2020届高考物理必考经典专题 专题06 动力学、动量和能量观点的综合应用(含解析)

合集下载

2020高考二轮复习 专题5、动力学三大观点综合应用

2020高考二轮复习  专题5、动力学三大观点综合应用

1 / 5动力学三大观点综合应用 专题一、牛顿第二定律与动能定理的综合应用1、如图甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0m.选择斜面底端为参考平面,上升过程中,物体的机械能E 随高度h 的变化关系如图乙所示,g 取 10 m/s 2,sin 37°=0.6,cos 37°=0.8.则( )A.物体的质量m=0.67 kgB.物体与斜面之间的动摩擦因数μ=0.5C.物体上升过程中的加速度大小a=1m/sD.物体回到斜面底端时的动能E=10J2、倾角为θ的斜面体固定在水平面上,在斜面体的底端附近固定一挡板,一质量不计的轻弹簧下端固定在挡板上,其自然伸长时弹簧的上端位于斜面体上的0点.质量分别为4m 、m 的物块甲和乙用一质量不计的细绳连接,且跨过固定在斜面体顶端的光滑定滑轮,连接甲的细绳与斜面平行,如图所示.开始时物块甲位于斜面体上的M 处,且MO=L ,物块乙距离水平面足够高,现将物块甲和乙由静止释放,物块甲沿斜面下滑,当甲将弹簧压缩到N 点时,甲的速度减为零,ON=L/2,已知物块甲与斜面间的动摩擦因数为μ=83,θ=30°,重力加速度g 取10m/s 2,忽略空气阻力,整个过程细绳始终没有松弛且乙未碰到滑轮,则下列说法正确的是( )A.物块甲由静止释放到滑至斜面体上N 点的过程,物块甲先匀加速运动紧接着做匀减速运动到速度减为零B.物块甲在与弹簧接触前的加速度大小为0.5m/s 2C.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为15mgL/8D.物块甲位于N 点时,弹簧所储存的弹性势能的最大值为3mgL/83、如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙的模型。

倾角为45°的直轨道AB ,半径R=10m 的光滑竖直圆轨道和倾角为37°的直轨道EF ,分别通过水平光滑衔接轨道 BC 、C'E 平滑连接,另有水平减速直轨道FG 与EF 平滑连接,EG 间的水平距离L=40m 。

动力学、动量和能量观点的综合应用

动力学、动量和能量观点的综合应用

(2)2 J
(3)1 m
热点题型例析
第2课时
(18 分)两根足够长的固定的平行金属导轨位于同一水 平面内,两导轨间距为 l.导轨上面横放着两根导体棒 PQ 和 MN, 构成矩形回路,如图 4 所示.导体棒 PQ 的质量为 m、MN 的质量 为 2m,两者的电阻皆为 R,回路中其余部分的电阻可不计.在整个 导轨平面内都有竖直向上的匀强磁场,磁感应强度为 B.设两导体 棒均可沿导轨无摩擦地滑行.开始时,棒 MN 静止于距导轨右端 d 处,PQ 棒以大小为 v0 的初速度从导轨左端开始运动.忽略回路的 电流对磁场产生的影响.
第2课时
⑫ ⑬
滑块从挡板滑至左端需要的最小能量 Emin=2μMgL+EqL 解得 Ek<Emin
故滑块不会从左端滑出 (2 分) 1 由能量守恒得 (2M)v2+Eqs′=2μMgs 路+Eq(s 路-s′)⑭(2 分) 2 本 课 故 s 路=1 m. (1 分)
(1)0.2 m
时 栏 目 答案 开 关
第2课时Βιβλιοθήκη (1 分)因为 t0<t1,所以撤去外力 F 时,m、M 还未相对静止,此时 m 的速 (1 分) (1 分)
本 课 时 栏 目 开 关
(1 分) (1 分) (1 分) (1 分)
热点题型例析
第2课时
由能量守恒知此过程产生的热量为 1 2 1 2 1 Q2=2mv1 +2Mv2 -2(M+m)v共2=1.5 J 所以滑块 m 在长木板 M 上表面上滑动时所产生的热量
热点题型例析
第2课时
题型 1 动量和能量观点在力学中的应用
本 【例 1】 (18 分)如图 1 所示,固定在地面上的光滑的 1/4 圆弧面 课 与车 C 的上表面平滑相接,在圆弧面上有一个滑块 A,其质量为 时 栏 mA=2 kg,在半径为 R=1.25 m 的 1/4 圆弧面顶端由静止下滑, 目 开 车 C 的质量为 mC=6 kg,在车 C 的左端有一个质量 mB=2 kg 关

2020年高考物理一轮复习专题06动量守恒定律考点归纳

2020年高考物理一轮复习专题06动量守恒定律考点归纳

专题06 动量守恒定律目录【基本概念、规律】 (1)【重要考点归纳】 (2)考点一动量定理的理解及应用 (2)考点二动量守恒定律与碰撞 (2)考点三爆炸和反冲人船模型 (3)实验:验证动量守恒定律 (4)【思想方法与技巧】 (6)动量守恒中的临界问题 (6)【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.(2)动能和动量的关系:E k=p22m.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向.(4)Δp =0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2. (3)速度要合理.①碰前两物体同向,则v 后>v 前;碰后,原来在前的物体速度一定增大,且v ′前≥v ′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有m 1v 1=m 1v ′1+m 2v ′2①12m 1v 21=12m 1v ′21+12m 2v ′22② 由①②得v ′1=m 1-m 2v 1m 1+m 2 v ′2=2m 1v 1m 1+m 2 结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度.②当m 1>m 2时,v ′1>0,v ′2>0,碰撞后两球都向前运动.③当m 1<m 2时,v ′1<0,v ′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三 爆炸和反冲 人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.。

