小学五年级奥数数的整除特征ppt课件

合集下载

《数的整除特征》课件

《数的整除特征》课件

数据存储与传输
在计算机科学中,整除是一个非常重要 的概念。例如,在数据存储和传输中, 我们需要用到二进制数,而二进制数的 整除可以用来进行数据的加密和解密。
VS
算法设计与优化
在算法设计和优化中,整除也是一个非常 重要的概念。例如,在排序算法中,我们 可以利用整除来快速判断一个数是否为整 数,从而优化算法的性能。
数的整除特征
偶数的整除特征
总结词
偶数可以被2整除
详细描述
偶数是能被2整除的整数,其特征是末尾数字为0、2、4、6或8。偶数的整除特 性表明,偶数除以2的余数为0。
奇数的整除特征
总结词
奇数不能被2整除
详细描述
奇数是除以2余数为1的整数,其特征是末尾数字为1、3、5、7或9。奇数的整除特性表明,奇数除以 2的余数只能是1。
《数的整除特征》ppt 课件
目录
• 整除的定义与性质 • 数的整除特征 • 整除的应用 • 数的整除特征的扩展知识 • 练习与思考
CHAPTER 01
整除的定义与性质
整除的定义
整除:如果整数a除以整数b( b≠0)的余数为0,那么就称a能
被b整除。
整除是数学中的一个基本概念, 是研究整数的一个重要的分支。
Байду номын сангаас
判断题
一个数如果是3的倍数,那么它 一定是9的倍数。( )
选择题
一个四位数,千位数字是个位数 字的2倍,百位数字是个位数字 的3倍,十位数字是个位数字的4
倍,这个四位数是( )。
填空题
一个四位数,千位数字是百位数 字的2倍,百位数字是十位数字 的3倍,个位数字是十位数字的4 倍,这个四位数的千位数字是( ),百位数字是( ),十位数字 是( ),个位数字是( )。

小学五级奥数数的整除特征 ppt课件

小学五级奥数数的整除特征 ppt课件

• 回忆:能被3(或9)整除的数的特征:
• 各个数位数字的和能被3(或9)整除。
• 解:1+2+3+4+5+6+7+8+9+1+0+1 +1+1+2+1+3+1+4=60

因为 3 60 9 60
• 所以这个数∣ 能被3整除而不能被9整除。
• 答:这个数能被3整除而不能被9整除。
ppt课件
16
应用举例(二)根据规律填空
8
数的整除性质4
• 4、我们最后再看一个问题:
• 如果c能整除b,b能整除a,那么c一定
能整除a吗?
• 自己出几个题目试试?
• 7能整除14,14能整除140,那么,7能 整除140吗? 能

9能整除18,18能整除54,那么,9能
整除54吗? 能
pptቤተ መጻሕፍቲ ባይዱ件
9
数的整除性质4
• 性质4: • 如果c能整除b,b能整除a,那么c能整除a。 • 即:如果c︱b , b︱a 那么 c︱a。
答:满足条件的六位数是 519930或
。 919935
ppt课件
17
• (2)李老师为学校一共买了28支价格相同 的钢笔,共付人民币9□.2□元,已知□处 数字相同,请问:每支钢笔多少元?
ppt课件
3
数的整除性质1
• 性质1:

如果a、b都能被c整除,那么他们的
和或差也能被c整除。
• 即:如果c︱a , c︱b 那么 c︱(a±b )
• 你能再举出一个例子吗?
ppt课件
4
数的整除性质2
• 2、我们再来看一组例子:
• ① 15能整除45,3×5=15,3和5都能整除 45吗?
• ② 3×7=21,21能整除84,3和7都能整除 84吗?

小学五年级下册数学第二单元能被2、5整除的数的特征PPT课件

小学五年级下册数学第二单元能被2、5整除的数的特征PPT课件
2、5整除的数
2020年10月5日
1
内容提要:复习、新授、练习、知识要点 操作导向:换页、出题(点击鼠标左键)
2ቤተ መጻሕፍቲ ባይዱ20年10月5日
2
……
… …
×
1 2
2
3
4
5
6
7
8
9
10
2020年10月5日
2
4 6
8
10
12
14
16 个位上是0、2、4、
18
6、8 的数,都能被
20
2 整除。
3
练一练
下面哪些数能被2整除?
范文下载:
教案下载:
行业PPT模板: PPT素材下载:
PPT图表下载: PPT教程: Excel教程: PPT课件下载: 试卷下载:
3170
4286
77 501 6003
2020年10月5日
5
1
×5 5
2
10
右5这整圈些除里数吗的有?数什都么能特被征?
3
15
4
20
5
25
个 个位位上上是是00或或者者55的的数数,,
6
30
都 都能 能被 被55整整除除。。
……
… …
2020年10月5日
6
做一做
下面那些数能被2整除,哪些能被5整除?
60
75
106 130 521
( 2 5 )( 5 ) (2 ) ( 2 5 ) ( )
2020年10月5日
7
再见 再见
再见
2020年10月5日
8
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.

