于 f(-a/2)。

2.证明不等式:基本不等式也可以用于证明不等式。

例如,要证明x+y<=2,可以利用基本不等式,得到 (x+y)^2<=4,从而证明 x+y<=2。

3.解决实际生活中的问题:基本不等式也可以用于解决实际生活中的问题。

例如,对于一个商人,他希望利润最大化,可以利用基本不等式,得到售价 - 成本<=售价*成本,从而得到最大利润的售价。

三、基本不等式在实际问题中的应用案例基本不等式在实际问题中有广泛的应用,以下是两个应用案例:1.求解最大利润问题:一个商人要销售一批商品,商品的成本为 c,售价为 x,销售量为 y,利润为 P=xy-c。

利用基本不等式,可以得到最大利润的售价 x<=sqrt(2*c/y)。

2.证明不等式关系:在实际问题中,基本不等式也可以用于证明不等式关系。

基本不等式的综合应用

基本不等式的综合应用

基本不等式的综合应用基本不等式是人教版高中数学必修5第三章第四节的内容,在高考中占有很重要的比重。

而同学们在使用基本不等式的过程中往往会遇到各种各样的题型而觉得无从入手。

现结合教学中实际遇到的问题,浅谈利用基本不等式求最值的各类题型的处理方法。

题型一:直接利用基本不等式求最值理论依据:(1)当0,0a b >>且=p a b +时,2224a b p ab +⎛⎫≤= ⎪⎝⎭,当且仅当a b =时等号成立,简记为“和定积最大”(2)当0,0a b >>且ab p =时,a b +≥=a b =时等号成立,简记为“积定和最小”例1 ①0,236,x y o x y xy >>+=且求的最大值解:∵0x >,0y >且236x y +=∴623x y =+≥,即32xy ≤ ∴xy 的最大值为32,当且仅当23236x y x y =⎧⎨+=⎩即321x y ⎧=⎪⎨⎪=⎩时等号成立 230,2,xy x y o x y>>+=②且求的最小值 解: ∵0x >,0y >且232x y+=∴232x y =+≥6xy ≥ ∴xy 的最小值为6,当且仅当23232x y x y⎧=⎪⎪⎨⎪+=⎪⎩即23x y =⎧⎨=⎩时等号成立题型二:配凑法例2 42x x x -①已知>2,求+的最小值 解: 20x x ∴->∵>244222622x x x x ∴+=-++≥=--当且仅当422x x -=-时等号成立 ∴当4x =时,42x x +-取得最小值6 3,y 4(32)2x x x =-②已知0<<求的最大值 解:302x <<∵ 023x ∴<< 320x -> ∴2232922(32)2()22x x y x x +-=••-≤•= 当且仅当232x x =-,即34x =时等号成立 ∴当34x =时,4(32)y x x =-取得最大值92220,01,4b a b a >>+=③且求 解:2214b a +=∵ 2244a b ∴+=221141522224a b a ++∴=•≤•=当且仅当22244a ab ⎧=⎪⎨+=⎪⎩ ∴当42a b ⎧=⎪⎪⎨⎪=⎪⎩时,542④求错解:22=∵2≥,即241x +=,显然不成立。

最新基本不等式及其综合应用ppt课件

最新基本不等式及其综合应用ppt课件
(2)为使全程运输成本最省, 汽车应 以多大的速度行驶?
合作探究
例. 若a, b, c且a(a b c) bc
4 2 3,则2a b c的最小值为( )
A. 3 1
B. 3 1
C.2 3 2
D.2 3 2
结仅当a b时取“”号),即两个
数的算术平均数不小于它们的几何平
均数。
4.已知x、y R , x y P, xy S. 有下列命题。
(1)如果S是定值,那么当且仅当x y 时, x y有最小值2 S .
(2)如果P是定值,那么当且仅当x y 时, xy有最大值 p2 .
4
典例精析
例3.甲、乙两地相距s(千米), 汽车从甲地 匀速行驶到乙地, 速度最大不得超过c(千米/小 时)。已知汽车每小时的运输成本(元)由可变部 分与固定部分组成。可变部分与速度v(千米/ 小时)的平方成正比, 且比例系数为正常数b; 固 定部分为a元。
(1)试将全程的运输成本y(元)表示成速度 v(千米/小时)的函数;
基本不等式及其综合应用ppt 课件
知识梳理
1.a 0, b 0时, 称 a b 为a, b的算 2
术平均数, 称 ab为a, b的几何平均数。
2.定理1
如果a、b R,那么a2 b2 2ab (当且仅当a b时取“”号)。
3.定理3 如果a、b R ,那么 a b ab 2