2020年高考物理重点难点易考点总结专题四:动量和能量观点的综合运用

2020年高考物理重点难点易考点总结专题四:动量和能量观点的综合运用

专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性的选择相应的规律和方法.第1课时功能关系在力学中的应用1.常见的几种力做功的特点(1)重力、弹簧弹力、静电力做功与路径无关.(2)摩擦力做功的特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零,在静摩擦力做功的过程中,只有机械能的转移,没有机械能转化为其他形式的能;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.在一对滑动摩擦力做功的过程中,不仅有相互摩擦物体间机械能的转移,还有部分机械能转化为内能.转化为内能的量等于系统机械能的减少量,等于滑动摩擦力与相对位移的乘积.③摩擦生热是指滑动摩擦生热,静摩擦不会生热.2.几个重要的功能关系(1)重力的功等于重力势能的变化,即W G=-ΔE p.(2)弹力的功等于弹性势能的变化,即W弹=-ΔE p.(3)合力的功等于动能的变化,即W=ΔE k.(5)一对滑动摩擦力做的功等于系统中内能的变化,即Q=F f·l相对.1.动能定理的应用(1)动能定理的适用情况:解决单个物体(或可看成单个物体的物体系统)受力与位移、速率关系的问题.动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用.(2)应用动能定理解题的基本思路①选取研究对象,明确它的运动过程.②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和.③明确物体在运动过程初、末状态的动能E k1和E k2.=E k2-E k1,及其他必要的解题方程,进行求解.④列出动能定理的方程W合2.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功的代数和是否为零.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“物体间碰撞”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系统.②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的初、末状态时的机械能.④根据机械能守恒定律列方程,进行求解.考向1力学中的几个重要功能关系的应用例1如图1所示,足够长传送带与水平方向的倾角为θ,物块a通过平行于传送带的轻绳跨过光滑轻滑轮与物块b相连,b的质量为m,开始时a、b及传送带均静止,且a不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b上升h高度(未与滑轮相碰)过程中()图1A.物块a重力势能小于mghC.摩擦力对a做的功小于物块a、b动能增加之和D.任意时刻,重力对a、b做功的瞬时功率大小相等审题突破重力势能的变化和什么力做功相对应?机械能的变化和什么力做功相对应?动能的变化又和什么力做功相对应?解析由题意m a g sinθ=m b g,则m a=msinθ.b上升h,则a下降h sinθ,则a重力势能的减少量为m a g×h sinθ=mgh,故A错误.摩擦力对a做的功等于a、b机械能的增加量.所以摩擦力对a做的功大于a的机械能增加量.因为系统重力势能不变,所以摩擦力做的功等于系统动能的增加量,故B、C错误.任意时刻a、b的速率相等,对b,克服重力的瞬时功率P b=mg v,对a有:P a=m a g v sinθ=mg v,所以重力对a、b做功的瞬时功率大小相等,故D正确.故选D.答案D以题说法注意几个功能关系:重力做的功等于重力势能的变化量;弹簧弹力做的功等于弹性势能的变化量;重力以外的其他力做的功等于机械能的变化量;合力做的功等于动能的变化量.(2014·广东·16)图2是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()图2A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能答案B解析由于车厢相互撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A错误,B正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C、D错误.考向2动力学方法和动能定理的综合应用例2如图3甲所示,用固定的电动机水平拉着质量m=2kg的小物块和质量M=1kg的平板以相同的速度一起向右匀速运动,物块位于平板左侧,可视为质点.在平板的右侧一定距离处有台阶阻挡,平板撞上后会立刻停止运动.电动机功率保持P=3W不变.从某时刻t=0起,测得物块的速度随时间的变化关系如图乙所示,t=6s后可视为匀速运动,t=10s时物块离开木板.重力加速度g=10m/s2,求:图3(1)平板与地面间的动摩擦因数μ为多大?(2)物块在1s 末和3s 末受到的摩擦力各为多大?(3)平板长度L 为多少?审题突破“平板以相同的速度一起向右匀速运动”隐含什么条件?求平板长度时应该选取哪段过程?电机的牵引力是恒力还是变力?怎么表示其做功的大小?解析(1)由题图可知,前2s 内物块和平板一起做匀速运动,对整体分析,在水平方向上受到水平向右的拉力和地面给平板的滑动摩擦力,此二力的合力为零.拉力大小为:F T1=P v 1滑动摩擦力大小为:F f =μ(M +m )g 由平衡条件可得:P v 1=μ(M +m )g 可得:μ=0.2(2)物块在1s 末时与平板一起做匀速运动,合力为零.物块受到水平向右的拉力与水平向左的静摩擦力,因此静摩擦力大小为:F f1=F T1=P v 1=6N 物块在2s 末之后与平板发生相对运动,之后物块与平板间的摩擦力为滑动摩擦力且大小保持不变.物块在6s 后可视为匀速运动,此时物块受到的合力为零,即拉力与滑动摩擦力大小相等方向相反,即:F f2=F T2=P v 2=10N 物块在3s 末时受到的滑动摩擦力大小与6s 后受到的摩擦力大小相等,为10N.(3)依题意,物块在2s 末之后一直到10s 时,物块从平板的一端运动到另一端,对物块由动能定理得:P Δt -F f2L =12m v 22-12m v 21代入解得:L =P Δt -12m v 22+12m v 21F f2=2.416m 答案(1)0.2(2)6N 10N (3)2.416m 以题说法 1.在应用动能定理解题时首先要弄清物体的受力情况和做功情况.此题特别要注意地面对木板的滑动摩擦力为μ(M +m )g .2.应用动能定理列式时要注意运动过程的选取,可以全过程列式,也可以分过程列式.如图4,传送带A 、B 之间的距离为L =3.2m ,与水平面间夹角θ=37°,传送带沿顺时针方向转动,速度恒为v =2m /s ,在上端A 点无初速度放置一个质量为m =1kg 、大小可视为质点的金属块,它与传送带的动摩擦因数为μ=0.5,金属块滑离传送带后,经过弯道,沿半径R =0.4m 的光滑圆轨道做圆周运动,刚好能通过最高点E ,已知B 、D 两点的竖直高度差为h =0.5m(取g =10m/s 2).求:图4(1)金属块经过D 点时的速度;(2)金属块在BCD 弯道上克服摩擦力做的功.答案(1)25m/s (2)3J 解析(1)对金属块在E 点,mg =m v 2E R,v E =2m/s 在从D 到E 过程中,由动能定理得:-mg ·2R =12m v 2E -12m v 2D v D =25m/s(2)金属块刚刚放上时,mg sin θ+μmg cos θ=ma 1,a 1=10m/s 2设经位移x 1达到共同速度,v 2=2ax 1,x 1=0.2m<3.2m继续加速过程中:mg sin θ-μmg cos θ=ma 2a 2=2m/s 2x 2=L -x 1=3mv 2B -v 2=2a 2x 2v B =4m/s 在从B 到D 过程中,由动能定理:mgh -W =12m v 2D -12m v 2B W =3J.6.综合应用动力学和能量观点分析多过程问题例3(14分)如图5所示,倾角θ=30°、长L =4.5m 的斜面,底端与一个光滑的14圆弧轨道平滑连接,圆弧轨道底端切线水平.一质量为m =1kg 的物块(可视为质点)从斜面最高点A 由静止开始沿斜面下滑,经过斜面底端B 后恰好能到达圆弧轨道最高点C ,又从圆弧轨道滑回,能上升到斜面上的D 点,再由D 点由斜面下滑沿圆弧轨道上升,再滑回,这样往复运动,最后停在B 点.已知物块与斜面间的动摩擦因数为μ=36,g =10m/s 2,假设物块经过斜面与圆弧轨道平滑连接处速率不变.求:图5(1)物块经多长时间第一次到B 点;(2)物块第一次经过B 点时对圆弧轨道的压力;(3)物块在斜面上滑行的总路程.解析(1)物块沿斜面下滑时,mg sin θ-μmg cos θ=ma (2分)解得:a =2.5m/s 2(1分)从A 到B ,物块匀加速运动,由L =12at 2(1分)可得t =3105s(1分)(2)因为物块恰好到C 点,所以到C 点速度为0.设物块到B 点的速度为v ,则mgR =12m v 2(2分)F N -mg =m v 2R(1分)解得F N =3mg =30N(1分)由牛顿第三定律可得,物块对轨道的压力为F N ′=30N ,方向向下(1分)(3)从开始释放至最终停在B 处,设物块在斜面上滑行的总路程为s ,则mgL sin θ-μmgs cos θ=0(3分)解得s =9m(1分)答案(1)3105s (2)30N ,方向向下(3)9m 点睛之笔多个运动的组合实际上是多种物理规律和方法的综合应用,分析这种问题时注意要各个运动过程独立分析,而不同过程往往通过连接点的速度建立联系,有时对整个过程应用能量的观点解决问题会更简单.(限时:15分钟,满分:16分)如图6所示,有一个可视为质点的质量为m =1kg 的小物块,从光滑平台上的A 点以v 0=1.8m /s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进人固定在竖直平面内的光滑圆弧轨道,最后小物块无碰撞地滑上紧靠轨道末端D 点的足够长的水平传送带.已知传送带上表面与圆弧轨道末端切线相平,传送带沿顺时针方向匀速运行的速度为v =3m/s ,小物块与传送带间的动摩擦因数μ=0.5,圆弧轨道的半径为R =2m ,C 点和圆弧的圆心O 点连线与竖直方向的夹角θ=53°,不计空气阻力,重力加速度g =10m/s 2,sin 53°=0.8,cos 53°=0.6.求:图6(1)小物块到达圆弧轨道末端D 点时对轨道的压力;(2)小物块从滑上传送带到第一次离开传送带的过程中产生的热量.答案(1)22.5N ,方向竖直向下(2)32J解析(1)设小物体在C 点时的速度大小为v C ,由平抛运动的规律可知,C 点的速度方向与水平方向成θ=53°,则由几何关系可得:v C =v 0cos θ= 1.8cos 53°m /s =3m/s ①由C 点到D 点,由动能定理得:mgR (1-cos θ)=12m v 2D -12m v 2C ②小物块在D 点,由牛顿第二定律得:F N -mg =m v 2D R③由牛顿第三定律,小物块到达圆弧轨道末端D 点时对轨道的压力为:F N ′=F N ④联立①②③④得:F N ′=22.5N ,方向竖直向下(2)设小物块在传送带上滑动的加速度大小为a ,由牛顿第二定律得:a =μmg m=μg =0.5×10m /s 2=5m/s 2⑤小物块匀减速直线运动的时间为t 1,向左通过的位移为x 1,传送带向右运动的距离为x 2,则:v D =at 1⑥x 1=12at 21⑦x 2=v t 1⑧小物块向右匀加速直线运动达到和传送带速度相同时间为t 2,向右通过的位移为x 3,传送带向右运动的距离为x 4,则v =at 2⑨x 3=12at 22⑩整个过程小物块相对传送带滑动的距离为:x=x1+x2+x4-x3⑫产生的热量为:Q=μmgx⑬联立⑤~⑬解得:Q=32J(限时:45分钟)题组1力学中的几个重要功能关系的应用1.如图1所示,质量为M、长度为L的小车静止在光滑水平面上,质量为m的小物块(可视为质点)放在小车的最左端.现用一水平恒力F作用在小物块上,使小物块从静止开始做匀加速直线运动.小物块和小车之间的摩擦力为F f,小物块滑到小车的最右端时,小车运动的距离为x.此过程中,以下结论不正确的是()图1A.小物块到达小车最右端时具有的动能为(F-F f)·(L+x)B.小物块到达小车最右端时,小车具有的动能为F f xC.小物块克服摩擦力所做的功为F f(L+x)D.小物块和小车增加的机械能为Fx答案D解析小物块受到的合外力是F-F f,位移为L+x,由动能定理可得小物块到达小车最右端时具有的动能为(F-F f)(L +x),同理小车的动能也可由动能定理得出为F f x;由于小物块和小车间的滑动摩擦力产生内能,小物块和小车增加的机械能小于Fx.2.如图2甲所示,一物体悬挂在细绳下端,由静止开始沿竖直方向运动,运动过程中物体的机械能E与物体位移x关系的图象如图乙所示,其中0~x1过程的图线为曲线,x1~x2过程的图线为直线.