《数的整除特征》PPT课件

《数的整除特征》PPT课件

精选ppt
9
小测试
200÷2 21÷3 55÷5 147÷7 46÷9 67÷11 123÷13
答案是前四个可以,后三个不行。
你都算对了吗?
精选ppt
10
精选ppt
11
精选ppt
6
9的整除特征
若一个整数的各个位数的数字和能被9整 除,则这个整数能被9整除 。
如:252 252=2+2+5=9,9÷9=1(整除) 如:133 133÷9=14.7777......(不能整除)
精选ppt
7
11的整除特征
若一个整数的奇位数字之和与偶位数字 之和的差能被11整除,则这个数能被11 整除。
除)
精选ppt
5
7的整除特征
被7整除若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数能被7 整除。如果差太大或心算不易看出是否7的倍数,就需 要继续上述「截尾、倍大、相减、验差」的过程,直 到能清楚判断为止。
如:133 13-3×2=7 , 7÷7=1(整除) 如:12 12÷7=1.741857(不能整除)
除)
精选ppt
3
3的整除特征
被3整除的数必须各个位数上的数加起来 为3的倍数。
如:147=1+4+7=12 147÷3=49(整除) 如:136=1+3+6=10 136÷3=45.33333333.......(不能整除)
精选ppt
4
5的整除特征
被5整除个位为0或者5。 如:10,15 10÷5=2(整除) 15÷5=3(整除) 如:6,12 6÷5=1.2(不能整除)12÷5=2.2(不能整
数的整除特征
六(2)班 徐骏

五年级奥数专题数的整除性

五年级奥数专题数的整除性

数的整除性训练目标:数的整除是数论中最初步的知识,是学习约分、通分和进行分数四则运算的基础。

我们在这一讲要学习掌握整除的数的特点,并能灵便的运用。

【能被3(或9)整除的数的特点】各位数字之和能被3(或9)整除。

【能被4(或25)整除的数的特点】尾端两位数能被4(或25)整除。

【能被8(或125)整除的数的特点】尾端三位数能被8(或125)整除。

【能被 7、 11、 13 整除的数的特点】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被 7、 11、13 整除时,这个数就能被 7、 11、13 整除。

【能被 11 整除的数的特点】,还能够这样表达:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被 11 整除时,则这个数便能被 11 整除。

典型例题:例 1:有一个四位数7A2B 能被 2,3,5 整除,这个四位数是多少?例 2:在一个五位数 25□4□的□内填什么数字,才能使它既能被3整除,又能被5整除?例 3:有一个四位数7AA1 能被 9 整除, A 代表什么数字?这个四位数是几?例 4:在 568 后边补上三个数字,组成一个六位数,使它分别能被 3、4、5 整除。

在符合这些条件的六位数中,最小是多少?例 5:能被 11 整除,首位数字是 4,其他各位数字都不同样的最大及最小的六位数分别是多少?基础练习:1、从 0,1,2,4,5,7 中,选出 4 个数,排列成能被2,3,5 整除的四位数,其中最大的是多少?2.四位数 8A1B 能被 2,3,5 整除,这个四位数是多少?3.有一个四位数3AA1 ,它能被 9 整除,请问 A 代表几?4.已知五位数 A192B 能被 18 整除,其中 A 比大 3,求出这样的五位数。