基本不等式及应用

基本不等式及应用

基本不等式及应用一、考纲要求:1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.3.了解证明不等式的基本方法——综合法.(1)a2+b2≥2ab(a,b∈R)(2)ab≤(a+b2)2(a,b∈R)(3)a2+b22≥(a+b2)2(a,b∈R)(4)ba+ab≥2(a,b同号且不为零)上述四个不等式等号成立的条件都是a=b.四、算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为a+b2,几何平均数为ab,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四个“平均数”的大小关系;a,b∈R+:当且仅当a=b时取等号.五、利用基本不等式求最值:设x,y都是正数.(1)如果积xy是定值P,那么当x=y时和x+y有最小值2P.(2)如果和x+y是定值S,那么当x=y时积xy有最大值14S2.强调:1、在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握三点:“一正、二定、三相等、四最值”.当条件不完全具备时,应创造条件.正:两项必须都是正数;定:求两项和的最小值,它们的积应为定值;求两项积的最大值,它们的和应为定值。

等:等号成立的条件必须存在.2、当利用基本不等式求最大(小)值等号取不到时,如何处理?(若最值取不到可考虑函数的单调性.)想一想:错在哪里?+≤≤2a b≤+2aba b1.已知函数,求函数的最小值和此时x的取值.xxxf1)(+=1:()221f x xx=+≥=解2.已知函数,求函数的最小值.)2(23)(>-+=xxxxf3()222f x xxx=+≥->⎧⎪解:3、已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1y)的最小值为________.解一:因为对a>0,恒有a +1a ≥2,从而z =(x +1x )(y +1y )≥4,所以z 的最小值是4.解二:z =2+x 2y 2-2xy xy =(2xy+xy)-2≥22xy·xy -2=2(2-1),所以z 的最小值是2(2-1). 【错因分析】 错解一和错解二的错误原因是等号成立的条件不具备,因此使用基本不等式一定要验证等号成立的条件,只有等号成立时,所求出的最值才是正确的.【正确解答】 z =(x +1x )(y +1y )=xy +1xy +y x +x y =xy +1xy +x +y 2-2xy xy =2xy+xy -2,令t =xy ,则0<t =xy ≤(x +y 2)2=14,由f(t)=t +2t 在(0,14]上单调递减,故当t =14时, f(t)=t +2t 有最小值334,所以当x =y =12时z 有最小值254. 误区警示:(1)在利用基本不等式求最值(值域)时,过多地关注形式上的满足,极容易忽视符号和等号成立条件的满足,这是造成解题失误的重要原因.如函数y =1+2x +3x(x<0)有最大值1-26而不是有最小值1+2 6.(2)当多次使用基本不等式时,一定要注意每次是否都能保证等号成立,并且要注意取等号条件的一致性,否则就会出错. 课堂纠错补练:若0<x ≤π2,则f(x)=sinx +4sinx的最小值为________.解析:令sinx =t,0<t ≤π2时,t ∈(0,1],此时y =t +4t在(0,1]单调递减,∴t =1时y min =5.答案:5考点1 利用基本不等式证明不等式1.利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式性质和基本不等式,经过逐步的逻辑推理,最后推得所证问题,其特征是“由因导果”.2.证明不等式时要注意灵活变形,多次利用基本不等式时,注意每次等号是否都成立.同时也要注意应用基本不等式的变形形式.例1:(1)已知c b a ,,均为正数,求证:)(222222c b a abc a c c b b a ++≥++(2)已知c b a ,,为不全相等的正数,求证:abc a c ac c b bc b a ab 6)()()(>+++++(3)已知a>0,b>0,a +b =1,求证:1a +1b≥4.【证明】 (1)∵a>0,b>0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4(当且仅当a =b =12时等号成立). ∴1a +1b≥4.∴原不等式成立. 练习:已知a 、b 、c 为正实数,且a +b +c =1,求证:(1a -1)(1b -1)(1c-1)≥8.