由此可以判断()甲乙图2A.0~x1过程中物体所受拉力是变力,且一定不断减小B.0~x1过程中物体的动能一定是不断减小C.x1~x2过程中物体一定做匀速运动D.x1~x2过程中物体可能做匀加速运动解析小球受重力和绳子的拉力,由题图知在0~x1过程中拉力在逐渐增大,故A错误;若拉力小于重力,则小球加速运动,动能增大,故B错误;x1~x2过程中拉力不变,若拉力等于重力,小球做匀速运动,若拉力小于重力,小球可能做匀加速运动,故C错误,D正确.3.把质量为m的小球(可看做质点)放在竖直的轻质弹簧上,并把小球下按到A的位置,如图3甲所示.迅速松手后,弹簧把小球弹起,球升至最高位置C点(如图丙),途中经过位置B时弹簧正好处于自由状态(如图乙).已知AB 的高度差为h1,BC的高度差为h2,重力加速度为g,不计空气阻力.则()图3A.小球从A上升到B位置的过程中,动能一直增大B.小球从A上升到C位置的过程中,机械能一直增大C.小球在图甲中时,弹簧的弹性势能为mg(h2+h1)D.一定有h2≥h1答案C解析小球上升时先加速后减速,当mg=F时,加速度为零,速度最大,此时弹簧还处于压缩状态,选项A错误.从弹A到B,小球和弹簧的系统机械能守恒,弹性势能减小,小球的机械能增大;而从B到C,小球只有重力做功,机械能不变,选项B错误.由A到C系统的机械能守恒可知,弹性势能全部转化为重力势能,故E p=mg(h2+h1),选项C正确.由A到C弹簧的弹性势能转化为小球的重力势能,动能最大位置在B点下方,故h2可等于零,选项D 错误.故选C.4.如图4所示为通过弹射器研究弹性势能的实验装置.光滑34圆形轨道竖直固定于光滑水平面上,半径为R.弹射器固定于A处.某一实验过程中弹射器射出一质量为m的小球,恰能沿圆轨道内侧到达最高点C,然后从轨道D处(D 与圆心等高)下落至水平面.取重力加速度为g.下列说法正确的是()图4A.小球从D处下落至水平面的时间为2RgB.小球至最低点B时对轨道压力为5mgC.小球落至水平面时的动能为2mgRD.释放小球前弹射器的弹性势能为5mgR2解析小球恰好通过C 点,则由mg =m v 2R ,解得v =gR ;小球从C 到D 有mgR =12m v 2D -12m v 2,解得v D =3gR ,小球由D 到地面做匀加速直线运动;若做自由落体运动时,由R =12gt 2可得,t =2R g ;而现在有初速度,故时间小于2R g ,故A 错误;由B 到C 有:mg ·2R =12m v 2B -12m v 2,B 点F -mg =m v 2B R ,联立解得,F =6mg ,故B 错误;对C ,小球落到水平面E k -12m v 2=mg ·2R ,E k =2.5mgR ,故C 错误;小球弹出后的机械能等于弹射器的弹性势能,故弹性势能为E =mg ·2R +12m v 2=5mgR 2,故D 正确.5.如图5所示,在倾角为θ的固定光滑斜面上有两个用轻弹簧相连接的物块A 、B ,它们的质最分别为m 1、m 2,弹簧劲度系数为k ,C 为一固定挡板,系统处于静止状态.现用一平行斜面向上的恒力F 拉物块A 使之向上运动,当物块B 刚要离开挡板C 时,物块A 运动的距离为d ,速度为v .则此时()图5A .拉力做功的瞬时功率为F v sin θB .物块B 满足m 2g sin θ=kdC .物块A 的加速度为F -kd m 1D .弹簧弹性势能的增加量为Fd -12m 1v 2答案C解析拉力F 与速度v 同向,瞬时功率应为P =F v ,故A 错误;开始时系统处于静止状态,弹簧弹力等于A 的重力沿斜面向下的分力,当B 刚离开C 时,弹簧的弹力等于B 的重力沿斜面向下的分力,故m 2g sin θ=kx 2,但由于开始时弹簧是压缩的,故d >x 2,故m 2g sin θ<kd ,故B 错误;当B 刚离开C 时,对A ,根据牛顿第二定律得:F -m 1g sin θ-kx 2=m 1a 1,又开始时,A 平衡,则有:m 1g sin θ=kx 1,而d =x 1+x 2,解得:物块A 的加速度为a 1=F -kd m 1,故C 正确;根据功能关系,弹簧弹性势能的增加量等于拉力的功减去系统动能和重力势能的增加量,即为:Fd -m 1gd sin θ-12m 1v 2,故D 错误.题组2动力学方法和动能定理的综合应用6.光滑圆轨道和两倾斜直轨道组成如图6所示装置,其中直轨道bc 粗糙,直轨道cd 光滑,两轨道相接处为一很小的圆弧.质量为m =0.1kg 的滑块(可视为质点)在圆轨道上做圆周运动,到达轨道最高点a 时的速度大小为v =4m /s ,当滑块运动到圆轨道与直轨道bc 的相切处b 时,脱离圆轨道开始沿倾斜直轨道bc 滑行,到达轨道cd 上的d 点时速度为零.若滑块变换轨道瞬间的能量损失可忽略不计,已知圆轨道的半径为R =0.25m ,直轨道bc 的倾角θ=37°,其长度为L =26.25m ,d 点与水平地面间的高度差为h =0.2m ,取重力加速度g =10m/s 2,sin 37°=0.6.求:图6(1)滑块在圆轨道最高点a 时对轨道的压力大小;(2)滑块与直轨道bc 间的动摩擦因数;(3)滑块在直轨道bc 上能够运动的时间.答案(1)5.4N (2)0.8(3)7.66s 解析(1)在圆轨道最高点a 处对滑块,由牛顿第二定律得:mg +F N =m v 2R ,得F N =m (v 2R-g )=5.4N 由牛顿第三定律得滑块在圆轨道最高点a 时对轨道的压力大小为5.4N.(2)从a 点到d 点全程,由动能定理得:mg (R +R cos θ+L sin θ-h )-μmg cos θ·L =0-12m v 2μ=g (R +R cos θ+L sin θ-h )+v 22gL cos θ=0.8(3)设滑块在bc 上向下滑动的加速度为a 1,时间为t 1,向上滑动的加速度为a 2,时间为t 2,在c 点时的速度为v c .由c 到d :12m v 2c =mgh v c =2gh =2m/s a 点到b 点的过程:mgR (1+cos θ)=12m v 2b -12m v 2v b =v 2+2gR (1+cos θ)=5m/s在轨道bc 上:下滑:L =v b +v c 2t 1t 1=2L v b +v c =7.5s 上滑:mg sin θ+μmg cos θ=ma 2a 2=g sin θ+μg cos θ=12.4m/s 20=v c -a 2t 2t 2=v c a 2=212.4s ≈0.16s μ>tan θ,滑块在轨道bc 上停止后不再下滑滑块在两个斜面上运动的总时间:t 总=t 1+t 2=(7.5+0.16)s =7.66s7.如图7所示,一滑板爱好者总质量(包括装备)为50kg ,从以O 为圆心,半径为R =1.6m 光滑圆弧轨道的A 点(α=60°)由静止开始下滑,到达轨道最低点B 后(OB 在同一竖直线上),滑板爱好者沿水平切线飞出,并恰好从C 点以平行斜面方向的速度进入倾角为37°的斜面,若滑板与斜面的动摩擦因数为μ=0.5,斜面长s =6m .(g =10m/s 2,sin 37°=0.6,cos 37°=0.8)求:图7(1)滑板爱好者在B、C间运动的时间;(2)滑板爱好者到达斜面底端时的速度大小.答案(1)0.3s(2)7m/s解析(1)滑板爱好者在圆轨道AB间运动的过程中,由动能定理得mgR(1-cos60°)=12m v2B①由①得v B=4m/s滑板爱好者在BC间做平抛运动,在C点:竖直方向的分速度v Cy=v B tan37°=3m/s②由v Cy=gt③得平抛运动的时间t=0.3s(2)在C点,由平抛运动的规律可知:v C=v B/cos37°=5m/s④滑板爱好者在斜面上运动的过程中,由动能定理可得:mgs sinθ-μmgs cosθ=12m v2D-12m v2C⑤由⑤得v D=7m/s题组3综合应用动力学和能量观点分析多过程问题8.如图8所示,在粗糙水平台阶上静止放置一质量m=0.5kg的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个以O点为圆心的圆弧形挡板,并以O点为原点建立平面直角坐标系.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板(g=10 m/s2).图8(1)若小物块恰能击中挡板的上边缘P点,P点的坐标为(1.6m,0.8m),求其离开O点时的速度大小;(2)为使小物块击中挡板,求拉力F作用的距离范围;(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.(结果可保留根式)答案(1)4m/s (2)2.5m<x ≤3.3m (3)215J 解析(1)小物块从O 到P 做平抛运动水平方向:x =v 0t 竖直方向:y =12gt 2解得:v 0=4m/s(2)为使小物块击中挡板,小物块必须能运动到O 点,设拉力F 作用的最短距离为x 1,由动能定理得:Fx 1-μmgs =0解得x 1=2.5m为使小物块击中挡板,小物块的平抛初速度不能超过4m/s ,设拉力F 作用的最长距离为x 2,由动能定理得:Fx 2-μmgs =12m v 20解得x 2=3.3m则为使小物块击中挡板,拉力F 作用的距离范围为:2.5m<x ≤3.3m(3)设小物块击中挡板的任意点坐标为(x ,y ),则x =v 0′t ′y =12gt ′2由机械能守恒得:E k =12m v 0′2+mgy 又x 2+y 2=R 2,由P 点坐标可求R 2=3.2化简得E k =mgR 24y +3mgy 4=4y +154y 由数学方法求得E kmin =215J第2课时功能关系在电学中的应用1.静电力做功与路径无关.若电场为匀强电场,则W=Fl cosα=Eql cosα;若是非匀强电场,则一般利用W=qU 来求.2.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都不做功;安培力可以做正功、负功,还可以不做功.3.电流做功的实质是电场对移动电荷做功.即W=UIt=Uq.4.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做负功,使机械能转化为电能.5.静电力做的功等于电势能的变化,即W AB=-ΔE p.1.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住受力分析和运动过程分析是关键,然后根据不同的运动过程中各力做功的特点来选择相应规律求解.2.动能定理和能量守恒定律在处理电学中能量问题时仍然是首选的方法.考向1几个重要的功能关系在电学中的应用例1如图1所示,一绝缘轻弹簧的下端固定在斜面底端,上端连接一带正电的光滑滑块P,滑块所处空间存在着沿斜面向上的匀强电场,倾角为θ的光滑绝缘斜面固定在水平地面上,开始时弹簧是原长状态,物体恰好处于平衡状态,现给滑块一沿斜面向下的初速度v,滑块到最低点时,弹簧的压缩量为x,若弹簧始终处在弹性限度内,以下说法正确的是()图1A.滑块电势能的增加量大于滑块重力势能的减少量m v2B.滑块到达最低点的过程中,克服弹簧弹力做功12C.滑块动能的变化量等于电场力和重力做功的代数和D.当滑块的加速度最大时,滑块和弹簧组成的系统机械能最大审题突破弹簧原长状态时,物体恰好处于平衡状态,说明电场力和重力什么关系?滑块向下到达最低点的过程中,都有哪些力做功?何时加速度最大?解析由题意qE =mg sin θ,在运动到最低点过程中,电场力做功与重力做功相等,则滑块电势能增加量等于滑块重力势能的减小量,故A 错误.克服弹簧弹力做功等于弹性势能的增加量,即等于动能的减少量,故B 正确.电场力和重力做功的代数和为零,根据动能定理知,电场力、重力、弹簧弹力做功的代数和等于滑块动能的变化量,故C 错误.当滑块运动到最低点时,加速度最大,电场力做的负功最多,即电势能增加最多,此时系统机械能最小,故D 错误.答案B 以题说法在解决电学中功能关系问题时应注意以下几点:(1)洛伦兹力在任何情况下都不做功;(2)电场力做功与路径无关,电场力做的功等于电势能的变化;(3)力学中的几个功能关系在电学中仍然成立.质量为m 的带正电小球由空中A 点无初速度自由下落,在t 秒末加上竖直向上、范围足够大的匀强电场,再经过t 秒小球又回到A 点.不计空气阻力且小球从未落地,则()A .整个过程中小球电势能减少了1.5mg 2t 2B .整个过程中机械能的增量为2mg 2t 2C .从加电场开始到小球运动到最低点时小球动能减少了mg 2t 2D .从A 点到最低点小球重力势能减少了mg 2t 2答案B 解析由12gt 2=-(v t -12at 2),又v =gt ,解得a =3g .由a =qE -mg m ,联立解得qE =4mg ,则小球电势能减少为Δε=qE ·12gt 2=2mg 2t 2.根据功能关系可知,机械能的增量为2mg 2t 2,故A 错误,B 正确.从加电场开始到小球运动到最低点时小球动能减少了ΔE k =12m (gt )2,故C 错误.设从A 点到最低点的高度为h ,根据动能定理得mgh -qE (h -12gt 2)=0,解得h =23gt 2,故从A 点到最低点小球重力势能减少了ΔE p =mgh =2mg 2t 23,故D 错误.选B.考向2应用动能定理分析带电体在电场中的运动例2如图2所示是研究带电体的质量与电量关系的光滑绝缘细管,长为L 且竖直放置,点电荷M 固定在管底部,电荷量为+Q .现从管口A 处静止释放一带电体N ,当其电荷量为+q 、质量为m 时,N 下落至距M 为h 的B 处速度恰好为0.已知静电力常量为k ,重力加速度为g ,带电体下落过程中不影响原电场.图2。