5.一个五位数能被72 整除,首尾两个数字不知道,千、百、十位上的数字分别是 6、7、9,这个五位数是多少提高练习:1.有五筐苹果,质量分别为 12kg,15kg,10kg,8kg和 13kg,从中选出四张给小红和小张,小红的苹果的质量是小张的 2 倍,剩下的是哪一筐?2.已知整数 5a6b7c8d9e能被 11 整除,那么 a+b+c+d+e=?3.在 358 后边补上 3 个数字来组成一个六位数,使它能被4,5,9 整除,这个六位数最小是多少?5.从 1,2 ,3 ,4, 5 中选出 4 个数字组成一个四位数,使其能被3,5,7 整除,这个数是多少?6.两个整数,他们的积能被和整除,就称为一对“好数”,比方70和30,那么在 1,2,316,这 16 个整数中,有几对“好数”?7.商场里有六箱货物,分别重 16,19,20,18,15,31千克,两顾客买走其中 5 箱货物,其中一个顾客买的货物的重量是另一个顾客的两倍,商场里剩下的那箱货物是多少千克?一、填空题1.四位数“3AA1”是 9 的倍数,那么 A=_____.2.在“ 25□79 这个数的□内填上一个数字 ,使这个数能被 11 整除 ,方格内应填 _____.3.能同时被 2、3、5 整除的最大三位数是 _____.4.能同时被 2、5、7 整除的最大五位数是 _____.5.1 至 100 以内所有不能够被 3 整除的数的和是 _____.6.所有能被 3 整除的两位数的和是 ______.7.已知一个五位数□ 691□能被 55 整除 ,所有符合题意的五位数是 _____.8.若是六位数 1992□□能被 105 整除 ,那么它的最后两位数是 _____.9.42□28□是 99 的倍数 ,这个数除以 99 所得的商是 _____.10.从左向右编号为 1 至 1991 号的 1991 名同学排成一行 ,从左向右 1 至 11 报数 ,报数为11 的同学原地不动 ,其他同学出列 ;尔后留下的同学再从左向右 1 至 11 报数 ,报数为 11 的留下 , 其他同学出列 ; 留下的同学第三次从左向右 1 至 11 报数 ,报到 11 的同学留下 ,其他同学出列 ,那么最后留下的同学中 ,从左边数第一个人的最初编号是 _____号 .二、解答题11. 173□是个四位数字 .数学老师说:“我在这个□中先后填入 3 个数字 ,所获取的 3 个四位数 ,依次可被 9、 11、6 整除 . ”问:数学老师先后填入的 3 个数字的和是多少?12.在 1992 后边补上三个数字,组成一个七位数,使它们分别能被2、3、5、11 整除,这个七位数最小值是多少?13.在“改革”村的黑市上 ,人们只要有意 ,总是能够把两张随意的食品票换成 3 张其他票券 , 也能够反过来互换 .试问 ,合作社成员瓦夏可否将 100 张黄油票换成 100 张腊肠票 ,而且在整个互换过程中恰好出手了 1991 张票券?14.试找出这样的最小自然数,它可被 11 整除 ,它的各位数字之和等于13.二数的整除性 (B)年级班姓名得分一、填空题1.一个六位数 23□ 56□是 88 的倍数 ,这个数除以 88 所得的商是 _____或 _____.2. 123456789 □□ ,这个十一位数能被36 整除 ,那么这个数的个位上的数最小是_____.3.下面一个 1983 位数33...3 44...4中间漏写了一个数字 (方框 ),已知这个多位数被 7 整除,那么中991个991 个间方框内的数字是_____.4. 有三个连续的两位数,它们的和也是两位数,而且是 11 的倍数 .这三个数是 _____.5.有这样的两位数 ,它的两个数字之和能被 4 整除 ,而且比这个两位数大 1 的数 ,它的两个数字之和也能被 4整除 .所有这样的两位数的和是 ____.6. 一个小于 200 的自然数 ,它的每位数字都是奇数 ,而且它是两个两位数的乘积,那么这个自然数是 ___.7. 任取一个四位数乘 3456,用 A 表示其积的各位数字之和,用 B 表示 A 的各位数字之和 ,C 表示 B 的各位数字之和 ,那么 C 是 _____.8. 有 0、 1、 4、 7、9 五个数字,从中选出四个数字组成不同样的四位数,若是把其中能被 3 整除的四位数从小到大排列起来,第五个数的末位数字是_____.9. 从 0、 1、 2、 4、 5、 7 中,选出四个数,排列成能被2、 3、 5 整除的四位数,其中最大的是 _____.10.所有数字都是 2 且能被66...6整除的最小自然数是 _____位数 .100个二、解答题11. 找出四个互不同样的自然数,使得关于其中任何两个数,它们的和总能够被它们的差整除,若是要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12.只改正21475 的某一位数字 ,即可知使改正后的数能被225 整除 ,怎样改正?13. 500 名士兵排成一列横队.第一次从左到右1、2、 3、 4、 5( 1 至 5)名报数;第二次反过来从右到左 1、 2、 3、 4、 5、 6( 1 至 6)报数,既报 1 又报 6 的士兵有多少名?14.试问 ,可否将由 1 至 100 这 100 个自然数排列在圆周上,使得在任何 5 个相连的数中 ,都最罕有两个数可被 3 整除?若是回答:“能够”,则只要举出一种排法;若是回答:“不能够”,则需给出说明.———————————————答案——————————————————————1.7已知四位数 3AA1 正好是 9 的倍数 ,则其各位数字之和3+A+A+1 必然是 9 的倍数 ,可能是 9 的 1 倍或 2 倍,可用试验法试之 .设 3+A+A+1=9,则 A=2.5,不合题意 .再设 3+A+A+1=18,则 A=7,符合题意 .事实上 ,37719=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0 或是 11 的倍数 ,那么这个数能被 11 整除.偶数位上数字和是 5+7=12,所以 ,奇数位上数字和 2+□+9应等于 12, □内应填 12-2-9=1.3. 990 要同时能被 2 和 5 整除 ,这个三位数的个位必然是 0.要能被 3 整除 ,又若是最大的三位数 ,这个数是 990.4.99960解法一 :能被2、5整除,个位数应为0,其他数位上尽量取9,用7去除999□0,可知方框内应填 6.所以 ,能同时被 2、 5、 7 整除的最大五位数是 99960.解法二 :也许这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70 依旧是 70 的倍数 ,所以能被 2,5,7 整除的最大五位数是 100030-70=99960.5.3367 先求出 1~100 这 100 个数的和 ,再求 100 以内所有能被 3 整除的数的和 ,以上二和之差就是所有不能够被 3 整除的数的和 .(1+2+3+ +100)-( 3+6+9+12+ +99)=(1+100) 2 100-(3+99) 233=5050-1683=33676.1665 能被 3 整除的二位数中最小的是 12,最大的是 99,所有能被 3 整除的二位数以下 :12,15,18,21, ,96,99 这一列数共 30 个数,其和为12+15+18+ +96+99=(12+99) 30 2=16657.96910 或 46915五位数 A691B 能被 55 整除 ,即此五位数既能被 5 整除 ,又能被 11 整除 .所以 B=0 或 5.当 B=0 时, A6910 能被 11 整除 ,所以 (A+9+0)-(6+1)=A+2 能被 11 整除 ,所以 A=9;当 B=5 时,同样可求出A=4.所以 ,所求的五位数是96910 或 46915.8.90由于 105=3 5 7,依照数的整除性质 ,可知这个六位数能同时被3、 5 和 7 整除。

