八年级上实数计算题

合集下载

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。

125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。

八年级数学上册实数计算题

八年级数学上册实数计算题

八年级数学上册实数计算题一、实数计算题20题。

1. 计算:√(4) + sqrt[3]{-8}- 解析:- 先分别计算各项。

- 因为√(4)=2,sqrt[3]{-8}=-2(因为(-2)^3 = -8)。

- 所以√(4)+sqrt[3]{-8}=2+( - 2)=0。

2. 计算:√(9)-√(16)- 解析:- 先计算根号下的数。

- √(9) = 3,√(16)=4。

- 则√(9)-√(16)=3 - 4=-1。

3. 计算:√(25)+√(36)- 解析:- √(25)=5,√(36)=6。

- 所以√(25)+√(36)=5 + 6=11。

4. 计算:√(1)-√(0)- 解析:- 因为√(1)=1,√(0)=0。

- 所以√(1)-√(0)=1-0 = 1。

5. 计算:√(121)-√(144)- 解析:- √(121)=11,√(144)=12。

- 则√(121)-√(144)=11-12=-1。

6. 计算:√(169)+√(196)- 解析:- √(169)=13,√(196)=14。

- 所以√(169)+√(196)=13 + 14=27。

7. 计算:√(49)-√(64)- 解析:- √(49)=7,√(64)=8。

- 所以√(49)-√(64)=7-8=-1。

8. 计算:√(81)+√(100)- 解析:- √(81)=9,√(100)=10。

- 所以√(81)+√(100)=9 + 10=19。

9. 计算:sqrt[3]{27}+sqrt[3]{-1}- 解析:- 因为sqrt[3]{27}=3(因为3^3 = 27),sqrt[3]{-1}=-1(因为(-1)^3=-1)。

- 所以sqrt[3]{27}+sqrt[3]{-1}=3+( - 1)=2。

10. 计算:sqrt[3]{64}-sqrt[3]{125}- 解析:- sqrt[3]{64}=4(因为4^3 = 64),sqrt[3]{125}=5(因为5^3 = 125)。