2020年高考物理压轴题专练附解答: 动力学和能量观点在力学中的应用(动力学角度)

2020年高考物理压轴题专练附解答: 动力学和能量观点在力学中的应用(动力学角度)

动力学和能量观点在力学中的应用考点一:直线、平抛、圆周运动组合问题1.解题策略(1)动力学方法观点:牛顿运动定律、运动学基本规律.(2)能量观点:动能定理、机械能守恒定律、能量守恒定律.2.解题关键(1)抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单的子过程.(2)两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.很多情况下平抛运动的末速度的方向是解题的重要突破口.考点二应用动力学和能量的观点分析“传送带”问题1.动力学角度分析首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.2.传送带问题中的功能关系分析(1)功能关系分析:W=ΔEk+ΔEp+Q.(2)对W和Q的理解:①传送带做的功W=Fx传,其中F为传送带的动力,x传为传送带转过的距离;②产生的内能Q=FfΔx.考点三:应用动力学和能量的观点分析“滑块—滑板”问题1.问题分类水平面上的滑块—滑板问题和在斜面上的滑块—滑板模型.2.处理方法往往通过系统内摩擦力的相互作用而改变系统内物体的运动状态,既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化方面往往用到ΔE内=-ΔE机=fx相对.典例精析★考点一:直线、平抛、圆周运动组合问题◆典例一:(2018·杭州地区重点中学期末)如图20所示,玩具轨道由光滑倾斜轨道AB 、粗糙的水平轨道BC 、光滑圆轨道及粗糙的足够长的水平轨道CE 构成.已知整个玩具轨道固定在竖直平面内,AB 的倾角为37°,A 离地面高度H =1.45 m ,整个轨道水平部分动摩擦因数均为μ=0.20,圆轨道的半径为R =0.50 m .AB 与BC 通过一小段圆弧平滑连接.一个质量m =0.50 kg 的小球在倾斜导轨顶端A 点以v 0=2.0 m/s 的速度水平发射,在落到倾斜导轨上P 点(P 点在图中未画出)时速度立即变成大小v P =3.4 m/s ,方向沿斜面向下,小球经过BC ,并恰好能经过圆的最高点.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,空气阻力不计,求:(1)P 点离A 点的距离; (2)B 到C 的距离x 0的大小;(3)小球最终停留位置与B 的距离.【答案】.(1)0.75 m (2)1.64 m (3)7.89 m【解析】 (1)小球从A 做平抛运动,经过时间t 落到倾斜导轨上的P 点,设水平位移为x ,竖直位移为y ,有x =v 0t ,y =12gt 2tan 37°=y x =34联立解得x =0.6 mP 点距抛出点A 的距离为l =x cos 37°=0.75 m(2)由恰好经过圆的最高点D ,此时有mg =m v D 2R ,得v D =gR = 5 m/s由P 到D ,能量关系:12mvP 2+mg (H -l sin 37°)-μmgx 0=12mv D 2+2mgR解得x 0=1.64 m.(3)设小球最终停留位置与B 的距离为x ′,从P 点到最终停留位置满足能量关系:12mvP 2+mg (H -l sin 37°)=μmgx ′,解得x ′=7.89 m.◆典例二: 如图所示,将一质量m=0.1 kg 的小球自水平平台顶端O 点水平抛出,小球恰好无碰撞地落到平台右侧一倾角为α=53°的光滑斜面顶端A 并沿斜面下滑,斜面底端B 与光滑水平轨道平滑连接,小球以不变的速率过B 点后进入BC 部分,再进入竖直圆轨道内侧运动.已知斜面顶端与平台的高度差h=3.2 m,斜面高H= 15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:(1)小球水平抛出的初速度v0及斜面顶端与平台边缘的水平距离x;(2)小球从平台顶端O 点抛出至落到斜面底端B 点所用的时间;(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D 时对轨道的压力.【答案】(1)v 0=6 m/s,x=4.8 m.(2)t=t 1+t 2=2.05 s(3)F N ′=3 N,方向竖直向上【解析】:(1)小球做平抛运动落至A 点时,由平抛运动的速度分解图可得v 0=错误!未找到引用源。

2020年人教版(山东专用)高考物理:动力学和能量观点的综合应用

2020年人教版(山东专用)高考物理:动力学和能量观点的综合应用

-
1 2
m vA2 解得 vB=20
m/s 小球沿斜面下滑的加速度 a=gsin
α
=
8 m/s2 由 vB=vA+at2,解得 t2=1.25 s,小球从平台顶端 O 点抛出至落到斜面底端 B 点
所用的时间 t=t1+t2=2.05 s.
答案:(2)2.05 s
(3)若竖直圆轨道光滑,小球运动到圆轨道最高点D时对轨道的压力.
解析:(3)水平轨道 BC 及竖直圆轨道均光滑,小球从 B 点到 D 点,由动能定理可得
-2mgR= 1 2
m vD2
-
1 2
m
vB
2
,在
D
点由牛顿第二定律可得
FN+mg=m
vD 2 R
联立解得 FN=3 N,
由牛顿第三定律可得,小球在 D 点对轨道的压力 FN′=3 N,方向竖直向上.
答案:(3)3 N,方向竖直向上
【典例2】 (2018·宁夏石嘴山模拟)如图所示,水平传送带长L=12 m,且以v= 5 m/s的恒定速率顺时针转动,光滑轨道与传送带的右端B点平滑连接,有一质 量m=2 kg的物块从距传送带高h=5 m 的A点由静止开始滑下.已知物块与传送 带之间的动摩擦因数μ =0.5,重力加速度g取 10 m/s2,求:
则摩擦力对物块做功 W2=-μ mgcos θ ·x2,所以传送带对物块做的总功 W=W1+W2, 联立解得 W=-3.75 J.
答案:(2)-3.75 J
考点三 应用动力学和能量观点分析“滑块—滑板”
问题
1.问题分类 水平面上的“滑块—滑板”问题和在斜面上的“滑块—滑板”模型. 2.处理方法 往往通过系统内摩擦力的相互作用而改变系统内物体的运动状态,既可由动能 定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变 化、能量的转化,在能量转化方面往往用到Δ E内=-Δ E机=fx相对.

专题六 力学中三大观点的综合应用

专题六 力学中三大观点的综合应用

(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水

2020届高考物理必考经典专题 专题06 动力学、动量和能量观点的综合应用(含解析)

2020届高考物理必考经典专题 专题06 动力学、动量和能量观点的综合应用(含解析)

2020届高考物理必考经典专题专题6 动力学、动量和能量观点的综合应用考点一 “子弹打木块”类问题的综合分析子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动.下面从动量、能量和牛顿运动定律等多个角度来分析这一类问题.1.动量分析子弹和木块最后共同运动,相当于完全非弹性碰撞,子弹射入木块过程中系统动量守恒mv0=(M+m)v. 2.能量分析该过程系统损失的动能全部转化为系统的内能.设平均阻力大小为Ff,子弹、木块的位移大小分别为s1,s2,子弹钻入深度为d,如图所示,有s1-s2=d;对子弹应用动能定理有-F f s 1=错误!未找到引用源。

mv 2-错误!未找到引用源。

m 错误!未找到引用源。

;对木块应用动能定理有F f s 2=错误!未找到引用源。

mv2,联立解得F f d=错误!未找到引用源。

m 错误!未找到引用源。

-错误!未找到引用源。

(M+m)v2=202()Mmv M m +错误!未找到引用源。

.式中F f d 恰好等于系统动能的损失量,根据能量守恒定律,系统动能的损失量应该等于系统内能的增加量,则有ΔE k =F f d=Q=202()Mmv M m +错误!未找到引用源。

,由此可得结论:两物体由于摩擦产生的热量(机械能转化为内能),数值上等于摩擦力大小与两物体相对滑动路程的乘积.由上面各式联立可得F f =202()Mmv M m d+错误!未找到引用源。

,s 2=m M m+错误!未找到引用源。

d.3.动力学分析从牛顿运动定律和运动学公式出发,也可以得出同样的结论.由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比,有22s d s +错误!未找到引用源。

=022v v v +错误!未找到引用源。

=0v v v +错误!未找到引用源。

,所以有2d s 错误!未找到引用源。

=0v v 错误!未找到引用源。

= 错误!未找到引用源。

M m m +,解得s2=m M m+错误!未找到引用源。

专题6 力学三大观点的综合运用

专题6  力学三大观点的综合运用

高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.m v A +m v B -m v C =0①mgR =12m v 2A +12m v 2B +12m v 2C②在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:m v B -2m v =0⑤ mgR =mgh +12m v 2B +12·2m v 2⑥ 联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A 解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2 如图3所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长为x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:图3(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若AB 恰能通过半圆轨道的最高点N ,求μ2;(3)要使AB 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?审题突破 (1)由牛顿第二定律求出加速度,由运动学公式求出A 的速度.(2)A 、B 碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N 点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析 (1)A 刚滑上传送带时,由牛顿第二定律得: Mg sin θ+μ1Mg cos θ=Ma , 代入数据得:a =12 m/s 2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2 as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得: M v =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v 23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动,在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上:2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12m v 21-12×2m v 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知 ma =-μmg③ 可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有 m 1v 0=m 1v 1+m 2v 2 12m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为 x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22 解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s . 答案 (1)向左运动 (2)4.2 m /s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v 2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。

2020年高考物理《动量与能量的综合应用》专题训练及答案解析

2020年高考物理《动量与能量的综合应用》专题训练及答案解析

2020年高考物理《动量与能量的综合应用》专题训练1.如图所示,质量M =1.5 kg 的小车静止于光滑水平面上并紧靠固定在水平面上的桌子右边,其上表面与水平桌面相平,小车的左端放有一质量为0.5 kg 的滑块Q 。

水平放置的轻弹簧左端固定,质量为0.5 kg 的小物块P 置于光滑桌面上的A 点并与弹簧的右端接触,此时弹簧处于原长。

现用水平向左的推力F 将P 缓慢推至B 点(弹簧仍在弹性限度内),推力做功W F =4 J ,撤去F 后,P 沿桌面滑到小车左端并与Q 发生弹性碰撞,最后Q 恰好没从小车上滑下。

已知Q 与小车表面间动摩擦因数μ=0.1。

(取g =10 m/s 2)求:(1)P 刚要与Q 碰撞前的速度是多少?(2)Q 刚在小车上滑行时的初速度v 0是多少?(3)为保证Q 不从小车上滑下,小车的长度至少为多少?【解析】(1)推力F 通过P 压缩弹簧做功,根据功能关系有E p =WF ①当弹簧完全推开物块P 时,有E p =12m P v 2②由①②式联立解得v =4 m/s 。

(2)P 、Q 之间发生弹性碰撞,设碰撞后Q 的速度为v 0,P 的速度为v ′,由动量守恒和能量守恒得 m P v =m P v ′+m Q v 0③12m P v 2=12m P v ′2+12m Q v 20④ 由③④式解得v 0=v =4 m/s ,v ′=0。