五年级奥数专题-数的整除

五年级奥数专题-数的整除

五年级奥数专题-数的整除如果整除a 除以不为零数b,所得的商为整数而余数为0,我们就说a 能被b 整除,或叫b 能整除a.如果a 能被b 整除,那么,b 叫做a 的约数,a 叫做b 的倍数.数的整除的特征:(1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除.(2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除.(3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除.(4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除.(5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除.(6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除.(7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除.(8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要990个 990个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.(+)1(+二、巩固训练1.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.2.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.3.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.4.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.1. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.2. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.3. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.4. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.三、拓展提升1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?2.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.答案1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.2. 因为225=25 9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.4. 不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.。

5整除的数的特征.ppt

5整除的数的特征.ppt
能被2、5整除的数的特征
个位上是0、2、4、6、8的数, 都是2的倍数。
个位上是0、2、4、6、8的数, 都能被2整除。
比比谁的反应快!
29014905816
方框里填上几,这个数能被2整除?
4ƀ 9 ƀ6 7ƀƀ
将下面的数分分类: 47、75、96、100、135、246、 369、718、900 、1008、2111
能被2整除的数叫做偶数; 不能被2整除的数叫做奇数;
个位上是0、5的数,都 能被5整除。
下面哪些数能被2整除?哪些数 能被5整除?
25 32 43 34 160 106 235 253
练一练
一、判断。(对的打“√”,错的打“×”)
1、一个自然数不
3、个位上是2、4、6、8、0的自然数都是偶数。( )
4、一个数是2的倍数,那它一定是偶数。( )
5、奇数与奇数的和还是奇数。
()
6、能同时被2、5整除的数个位上的数字一定是0。( )
填空:
1、个位上是( )的数能被2整除, 能被2整除的数叫做( ),不能被2 整除的数叫做( )。
2、20以内的所有奇数的和是( )。
3、三个连续奇数,中间一个是a,其 它两个数分别是( )和( )。
4、3个连续的偶数的和是60,这三个 数分别是( )、( )、( )。
2、用2、3、5、6这4个数字组成一 个三位数,使它有约数2,这样的数 有哪些?
如果是5的倍数,这样的数又有哪些?