证明:∵a 、b 、c 均为正实数,且a +b +c =1, ∴(1a -1)(1b -1)(1c -1) =1-a1-b1-cabc=b +c a +c a +babc≥2bc ·2ac ·2ab abc=8.当且仅当a =b =c =13时取等号.考点2 利用基本不等式求最值(1)合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必要时需出现积为定值或和为定值.(2)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,而且也是检验转换是否有误的一种方法.例4: (1)设0<x<2,求函数)2(2x x y -=的最大值.【分析】 由和或积为定值从而利用基本不等式求最值,然后确定取得最值的条件【解】 (1)∵0<x<2,∴2-x>0,∴y =x4-2x =2·x2-x≤2·x +2-x2=2,当且仅当x =2-x 即x =1时取等号, ∴当x =1时,函数y =x4-2x 的最大值是 2.(2) x>0,求f(x)=12x+3x 的最小值;(3)已知:x>0,y>0.且2x+5y=20,求 xy 的最大值.(4)已知 y 4a -2+a ,求y 的取值X 围.显然a ≠2,当a>2时,a -2>0,∴4a -2+a =4a -2+(a -2)+2≥24a -2·a -2+2=6,当且仅当4a -2=a -2,即a =4时取等号,当a<2时,a -2<0, ∴4a -2+a =4a -2+(a -2)+2=-[42-a+(2-a)]+2 ≤-242-a·2-a +2=-2, 当且仅当42-a =2-a ,即a =0时取等号,∴4a -2+a 的取值X 围是(-∞,-2]∪[6,+∞).(5)已知x>0,y>0,且x +y =1,求3x +4y 的最小值.∵x>0,y>0,且x +y =1, ∴3x +4y =(3x +4y )(x +y) =7+3y x +4xy≥7+23y x ·4xy=7+43, 当且仅当3y x =4xy ,即2x =3y 时等号成立,∴3x +4y 的最小值为7+4 3.练习:求下列各题的最值.(1)已知x>0,y>0,lgx +lgy =1,求z =2x +5y 的最小值;解:(1)由x>0,y>0,lgx +lgy =1,可得xy =10.则2x +5y =2y +5x 10≥210xy 10=2.∴z min =2.当且仅当2y =5x ,即x =2,y =5时等号成立. (2)x <0,求f(x)=12x +3x 的最大值;∵x>0,∴f(x)=12x +3x ≥212x ·3x =12,等号成立的条件是12x=3x ,即x =2, ∴f(x)的最小值是12.(3)x<3,求f(x)=4x -3+x 的最大值.∵x<3,∴x -3<0,∴3-x>0,∴f(x)=4x -3+x =4x -3+(x -3)+3=-[43-x+(3-x)]+3≤-243-x·3-x+3=-1,当且仅当43-x =3-x ,即x =1时,等号成立.故f(x)的最大值为-1.(4)14,0,0=+>>b a b a ,求ab 的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的算术平均数不小于它们的几何平
均数。
4.已知x、y R , x y P, xy S. 有下列命题。
(1)如果S是定值,那么当且仅当x y 时, x y有最小值2 S .
(2)如果P是定值,那么当且仅当x y 时, xy有最大值 p2 .
4
典例精析
例3.甲、乙两地相距s(千米), 汽车从甲地 匀速行驶到乙地, 速度最大不得超过c(千米/小 时)。已知汽车每小时的运输成本(元)由可变部 分与固定部分组成。可变部分与速度v(千米/ 小时)的平方成正比, 且比例系数为正常数b; 固 定部分为a元。
(1)试将全程的运输成本y(元)表示成速度 v(千米/小时)的函数;
(2)为使全程运输成本最省, 汽车应 以多大的速度行驶?
合作探究
例. 若a, b, c且a(a b c) bc
4 2 3,则2a b c的最小值为( )
A. 3 1
B. 3 1
C.2 3 2
D.2 3 2
基本不等式及其综合应用
知识梳理
1.a 0, b 0时, 称 a b 为a, b的算 2
术平均数, 称 ab为a, b的几何平均数。
2.定理1
如果a、b R,那么a2 b2 2ab (当且仅当a b时取“”号)。
ห้องสมุดไป่ตู้
3.定理3 如果a、b R ,那么 a b ab 2
(当且仅当a b时取“”号),即两个
相关文档
最新文档