(3)设滑块Q 在小车上滑行一段时间后两者的共同速度为u ,由动量守恒可得m Q v 0=(m Q +M )u ⑤根据能量守恒,系统产生的摩擦热μm Q gL =12m Q v 20-12(m Q +M )u 2⑥ 联立⑤⑥解得L =6 m 。

【答案】(1)4 m/s (2)4 m/s (3)6 m2.如图所示,竖直平面MN 与纸面垂直,MN 右侧的空间内存在着垂直纸面向内的匀强磁场和水平向左的匀强电场,MN 左侧的水平面光滑,右侧的水平面粗糙。

质量为m 的物体A 静止在MN 左侧的水平面上,已知物体A 带负电,所带电荷量的大小为q 。

高考物理总复习课件座六动力学动量和能量观点的综合应用

高考物理总复习课件座六动力学动量和能量观点的综合应用

光的干涉、衍射和偏振
干涉现象
当两束或多束相干光波在空间某 一点叠加时,其振幅相加而产生 的光强增强或减弱的现象。干涉 现象揭示了光的波动性。
衍射现象
光在传播过程中遇到障碍物或小 孔时,会偏离直线传播路径而绕 到障碍物后面继续传播的现象。 衍射现象也是光的波动性的表现 。
偏振现象
光波是横波,其振动方向垂直于 传播方向。当光通过某些物质或 经过反射、折射后,其振动方向 会发生改变,这种现象称为偏振 。偏振现象在光学仪器、光学通 信等领域有广泛应用。
带电粒子在匀强电场中的偏转
类平抛运动的处理方法,将粒子的运动分解为沿电场方向和垂直于电场方向的两个分运 动,结合牛顿第二定律和运动学公式求解。
带电粒子在交变电场中的运动
分析粒子的受力情况,结合牛顿第二定律和运动学公式,确定粒子的运动情况,如速度 、位移等。
带电粒子在磁场中运动
带电粒子在匀强磁场中的匀速圆周运动
动量守恒,并给出动量守恒定律的表达式。
03
能量转化与损失
讨论碰撞过程中的能量转化和损失情况,包括动能、势能以及内能的变
化,解释完全非弹性碰撞中动能损失最大的原因。
弹性碰撞与非弹性碰撞
弹性碰撞的特点和规律
阐述弹性碰撞中物体间无机械能损失,遵守动量守恒和机 械能守恒定律,给出弹性碰撞中两物体速度变化的关系式 。
牛顿运动定律
第一定律(惯性定律)
物体在不受外力作用时,将保持静止状态或匀速直线运动状态。
第二定律(加速度定律)
物体加速度的大小与所受合力成正比,与物体质量成反比,方向与 合力方向相同。
第三定律(作用与反作用定律)
两个物体间的作用力和反作用力总是大小相等、方向相反,作用在 同一直线上。

物理模型:动量和能量观点的综合应用

物理模型:动量和能量观点的综合应用

模型/题型:动量和能量观点的综合应用一.题型基础1.解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题。

(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。

(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题。

(Related to:模型/题型:动力学、动量和能量观点在力学中的应用)2.动量守恒定律与机械能守恒定律的比较3、动量和能量综合问题分析注意事项①. 动量定理和动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,绝无分量表达式。

②. 动量守恒及机械能守恒都有条件。

注意某些过程动量守恒,但机械能不守恒;某些过程机械能守恒,但动量不守恒;某些过程动量和机械能都守恒。

但机械能不守恒的过程,能量仍守恒。

③. 当两物体相互作用后具有相同速度时,相互作用过程损失的机械能最多。

4、利用动量和能量的观点解题的技巧①、若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律、机械能守恒定律。

②、若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。

③、因为动量守恒定律、能量守恒定律、机械能守恒定律、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。

特别对于变力做功问题,就更显示出它们的优越性。

三、典型例题1.(传送带模型-能量与动量的综合应用)如图所示,光滑的水平导轨MN右端N处与水平传送带平齐,传送带两端长度L=4.0 m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3.0 m/s匀速转动,三个质量均为m=1.0 kg 的滑块A、B、C置于水平导轨上,开始时滑块B、C之间用细绳相连,其间有一压缩的轻弹簧,处于静止状态.滑块A以初速度v0=2.0 m/s向B运动,A与B正碰后粘合在一起,碰撞时间极短,因碰撞,连接B、C的细绳受扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度v C=2.0 m/s滑上传送带,并从右端滑出落至地面上的P点,已知滑块C与传送带之间的动摩擦因数μ=0.20,重力加速度取10 m/s2.(1)求滑块C从传送带右端滑出时的速度大小;(2)求滑块B、C用细绳相连时弹簧的弹性势能E p;(3)只要滑块A与滑块B碰撞前的速度v0不超过某一最大值,滑块C都能落至P点.当滑块A的初速度为该最大值时,滑块C滑上传送带时速度v′C多大?滑块C与传送带间因摩擦产生的热量Q多大?解析(1)滑块C滑上传送带后做加速运动,设发生的位移为x时,速度达到传送带的速度v,根据动能定理:μmgx=12m(v2-v2C)解得:x=1.25 m<L即滑块C在传送带上先加速,达到传送带的速度v后随传送带匀速运动,并从右端滑出,则滑块C从传送带右端滑出时的速度为v=3.0 m/s(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,由动量守恒定律mv0=2mv12mv1=2mv2+mv C由动量守恒得E p+12×2mv21=12×2mv22+12mv2C解得E p=1.0 J(3)在题设条件下,滑块C滑上传送带后一直减速运动到传送带右端时,速度应当恰好等于传送带的速度v,据动能定理:-μmgL=12m(v2-v′2C) 解得v′C=5 m/s设滑块C在传送带上运动时间为t,因L=12(v+t′C)t 得t=1 s所以滑块C与传送带间因摩擦产生的热量Q为Q=μmg(L-vt)=2 J2. [2016·全国甲卷·35(2)]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。