1.整除的概念和性质.ppt

1.整除的概念和性质.ppt

知识方面
(1)整除的定义; (2)整除的基本性质;
(3)能被一些特殊整数(3、9、11)整除的正整数的特征; 思想方法方面
观察、归纳、猜想等合情推理思想; 类比;特殊到一般; 数学核心素养方面
0,2,4, 6, 8, 10,128.他们能被什么整数整除? (2)0,5,20, 205,1055.他们能被什么整数整除?
1、一个整数的末位数字是0、2、4、6、8 ,则这个数能被2整除; 2、一个整数的末位数字是0、5,则这个数 能被5整除;
问题6.观察下列正整数,这几组数有什么规 律?他们能被什么整数整除? (1)6,18,21, 108, 243,56382; (2)9,45,189,6651; (3)11,88,968; (4)121,1001,1331。
整除的概念:一般地,设a、b为整数,且b不为0,如果 存在整数q,使得a=bq,则称b整除a,或者a能被b整除。记 作b|a。并且称b是a的因数,a是b的倍数。如果这样的整 数q不存在,则称b不能整除a。
问题4:由整除的概念,你能否推出下列整除的基本性质? (1)若a|b, b|a,则a=b,或a=-b; (2)若a|b, b|c,则a|c; (3)若a|b,a|c,则对任意整数x、y,恒有a|bx+cy.
1理解并掌握整除的定义; 2探索、掌握、证明整除的基本性质; 3探索、概括、并证明能被一些特殊整数(3、9、11 )整除的正整数的特征;
问题1.两个整数的加法、减法、乘法运算, 结果仍为整数,除法呢?
问题2.请你们给出以前学过的一个整数能除 尽另一个整数的例子? 问题3.如何从乘法角度判断一个整数能除尽 另一个整数?
结论: (1)一个正整数的各位数字之和能被3整除,则 这个正整数能被3整除。 (2)一个正整数的各位数字之和能被9整除,那 么这个正整数能被9整除; (3)一个正整数的奇数位数字之和与偶数位数字 之和的差能被11整除,那么这个正整数能被11 整除;

五年级奥数-数的整除

五年级奥数-数的整除

数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。

如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。

数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。

(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。

(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。

(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。

(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。

(6)能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。

(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。

(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要个个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的整除性质1
• 性质1:

如果a、b都能被c整除,那么他
们的和或差也能被c整除。

即:如果c︱a , c︱b 那么 c︱
(a±b)
• 你能再举出一个例子吗?
数的整除性质2
• 2、我们再来看一组例子:

① 15能整除45,3×5=15,3和5都能整
除45吗?

② 3×7=21,21能整除84,3和7都能整

如果c能整除b,b能整除a,那么c一
定能整除a吗?
• 自己出几个题目试试?

7能整除14,14能整除140,那么,7
能整除140吗?能

9能整除18,18能整除54,那么,
9能整除54吗能?
数的整除性质4
• 性质4:
• 如果c能整除b,b能整除a,那么c能整除a。

即:如果c︱b , b︱a 那么 c︱a。

• (2)李老师为学校一共买了28支价格相同 的钢笔,共付人民币9□.2□元,已知□处 数字相同,请问:每支钢笔多少元?
• 分析:由28支钢笔的价格相同可知,总钱 数9□.2□是28 的倍数,同上面的解题思 路类似,可以用数的整除性质和数的整除 特征结合起来解答。
9□.2□元=9□2□分
• 解:∵28=4×7,根据整除的性质③,
第一单元 数的整除特征
熟记整除的性质,以及能被2、3、 4、5、7、8、9、11、13、25、125整 除的数的特征,能应用性质和特征解决 简单的数字问题及生活中的问题
(一)整除——约数、倍数
• 像15÷3=5,63÷7=9这样, • 一般的,如果a、b、c为整数,b≠0,且
a÷b=c,即整数a除以整数b所得的商正好 等于c且没有余数,我们就说a能被b整除 (或者说b能整除a),记作:b︱a, • 否则,称a不能被b整除(或b不能整除a), 记作:b a
求所有满足条件的六位数。
解:因为45=5×9,根据整除的性质②,
可知x51︱993 y
x1993,y9︱
所以 y可以是0或者5 ,
当y=0时,根据9︱ x1993 y
整除特征可5知x=