高考物理二轮复习专题6动力学、动量和能量观点的综合应用学案

高考物理二轮复习专题6动力学、动量和能量观点的综合应用学案

专题6 动力学、动量和能量观点的综合应用考题一 动量定理和能量观点的综合应用1.动量定理公式:Ft=p′-p说明:(1)F为合外力①恒力,求Δp时,用Δp=Ft②b.变力,求I时,用I=Δp=mv2-mv1③牛顿第二定律的第二种形式:合外力等于动量变化率④当Δp一定时,Ft为确定值:F=Δptt小F大——如碰撞;t大F小——缓冲(2)等式左边是过程量Ft,右边是两个状态量之差,是矢量式.v1、v2是以同一惯性参照物为参照的.Δp的方向可与mv1一致、相反或成某一角度,但是Δp的方向一定与Ft一致.2.力学规律的选用原则单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.例1 据统计人在运动过程中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍.为探究这个问题,实验小组同学利用落锤冲击的方式进行了实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计.g 取10 m/s2.下表为一次实验过程中的相关数据.重物(包括传感器)的质量m/kg8.5重物下落高度H/cm45重物反弹高度h/cm20最大冲击力F m/N850重物与地面接触时间t/s0.1(1)请你选择所需数据,通过计算回答下列问题:①重物受到地面的最大冲击力时的加速度大小;②在重物与地面接触过程中,重物受到的地面施加的平均作用力是重物所受重力的多少倍.(2)如果人从某一确定高度由静止竖直跳下,为减小脚底在与地面接触过程中受到的冲击力,可采取什么具体措施,请你提供一种可行的方法并说明理由.解析 (1)①重物受到最大冲击力时加速度的大小为a由牛顿第二定律:a=F m-mgm解得a =90 m/s 2②重物在空中运动过程中,由动能定理mgh =mv 212重物与地面接触前瞬时的速度大小v 1=2gH 重物离开地面瞬时的速度大小v 2=2gh重物与地面接触过程,重物受到的平均作用力大小为F ,设竖直向上为正方向由动量定理:(F -mg )t =mv 2-m (-v 1)解得F =510 N ,故=6F mg因此重物受到的地面施加的平均作用力是重物所受重力的6倍.(2)可以通过增加人与地面接触时间来减小冲击力(如落地后双腿弯曲),由动量定理Ft =Δmv 可知,接触时间增加了,冲击力F 会减小.答案 (1)①90 m/s 2 ②6倍 (2)见解析变式训练1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.+mg B.-mg m 2ght m 2ght C.+mg D.-mg m ghtm ght答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =,在t 时间内对人由动量定2gh 理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =+mg ,A 项正确.m 2ght2.一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图1所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图1(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W .答案 (1)0.32 (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中应用动能定理-μmgs =mv 2-mv 12122代入数值解得μ=0.32(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N其中“-”表示墙面对物块的平均作用力方向向左.(3)对物块反向运动过程中应用动能定理得-W =0-mv ′212解得W =9 J.考题二 动量守恒定律和能量观点的综合应用1.动量守恒定律(1)表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′;或p =p ′(系统相互作用前总动量p 等于相互作用后总动量p ′);或Δp =0(系统总动量的增量为零);或Δp 1=-Δp 2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(2)动量守恒条件:①理想守恒:系统不受外力或所受外力合力为零.②近似守恒:外力远小于内力,且作用时间极短,外力的冲量近似为零,或外力的冲量比内力冲量小得多.③单方向守恒:合外力在某方向上的分力为零,则系统在该方向上动量守恒.动量守恒定律应用要注意的三性(1)矢量性:在一维运动中要选取正方向,未知速度方向的一律假设为正方向,带入求解.(2)同时性:m1v1和m2v2——作用前的同一时刻的动量m1v1′和m2v2′——作用后的同一时刻的动量(3)同系性:各个速度都必须相对于同一个惯性参考系.定律的使用条件:在惯性参考系中普遍适用(宏观、微观、高速、低速)2.力学规律的选用原则多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.例2 如图2所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5 m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1 m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图2(1)求A滑过Q点时的速度大小v和受到的弹力大小F;(2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值;(3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式.解析 (1)从A →Q 由动能定理得-mg ·2R =mv 2-mv 12122解得v =4 m/s >= m/sgR 5在Q 点,由牛顿第二定律得F +mg =mv 2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′解得v ′==3 m/sv 02设摩擦距离为x ,则-2μmgx =0-·2mv ′212解得x =4.5 m 所以k ==45.x L(3)AB 滑至第n 个光滑段上,由动能定理得-μ·2mgnL =·2mv -·2mv ′2122n 12所以v n = m/s (n <45).9-0.2n 答案 (1)4 m/s 22 N (2)45(3)v n = m/s (n <45)9-0.2n 变式训练3.如图3,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图3答案 (-2)M ≤m <M5解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,由动量守恒定律得mv 0=mv 1+Mv 2由机械能守恒定律得mv =mv +Mv 12201221122可得v 1=v 0,v 2=v 0m -M m +M 2m m +M要使得A 与B 能发生碰撞,需要满足v 1<0,即m <MA 反向向左运动与B 发生碰撞过程,有mv 1=mv 3+Mv 4mv =mv +Mv 122112231224整理可得v 3=v 1,v 4=v 1m -M m +M 2mm +M由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2即v 0≥v 1=()2v 02m m +M m -M m +M m -M m +M整理可得m 2+4Mm ≥M 2解方程可得m ≥(-2)M 5另一解m ≤-(+2)M 舍去5所以使A 只与B 、C 各发生一次碰撞,须满足(-2)M ≤m <M .5考题三 电学中动量和能量观点的综合应用系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).例3 如图4所示,直角坐标系xOy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m 2=8×10-3 kg 的不带电小物块静止在原点O ,A 点距O 点l =0.045 m ,质量m 1=1×10-3 kg 的带电小物块以初速度v 0=0.5 m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为0.1 m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E =40 N/C ,小物块m 1与水平面的动摩擦因数为μ=0.1,取g =10 m/s 2,求:图4(1)碰后m 1的速度;(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l OP =0.4 m ,求磁感应强度B 的大小;(3)其他条件不变,若改变磁场磁感应强度的大小,使m 2能与m 1再次相碰,求B ′的大小.解析 (1)设m 1与m 2碰前速度为v 1,由动能定理-μm 1gl =m 1v -m 1v 12211220代入数据解得:v 1=0.4 m/sv 2=0.1 m/s ,m 1、m 2正碰,由动量守恒有:m 1v 1=m 1v 1′+m 2v 2代入数据得:v 1′=-0.4 m/s ,方向水平向左(2)m 2恰好做匀速圆周运动,所以qE =m 2g 得:q =2×10-3 C由洛伦兹力提供向心力,设物块m 2做圆周运动的半径为R ,则qv 2B =m 2v 2R轨迹如图,由几何关系有:R =l OP解得:B =1 T(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动.m 1匀减速运动至停止,其平均速度大小为:=|v 1′|=0.2 m/s>v 2=0.1 m/s ,v 12所以m 2在m 1停止后与其相碰由牛顿第二定律有:F f =μm 1g =m 1a m 1停止后离O 点距离:s =v 1′22a则m 2平抛的时间:t =s v 2平抛的高度:h =gt 212设m 2做匀速圆周运动的半径为R ′,由几何关系有:R ′=h12由qv 2B ′=,联立得:B ′=0.25 Tm 2v 2R ′答案 (1)-0.4 m/s ,方向水平向左 (2)1 T (3)0.25 T 变式训练4.如图5所示,C 1D 1E 1F 1和C 2D 2E 2F 2是距离为L 的相同光滑导轨,C 1D 1和E 1F 1为两段四分之一的圆弧,半径分别为r 1=8r 和r 2=r .在水平矩形D 1E 1E 2D 2内有竖直向上的匀强磁场,磁感应强度为B .导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速度释放,则:图5(1)求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);(2)若P 、Q 不会在轨道上发生碰撞,棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;(3)若P 、Q 不会在轨道上发生碰撞,且两者到达E 1E 2瞬间,均能脱离轨道飞出,求回路中产生热量的范围.答案 (1),方向逆时针 (2)32BL grRgr(3)3mgr ≤Q ≤4mgr解析 (1)导体棒P 由C 1C 2下滑到D 1D 2,根据机械能守恒定律:mgr 1=mv ,v D=4122D gr 导体棒P 到达D 1D 2瞬间:E =BLv D 回路中的电流I ==E 2R 2BL gr R方向逆时针(2)棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,此时对Q :mg =,v Q =mv 2Qr2gr设导体棒P 离开轨道瞬间的速度为v P ,根据动量守恒定律:mv D =mv P +mv Q 代入数据得,v P =3gr(3)由(2)知,若导体棒Q 恰能在到达E 1E 2瞬间飞离轨道,P 也必能在该处飞离轨道.根据能量守恒,回路中产生的热量:Q 1=mv -mv -mv =3mgr122D 122P 122Q 若导体棒Q 与P 能达到共速v ,回路中产生的热量最多,则根据动量守恒:mv D =(m +m )v ,v =2gr回路中产生的热量:Q 2=mv -(m +m )v 2=4mgr122D 12综上所述,回路中产生热量的范围是3mgr ≤Q ≤4mgr .专题规范练1.如图1所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m =0.4 kg 的物块A 自圆弧形轨道的顶端静止释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为x =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:图1(1)BP 间的水平距离x BP ;(2)判断物块B 能否沿圆轨道到达M 点;(3)物块A 由静止释放的高度h .答案 (1)4.1 m (2)不能 (3)1.8 m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时其竖直速度为v y =2gR同时=tan 45°,解得v D =4 m/s v y v D设平抛用时为t ,水平位移为x ,则有R =gt 212x =v D t解得x =1.6 m物块B 碰后以初速度v 0=6 m/s ,加速度大小a =-4 m/s 2减速到v D ,则BD 间的位移为x 1==2.5 m v 2D -v 202a故BP 之间的水平距离x BP =x +x 1=4.1 m(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,则有mv -mv =-mgR 122M 122D 22设轨道对物块的压力为F N ,则F N +mg =m v 2M R解得F N =(1-)mg <0,即物块不能到达M 点.2(3)对物块A 、B 的碰撞过程,有:m A v A =m A v A ′+m B v 0m A v =m A v A ′2+m B v 122A 121220解得:v A =6 m/s设物块A 释放的高度为h ,则mgh =mv ,122A 解得h =1.8 m2.如图2所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,圆形轨道半径R =0.32 m.水平轨道PN 右侧的水平地面上,并排放置两块长木板c 、d ,两木板间相互接触但不粘连,长木板上表面与水平轨道PN 平齐,木板c 质量m 3=2.2 kg ,长L =4 m ,木板d 质量m 4=4.4 kg.质量m 2=3.3 kg 的小滑块b 放置在轨道QN 上,另一质量m 1=1.3 kg 的小滑块a 从P 点以水平速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失.碰后a 沿原路返回到M 点时,对轨道压力恰好为0.已知小滑块b 与两块长木板间动摩擦因数均为μ0=0.16,重力加速度g =10 m/s 2.图2(1)求小滑块a 与小滑块b 碰撞后,a 和b 的速度大小v 1和v 2;(2)若碰后滑块b 在木板c 、d 上滑动时,木板c 、d 均静止不动,c 、d 与地面间的动摩擦因数μ至少多大?(木板c 、d 与地面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力)(3)若不计木板c 、d 与地面间的摩擦,碰后滑块b 最终恰好没有离开木板d ,求滑块b 在木板c 上滑行的时间及木板d 的长度.答案 (1)4 m/s 5.2 m/s (2)0.069 (3)1 s 1.4 m解析 (1)根据题意可知:小滑块a 碰后返回到M 点时:m 1=m 1gv 2M R 小滑块a 碰后返回到M 点过程中机械能守恒:m 1v =m 1v +m 1g (2R )1221122M 代入数据,解得:v 1=4 m/s取水平向右为正方向,小滑块a 、b 碰撞前后:动量守恒:m 1v 0=-m 1v 1+m 2v 2机械能守恒:m 1v =m 1v +m 2v 12201221122代入数据,解得:v 0=9.2 m/s ,v 2=5.2 m/s(2)若b 在d 上滑动时d 能静止,则b 在c 上滑动时c 和d 一定能静止μ(m 2+m 4)g >μ0m 2g解得μ>μ0≈0.069m 2m 2+m 4(3)小滑块b 滑上长木板c 时的加速度大小:a 1=μ0g =1.6 m/s 2此时两块长木板的加速度大小:a 2=g =0.8 m/s 2μ0m 2m 3+m 4令小滑块b 在长木板c 上的滑行时间为t ,则:时间t 内小滑块b 的位移x 1=v 2t -a 1t 212两块长木板的位移x 2=a 2t 212且x 1-x 2=L解得:t 1=1 s 或t 2= s(舍去)103b 刚离开长木板c 时b 的速度v 2′=v 2-a 1t 1=3.6 m/sb 刚离开长木板c 时d 的速度v 3=a 2t 1=0.8 m/sd 的长度至少为x :由动量守恒可知:m 2v 2′+m 4v 3=(m 2+m 4)v解得:v =2 m/sμ0m 2gx =m 2v 2′2+m 4v -(m 2+m 4)v 212122312解得:x =1.4 m3.如图3所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB .已知E 处距地面的高度h =3.2 m ,一质量m =1 kg 的小球a 从A 点以速度v 0=12 m/s 的速度向右进入直管道,到达B 点后沿“8”字形轨道向上运动,到达D 点时恰好与轨道无作用力,直接进入DE 管(DE 管光滑),并与原来静止于E 处的质量为M =4 kg 的小球b 发生正碰(a 、b 均可视为质点).已知碰撞后a 球沿原路返回,速度大小为碰撞前速度大小的,而b 球从E 点水平抛出,其水平射程s =0.8 m.(g =10 m/s 2)13图3(1)求碰后b 球的速度大小;(2)求“8”字形管道上下两圆的半径r 和R ;(3)若小球a 在管道AB 中运动时所受阻力为定值,请判断a 球返回到BA 管道时,能否从A 端穿出?答案 (1)1 m/s (2)0.9 m 0.7 m (3)不能解析 (1)b 球离开E 点后做平抛运动h =gt 2,s =v b t ,解得v b =1 m/s12(2)a 、b 碰撞过程,动量守恒,以水平向右为正方向,则有:mv a =-m ×v a +Mv b13解得v a =3 m/s碰前a 在D 处恰好与轨道无作用力,则有:mg =m v 2a rr =0.9 mR ==0.7 m h -2r 2(3)小球从B 到D ,机械能守恒:mv =mv +mgh 122B 122a 解得:mv =36.5 J 122B 从A 到B 过程,由动能定理得:-W f =mv -mv 122B 1220解得:W f =35.5 J从D 到B ,机械能守恒:m ()2+mgh =mv B ′212v a 312解得:mv B ′2=32.5 J<W f 12所以,a 球返回到BA 管道中时,不能从A 端穿出.4.如图4所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图4(1)火药爆炸过程中有多少化学能转化为机械能;(2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离.答案 (1)mv (2) (3)·k +12k 203πm 2qB 2k -2-3π2 k +1 mv 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=mv 0-kmv BE =mv +kmv =mv 1220122B k +12k20(2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB有几何知识可得:粒子在磁场中运动了个圆周34则t 2=3πm2qB(3)由0=mv 0-kmv B 可得:v B =v 0k由qv 0B =m 知,R =v 20R mv 0qB设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =+t 2+,x B =v B t Bx A v 0Rv 0由图可得:R =x A +x B联立上述各式解得:x A =·.2k -2-3π2 k +1 mv 0qB。