当y=5时,根据 9︱x1993 y
整除特征可9 知x=
及数的 及数的
答:满足条件的六位数是 519930
或 919935
• ①判断35112能不能被7、11、13整除 • 回忆:能被7、11、13整除的数的特征: • 末三位数字与前面的数字的差(大减小)
能被7、11、13整除。 • 解: 112-35=77 • 因为 ∣7 77 ,∣ 11 77, 13 77 • 答:35112能被7和11整除,但不能被13整
除。
• 各个数位数字的和能被3(或9)整除。
• 解:1+2+3+4+5+6+7+8+9+1+0+1 +1+1+2+1+3+1+4=60

因为 3 60 9 60
• 所以这个∣数能被3整除而不能被9整除。
• 答:这个数能被3整除而不能被9整除。
应用举例(二)根据规律填空
• 例2、⑴ 已知45︱x1993 y
我们来总结一下
• 性质1:如果a、b都能被c整除,那么他们的和或差
也能被c整除。即:如果c︱a , c︱b 那么 c︱ (a±b)
• 性质2:如果b、c的积能整除a,那么b和c都能整除a。
即:如果bc︱a ,那么 b︱a , c︱a
• 性质3: 如果b、c都能整除a,且b和c 互质,那么
b、c的积能整除a 。 即:如果b︱a , c︱a 且 (b,c)=1,那么 bc︱a。
bc︱a一定正确吗?
数的整除性质3
• 3、我们看下面的例子:

① 4能够整除36,6也能整除36,
4与6的积能整除36吗不?能

② 4能够整除80,5也能整除80,
4与5的积能整除80吗能?

③ 5能够整除80,8也能整除80,
5与8的积能整除80吗能?
• 这说明这两个数需要满足一定的条件!
数的整除性质3
(二) 数的整除性质
• 1、看下面的两个例子:
• ⑴ 我们知道 2︱10 , 2︱6 ,2能整 除10与6的和或者差吗
• 能 。 2︱(10+6)且 2︱(10-6)
• ⑵ 我们再看 5︱25 , 5︱10 ,5能 整除25与10的和或差吗?

能 。 5︱(25+10), 5︱(25-
10)
• 你能从上面的题目中得到上面规律?
差(大减小)能被11整除; • ④能被7、11、13整除:末三位与末三位前面的数
的差(大减小)能被7、11、13整除。
SUCCESS
THANK YOU
2019/7/12
应用举例(一) 判断一个数能不能被整除
• 例1、 • ①判断35112能不能被7、11、13整除 • ②33333333468375能不能被125整除 • ③1234567891011121314能不能被3和9整除
• 性质4:如果c能整除b,b能整除a,那么c能整除a。
• 即:如果c︱b , b︱a 那么 c︱a。
(三)数的整除特征
• (一):能被2、3、5、9、整除的数的整除特征; • (二)①能被4、25整除:末两位数能被4和25整
除; • ②能被8、125整除:末三位数能被8、125整除; • ③能被11整除:奇位数字之和与偶位数字之和的
• 性质3:

如果b、c都能整除a,且b和互质
c
,那么b、c的积能整除a 。
• 即:如果b︱a , c︱a 且(b,c) =1,那么 bc︱a。
• 例如 8︱324685008 , 9︱ 324685008 且(8,9)=1,

那么72 ︱324685008。
数的整除性质4
• 4、我们最后再看一个问题:
• ②33333333468375能不能被125整除
• 回忆:能被125整除的数的特征:
• 末三位数字能被125整除。
• 解: 因为这个数的末三位数字375能被 125整除,所以33333333468375能被125整 除。
• ③1234567891011121314能不能被3和9整除。
• 回忆:能被3(或9)整除的数的特征:
除84吗?

③ 5×9=45,45能整除135,5和9都能
整除135吗?

上面的3个例子有什么共同点?
• 如果一个数能被两个数的积整除,它能被这两个 数整除吗?
数的整除性质
ห้องสมุดไป่ตู้• 性质2:
• 如果b、c的积能整除a,那么b和c都能整除a。
• 即:如果bc︱a ,那么 b︱a , c︱a

反过来,如果b︱a , c︱a 那么
相关文档
最新文档