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v ­ t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v ­ t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。

2020年高考物理备考:动力学、动量和能量观点在力学中的应用

2020年高考物理备考:动力学、动量和能量观点在力学中的应用

2020年高考物理备考:动力学、动量和能量观点在力学中的应用1.本专题是力学三大观点在力学中的综合应用,高考对本专题将作为计算题压轴题的形式命题.2.学好本专题,可以帮助同学们熟练应用力学三大观点分析和解决综合问题.3.用到的知识、规律和方法有:动力学方法(牛顿运动定律、运动学规律);动量观点(动量定理和动量守恒定律);能量观点(动能定理、机械能守恒定律和能量守恒定律).【力的三个作用效果与五个规律】分类对应规律公式表达力的瞬时作用效果牛顿第二定律F合=ma力对空间积累效果动能定理W合=ΔE kW合=12mv22-12mv12机械能守恒定律E1=E2mgh1+12mv12=mgh2+12mv22力对时间积累效果动量定理F合t=p′-pI合=Δp动量守恒定律m1v1+m2v2=m1v1′+m2v2′【常见的力学模型及其结论】模型名称模型描述模型特征模型结论“速度交换”模型相同质量的两球发生弹性正碰m1=m2,动量、动能均守恒v1′=0,v2′=v0(v2=0,v1=v0)“完全非弹性碰撞”模型两球正碰后粘在一起运动动量守恒、能量损失最大v=m1m1+m2v0(v2=0,v1=v0)“子弹打木块”模型子弹水平射入静止在光滑的水平面上的木块中并最终一起共同运动恒力作用、已知相对位移、动量守恒F f x相对=12m1v02-12(m1+m2)v2“人船”模型人在不计阻力的船上行走已知相对位移、动量守恒、开始时系统静止x船=mM+mL,x人=MM+mL一动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,因此用动量守恒定律去解决.【例题1】(2018·全国卷Ⅱ·24)汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图1所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m.已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.【答案】(1)3.0 m/s(2)4.25 m/s【解析】(1)设B车的质量为m B,碰后加速度大小为a B.根据牛顿第二定律有μm B g=m B a B①式中μ是汽车与路面间的动摩擦因数.设碰撞后瞬间B车速度的大小为v B′,碰撞后滑行的距离为s B.由运动学公式有v B′2=2a B s B②联立①②式并利用题给数据得v B ′=3.0 m/s ③(2)设A 车的质量为m A ,碰后加速度大小为a A ,根据牛顿第二定律有 μm A g =m A a A ④设碰撞后瞬间A 车速度的大小为v A ′,碰撞后滑行的距离为s A ,由运动学公式有 v A ′2=2a A s A ⑤设碰撞前的瞬间A 车速度的大小为v A .两车在碰撞过程中动量守恒,有 m A v A =m A v A ′+m B v B ′⑥联立③④⑤⑥式并利用题给数据得 v A =4.25 m/s【例题2】(2018·重庆市上学期期末抽测)如图甲所示,质量m 1=4 kg 的足够长的长木板静止在光滑水平面上,质量m 2=1 kg 的小物块静止在长木板的左端.现对小物块施加一水平向右的作用力F ,小物块和长木板运动的速度-时间图象如图乙所示.2 s 后,撤去F ,g 取10 m/s 2.求:(1)小物块与长木板之间的动摩擦因数μ; (2)水平力的大小F ;(3)撤去F 后,小物块和长木板组成的系统损失的机械能ΔE . 【答案】 (1)0.2 (2)4 N (3)3.6 J 【解析】 (1)由题图可知: 长木板的加速度a 1=12m/s 2=0.5 m/s 2由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力F f =m 1a 1=2 N 小物块与长木板之间的动摩擦因数:μ=F fm 2g =0.2(2)由题图可知,小物块的加速度a 2=42 m/s 2=2 m/s 2由牛顿第二定律可知:F -μm 2g =m 2a 2 解得F =4 N(3)撤去F 后,小物块和长木板组成的系统动量守恒,以向右为正方向,最终两者以相同速度(设为v )运动m 1v 1+m 2v 2=(m 1+m 2)v 代入数据解得v =1.6 m/s则系统损失的机械能ΔE =⎝⎛⎭⎫12m 1v 12+12m 2v 22-12()m 1+m 2v 2=3.6 J 二 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律. 能量的观点:动能定理和能量守恒定律. 2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律). (2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.【例题1】 (2019·全国卷3·25).静止在水平地面上的两小物块A 、B ,质量分别为m A =l.0kg ,m B =4.0kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0m ,如图所示。

高考物理专题——动力学和能量观点的综合应用

高考物理专题——动力学和能量观点的综合应用

第2讲 动力学和能量观点的综合应用 专题复习目标学科核心素养 高考命题方向 1.本讲在应用机械能守恒定律解决问题的过程中,引导学生体会守恒的思想,领悟从守恒的角度分析问题的方法,增强分析和解决问题的能力。

2.掌握从动力学和能量观点分析问题的基本思路和方法。

1.物理观念:能量观念。

2.科学推理和论证:应用牛顿第二定律、运动学公式、动能定理以及能量守恒定律分析和推理。

高考以创设较为复杂的运动情景为依托,强调受力分析、运动过程分析以及应用动力学和能量观点进行分析和推理。

主要题型:动力学方法和动能定理的应用;动力学和能量观点分析多运动过程问题。

一、动力学方法1.匀变速直线运动的运动学公式 速度公式:v =v 0+at ,位移公式:x =v 0t +12at 2,速度位移公式:v 2-v 20=2ax ,平均速度公式v -=v 0+v 2。

2.牛顿第二定律物体运动的加速度与物体受到的合外力成正比,与物体的质量成反比,加速度的方向与物体所受合外力的方向是一致的。

表达式:F 合=ma ,加速度是联系受力和运动的桥梁。

二、能量观点1.动能定理(1)内容:物体所受合外力做的功等于物体动能的变化量。

(2)表达式:W =12m v 22-12m v 21。

(3)应用技巧:如果一个物体有多个运动过程,应用动能定理的时候,可以对全过程和分过程应用动能定理列式。

2.机械能守恒定律(1)内容:在只有重力(或者弹力)做功的物体系统内,动能和势能可以相互转化,但机械能的总量保持不变。

(2)表达式3.功率表达式P=F v的应用(1)求v:由F牵-F阻=ma,P=F牵v,可求v=PF阻+ma。

(2)求v m:由P=F阻v m,可求v m=PF阻。

题型一动力学方法和动能定理的应用1.规律方法运动学的基本规律、牛顿运动定律、圆周运动的知识和动能定理。

2.解题技巧如果涉及加速度、时间和受力的分析和计算,一般应用动力学方法解决;如果只涉及位移、功和能量的转化问题,通常采用动能定理分析。

2020高考物理专题复习动力学动量和能量观点在力学中的应用(13页)

2020高考物理专题复习动力学动量和能量观点在力学中的应用(13页)

2020高考物理专题复习动力学动量和能量观点在力学中的应用一动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律.能量的观点:动能定理和能量守恒定律.2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.【例题1】(2019·全国卷3·25).静止在水平地面上的两小物块A、B,质量分别为m A=l.0kg,m B=4.0kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0m,如图所示。

某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为E k=10.0J。

释放后,A沿着与墙壁垂直的方向向右运动。

A、B与地面之间的动摩擦因数均为u=0.20。

重力加速度取g=10m/s²。

A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。

(1)求弹簧释放后瞬间A、B速度的大小;(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少?【答案】(1)v A=4.0m/s,v B=1.0m/s;(2)A先停止;0.50m;(3)0.91m;【解析】【分析】首先需要理解弹簧释放后瞬间的过程内A、B组成的系统动量守恒,再结合能量关系求解出A、B各自的速度大小;很容易判定A、B都会做匀减速直线运动,并且易知是B先停下,至于A是否已经到达墙处,则需要根据计算确定,结合几何关系可算出第二问结果;再判断A向左运动停下来之前是否与B发生碰撞,也需要通过计算确定,结合空间关系,列式求解即可。

2020届高三高考物理大复习《动量和能量观点的应用》知识点总结强化

2020届高三高考物理大复习《动量和能量观点的应用》知识点总结强化

动量和能量观点的应用1.所谓对接是指两艘同方向以几乎同样快慢运行的宇宙飞船在太空中互相靠近,最后连接在一起。

假设“天舟一号”和“天宫二号”的质量分别为M、m,两者对接前的在轨速度分别为(v+Δv)、v,对接持续时间为Δt,则在对接过程中“天舟一号”对“天宫二号”的平均作用力大小为()A.m2·Δv(M+m)Δt B.M2·Δv(M+m)ΔtC.Mm·Δv(M+m)ΔtD.02.如图所示,轻质弹簧固定在水平地面上。

现将弹簧压缩后,将一质量为m的小球静止放在弹簧上,释放后小球被竖直弹起,小球离开弹簧时速度为v,则小球被弹起的过程中()A.地面对弹簧的支持力冲量大于mvB.弹簧对小球的弹力冲量等于mvC.地面对弹簧的支持力做功大于12mv2D.弹簧对小球的弹力做功等于12mv23.(多选)如图所示,在光滑水平面上,质量为m的A球以速度v0向右运动,与静止的质量为5m的B球碰撞,碰撞后A球以v=av0(待定系数a<1)的速率弹回,并与固定挡板P发生弹性碰撞,若要使A球能再次追上B球并相撞,则系数a可以是()A.14B.25C.23D.174.(2019山东青岛一模)雨打芭蕉是我国古代文学中重要的抒情意象。

为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15 mm,查询得知,当时雨滴落地速度约为10 m/s,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103 kg/m3,据此估算芭蕉叶面单位面积上的平均受力约为()A.0.25 NB.0.5 NC.1.5 ND.2.5 N5.(2019福建泉州一模)甲、乙两冰雹从高空由静止落下,假设两冰雹下落过程中空气阻力大小均与速率的二次方成正比,且比例系数相同,甲的质量是乙的2倍,则下落过程中()A.甲的最大加速度是乙的2倍B.甲的最大速度是乙的2倍C.甲的最大动量是乙的√2倍D.甲的最大动能是乙的4倍6.(2019四川遂宁三诊)如图所示,水平地面光滑,轻弹簧一端固定在墙上,另一端连接质量为m的小球A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高考物理必考经典专题专题6 动力学、动量和能量观点的综合应用考点一 “子弹打木块”类问题的综合分析子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动.下面从动量、能量和牛顿运动定律等多个角度来分析这一类问题.1.动量分析子弹和木块最后共同运动,相当于完全非弹性碰撞,子弹射入木块过程中系统动量守恒mv0=(M+m)v. 2.能量分析该过程系统损失的动能全部转化为系统的内能.设平均阻力大小为Ff,子弹、木块的位移大小分别为s1,s2,子弹钻入深度为d,如图所示,有s1-s2=d;对子弹应用动能定理有-F f s 1=错误!未找到引用源。

mv 2-错误!未找到引用源。

m 错误!未找到引用源。

;对木块应用动能定理有F f s 2=错误!未找到引用源。

mv2,联立解得F f d=错误!未找到引用源。

m 错误!未找到引用源。

-错误!未找到引用源。

(M+m)v2=202()Mmv M m +错误!未找到引用源。

.式中F f d 恰好等于系统动能的损失量,根据能量守恒定律,系统动能的损失量应该等于系统内能的增加量,则有ΔE k =F f d=Q=202()Mmv M m +错误!未找到引用源。

,由此可得结论:两物体由于摩擦产生的热量(机械能转化为内能),数值上等于摩擦力大小与两物体相对滑动路程的乘积.由上面各式联立可得F f =202()Mmv M m d+错误!未找到引用源。

,s 2=m M m+错误!未找到引用源。

d.3.动力学分析从牛顿运动定律和运动学公式出发,也可以得出同样的结论.由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比,有22s d s +错误!未找到引用源。

=022v v v +错误!未找到引用源。

=0v v v +错误!未找到引用源。

,所以有2d s 错误!未找到引用源。

=0v v 错误!未找到引用源。

= 错误!未找到引用源。

M m m +,解得s2=m M m+错误!未找到引用源。

d. 说明:(1)若M ≫m,则s 2≪d,即在子弹射入木块过程中,木块的位移很小,可以忽略不计,这就为分阶段处理问题提供了依据.(2)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE k =F f d(这里的d 为木块的厚度).考点二 “弹簧类”问题的综合分析1.示意图2.问题特点对两个(或两个以上)物体与弹簧组成的系统在相互作用的过程中,(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方向,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.考点三:“滑块—滑板”类问题的综合分析“滑块—滑板”模型作为力学的基本模型经常出现,是对直线运动和牛顿运动定律及动量守恒定律有关知识的巩固和应用.这类问题可分为两类:(1)没有外力参与,滑板放在光滑水平面上,滑块以一定速度在滑板上运动,滑块与滑板组成的系统动量守恒,注意滑块若不滑离滑板,最后二者具有共同速度.摩擦力与相对路程的乘积等于系统动能的损失,即F f ·s 相对=ΔE k ;(2)系统受到外力,这时对滑块和滑板一般隔离分析,画出它们运动的示意图,应用牛顿运动定律、运动学公式及动量守恒定律求解.典例精析★考点一:“子弹打木块”类问题的综合分析◆典例一:(2018·四川乐山市检测)如图所示,质量M=1.0 kg的木块随传送带一起以v=2.0 m/s的速度向左匀速运动,木块与传送带间的动摩擦因数μ=0.50。

当木块运动至最左端A点时,一颗质量为m=20 g的子弹以v0=3.0×102 m/s水平向右的速度击穿木块,穿出时子弹速度v1=50 m/s。

设传送带的速度恒定,子弹击穿木块的时间极短,且不计木块质量变化,g取10 m/s2。

求:(1)在被子弹击穿后,木块向右运动距A点的最大距离。

(2)子弹击穿木块过程中产生的内能。

(3)从子弹击穿木块到最终木块相对传送带静止的过程中,木块与传送带间由于摩擦产生的内能。

【答案】:(1)0.90 m(2)872.5 J(3)12.5 J【解析】(1)设木块被子弹击穿时的速度为v′,子弹击穿木块过程动量守恒,则:mv0-Mv=mv1+Mv′解得:v′=3.0 m/s设子弹穿出木块后,木块向右做匀减速运动的加速度大小为a,根据牛顿第二定律得:μMg=Ma解得:a=5.0 m/s2木块向右运动到离A点最远时,速度为零,设木块向右移动最大距离为s1,则:v′2=2as1解得:s1=0.90 m(2)根据能量守恒定律可知子弹射穿木块过程中产生的内能为:E=12mv02+12Mv2-12m v12-12Mv′2解得:E=872.5 J(3)设木块向右运动至速度减为零所用时间为t1,然后再向左做加速运动,经时间t2与传送带达到相对静止,木块向左移动的距离为s2。

根据运动学公式得:v2=2as2解得:s2=0.40 mt1=错误!未找到引用源。

va=0.60 s t2==0.40 s木块向右减速运动的过程中相对传送带的位移为:s′=vt1+s1=2.1 m产生的内能: Q1=μMgs′=10.5 J木块向左加速运动的过程中相对传送带的位移为:s″=vt2-s2=0.40 m产生的内能:Q2=μMgs″=2.0 J所以整个过程中木块与传送带摩擦产生的内能:Q=Q1+Q2=12.5 J★考点二:“弹簧类”问题的综合分析◆典例一:(2018·山东烟台模拟)如图所示,光滑水平直轨道上有三个质量均为m的物块A,B,C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A,B速度相等时,B与C恰好相碰并粘连在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中.(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.【解析】(1)从A压缩弹簧到A与B具有相同速度v1时,对A,B与弹簧组成的系统,由动量守恒定律得mv0=2mv1①此时B与C发生完全非弹性碰撞,设碰撞后的瞬时速度为v2,损失的机械能为ΔE,对B,C组成的系统,由动量守恒和能量守恒定律得mv1=2mv2②错误!未找到引用源。

m错误!未找到引用源。

=ΔE+错误!未找到引用源。

(2m)错误!未找到引用源。

③联立①②③式解得ΔE=错误!未找到引用源。

m错误!未找到引用源。

. ④(2)由②式可知,v2<v1,A将继续压缩弹簧,直至A,B,C三者速度相同,设此速度为v3,此时弹簧被压缩至最短,其弹性势能为Ep,由动量守恒和能量守恒定律得mv0=3mv3⑤错误!未找到引用源。

m错误!未找到引用源。

-ΔE=错误!未找到引用源。

(3m)错误!未找到引用源。

+Ep⑥联立④⑤⑥式解得Ep=错误!未找到引用源。

m错误!未找到引用源。

.反思总结涉及弹簧的多个物体系统的碰撞问题的三点提醒(1)多个物体组成的系统应用动量守恒时,既可以根据作用的先后顺序选取系统,也可以选所有物体为系统,这要由题目需要而定.(2)注意题目中出现两物体相距最远、最近等状态时,往往对应两物体速度相等.(3)当问题有多过程、多阶段时,必须分清作用次数、参与物体、作用结果、能量去向,明确对应过程所遵从的规律.◆典例二:(2018·河北唐山模拟)如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但不连接,该整体静止在光滑水平地面上,并且C 被锁定在地面上.现有一滑块A 从光滑曲面上离地面h 高处由静止开始下滑,与滑块B 发生碰撞并粘连在一起压缩弹簧,当速度减为碰后速度一半时滑块C 解除锁定.已知m A =m,m B =2m,m C =3m.求:(1)滑块A 与滑块B 碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能.【答案】v 2=1A A Bm v m m +错误!未找到引用源。

=错误!未找到引用源。

.Ep max =错误!未找到引用源。

mgh【解析】:(1)滑块A 下滑过程中机械能守恒,设A 到达水平面时速度为v 1,由机械能守恒定律有m A gh=错误!未找到引用源。

m A 错误!未找到引用源。

,解得v 1=错误!未找到引用源。

.滑块A,B 碰撞过程中动量守恒,设滑块A 与滑块B 碰撞结束瞬间的速度为v 2,由动量守恒定律有m A v 1=(m A +m B )v 2,解得v 2=1A A Bm v m m +错误!未找到引用源。

=错误!未找到引用源。

.(2)滑块C 解除锁定后,滑块A,B 继续压缩弹簧,被压缩弹簧的弹性势能最大时,滑块A,B,C 速度相等,设为速度v3,由动量守恒定律有(m A +m B )错误!未找到引用源。

=(m A +m B +m C )v 3故v 3=错误!未找到引用源。

v 2=错误!未找到引用源。

.滑块A,B 发生碰撞后到弹簧压缩量最大,A,B,C 及弹簧组成的系统机械能守恒,由机械能守恒定律有 E pmax =错误!未找到引用源。

(m A +m B )错误!未找到引用源。

-错误!未找到引用源。

(m A +m B +m C )错误!未找到引用源。

.故Ep max =错误!未找到引用源。

mgh★考点三:“滑块—滑板”类问题的综合分析◆典例一:(2019全国考试大纲调研卷3)如图所示,水平地面上有一质量为M 的长木板,一个质量为m的物块(可视为质点)放在长木板的最右端。

已知m与M之间的动摩擦因数为,木板与地面间的动摩擦因数为。

从某时刻起物块m以的水平初速度向左运动,同时木=板M在水平外力F控制下始终向右以速度匀速运动,求:(1)在物块m向左运动过程中外力F的大小:(2)木板至少多长物块不会从木板上滑下来?【答案】(1)f1+f2=μ1mg+μ2(m+M)g(2)【解析】(1)在物块m向左运动过程中,木板受力如图所示,其中f1,f2分别为物块和地面给木板的摩擦力,由题意可知f1=μ1mg①f2=μ2(m+M)g ②由平衡条件得:F= f1+f2=μ1mg+μ2(m+M)g③(2)解法一:设物块向左匀减速至速度为零的时间为t1,则设④物块向左匀减速运动的位移为X1,则⑤设物块由速度为零向右匀加速至与木板同速(即停止相对滑动)的时间为t2,则⑥设物块向右匀加速运动的位移为X2,则⑦此过程木板向右匀速运动的总位移为X′,则⑧则物块不从木板上滑下来的最小长度:⑨代入数据解得:⑩解法二:以木板为参考系,设物块相对木板向左匀减速初速度为V0,末速度为V t,则①②加速度:③根据运动学公式:④解得:⑤◆典例二(2018·河北衡水模拟)如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A,B之间的动摩擦因数为μ,现有质量为m的小球以水平速度v0飞来与物块A碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A可视为质点,求:(1)物块A相对木板B静止后的速度大小;(2)木板B至少多长.【答案】v2=0.25v0. L=216vg错误!未找到引用源。

相关文档
最新文档