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。

D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14.13 《实数》计算题(专项练习)(巩固篇100题)一、解答题12.计算:(+1|+(5-2π)03.(1);(2)已知()2x 1- =4,求x 的值.4.已知:,x y 为实数,且3y <,化简:3y -5.计算:(1)110101(1)(3)2π-⎛⎫-+-+ ⎪⎝⎭(226213.14+6+2π-⎛⎫-- ⎪⎝⎭()7.计算:()23- 8.计算(1(2(x <2y <0)92 .10.计算:(2)(1+(12. 11.计算:12.计算:(1+(2)+1)213.计算:21-21-2-⎛⎫ ⎪⎝⎭14.计算:+2)2+2﹣215.计算:()202011-+16.计算: 21)3)(3--17.18.计算:(1﹣3|(2)1)2+)2﹣21)) 19.计算下列各式: (1)√6×(√3+√2)-2√3; (2)4√15÷√3−√20+5√15.20.计算:20-11-23+())()21.计算:|−2|+(−1)2012×(π−3)0−√8+(−2)−2222)023.(1)计算:2(1(2)求x 的值:3641)270x +-=(24.计算:(3(2. 25.已知x,y =,求4x yy x +-的值.26.计算:(1(2)2(11)-.27.已知4. (1)求x 、y 的值;28.计算:;(23;(3)(22017×(22016-2-(0(4)(a +b -.29.计算:|1.30(22π-+.31.计算:(13;(2)32.计算:33.已知 x y(1)x yy x+的值;(2)2x 2+6xy +2y 2的值.34.计算(1)0(2)((2 35.化简:(1(2(10+|﹣2|﹣(12)﹣136.计算下列各式(1) (2)371+ 38.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23+39.计算(1)﹣(2)1))﹣(1﹣2.40.计算:41.计算:(1)−√83+√16−|√3−2|;(2)(√12+3√3)×√3; (3)12×(√2+√3)−34×(√2−√27);(4)(−12)2×√(−2)2+12×√1253;42432(2 +44.计算:22 |1|3-⎛⎫-- ⎪⎝⎭45.计算:|3﹣1)2018.46.计算1.47.计算:2(3)21)-+⨯--.482318 49.计算:⎛⎝;12⎛⎫⎪⎝⎭.50.计算:(1)11(251233312713++.52.计算:(1)(2)201811-+53.计算:(1)21(2)--;(2)2(3254.计算:(1;(2)12)﹣12|;(3)2)2;(4)2020•2021. 55.计算(1|1(2)2|(3(4|3562.57.计算题:2--;(2)58.完成下列各题.(1)计算:())0311-+(2)计算:(()201412π1-+-.(3)(041-.(4)计算:())3212523-⎛⎫-+--+ ⎪⎝⎭.(5)计算:122323---.(6)1382+.(7)计算:2112-⎛⎫- ⎪⎝⎭.59.计算:2(71)+--60()0221( 3.14().2π-+---⨯61()()2202021--- 62.计算(12236 (2)220201020.2513163.计算:(1)- (2)(3) (4)64.计算:(1) (2) ()012018π+--6566.计算:4÷672020(1)-.68.计算:1||3+-69. 计算:+2|-2|;(-1)2018. 70.计算:(1)(√8+√3)×√6√10−√15√5; (2)2√12×(3√48−4√18−3√27)(3)√72−√32√8(√5−√2)(√5+√2); (4)(π−1)0+(−12)−1+|5−√27|−2√371.计算:(−3)2−(12)−1+(−2019)0.72.计算:201( 3.14)2π-⎛⎫-- ⎪⎝⎭.73.计算:(1)9×(﹣23)﹣3|(22+74.计算1). 75.计算:(1)(10+|2(﹣1)2018﹣13(2)(x+y )2﹣x (2y ﹣x ) 76.计算:(1(20,0)a b >>(3(477.78.计算:(1)⎛ ⎝;(2|1 79.计算:(1)()20201821--⨯--;(2)()()()221a a a a +--+.80.计算:(1)|﹣3|12+(﹣2)2 . |2.81.(12| (2)求x 的值:(2x ﹣1)2=9.822(317)0x y -+=的值.83.计算:()()20211211π--++.84.计算:(﹣1)2008+π0﹣(13)﹣185.计算:86.计算:3(1)|1-+ 87.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)(2212-+88.02018)(1)|1π+-+.89.计算:(1) (2)(÷(3)0,0)a b >> 90.计算:(1321(2)(10)4---⨯- (2)225(24)-⨯--91.解下列方程:(1) 9(3-y )2=4; (2) 2732-3x ⎛⎫ ⎪⎝⎭+125=0.9221)+ 93.计算:(1) (2)01)1)(3) (4)0(3)|1---.94.计算:(1)|-5|+(-2)2-1;95.计算: 96.计算:(1)(22-97 98.计算下列各题(1)⎛÷ ⎝ (2)2- 99.(1);(2)(3);(4)100.计算:(12018(1)- (23参考答案1.-11 4【分析】先将二次根式化简,再根据实数的运算法则求得计算结果.=111 30224 ---++==-11 4.【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是二次根式、绝对值等考点的运算.2.【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.解:(+1|+(5-2π)0=1+1=【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.3.(1)13-;(2) x1=3,x2=-1.【分析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.解:(1-2-13=-13;(2)(x-1)2=4,x-1=±2,x-1=2,x-1=-2.解得:x1=3,x2=-1.【点拨】此题主要考查了平方根和立方根的应用,灵活利用平方根和立方根的概念是解题关键.4.-1.【分析】根据所给的已知式子,由二次根式有意义的条件,可求x 取值范围,得到x ,然后求出y 的取值范围,然后根据二次根式的性质求解即可.解:由题意可知: 10x -≥且10x -≥1x ∴=3<-y x 3∴<y3∴-y34=---y y()()34=-+--+y y34=-++-y y1=-5.(1)3(2)18﹣﹣【分析】(1)先算乘方和开方,然后合并同类二次根式即可;(2)先算乘方、乘法、除法,然后合并同类二次根式即可.解:(1)原式=(﹣1)+1+21)=(﹣1)+1+2=3(2(2+12-=4﹣+12﹣=18﹣﹣【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.6.11【解析】试题分析:根据二次根式的相关公式,零指数幂的规定,绝对值的意义以及负整数指数幂的相关规则,分别对算式的各个部分进行化简和运算,然后再对所得到的中间结果进行进一步的运算即可.试题解析:()2013.1462π-⎛⎫-+-+ ⎪⎝⎭ =2-1+6+4=117.4.5【分析】先计算平方、开平方和开立方,再计算加减.解:解:原式=9—32-3 =4.5【点拨】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.8.(1) 203;(2)-21xy 解:试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简. 试题解析=203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 9.-2.【解析】【分析】根据二次根式、三次根式的化简方法计算,再合并同类项.2,=332,=-2.【点拨】本题考查实数的综合运算能力.解决此类题目的关键是熟练掌握二次根式、三次根式的化简.10.(2) 2+【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.解:(1)原式===(2)原式=1-5+1+5=2+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(1) 2(2)-30. 【分析】(1)先算除法,再算减法.(2)先化简,再利用平方差公式计算.解:(1)原式=2(2)原式=((4=-30.【点拨】本题考查根式化简,能够掌握平方差公式是解题关键.12.(1);(2)7-【分析】(1)先分别进行化简,然后再合并同类二次根式即可;(2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.解:(1)原式==;(2)原式=5231-+-=7-【点拨】本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.13.1【解析】【分析】按顺序先分别进行立方根的运算、绝对值的化简、负指数幂的运算,然后再按运算顺序进行计算即可.解:原式=-2×(-3)1-4=1【点拨】本题考查了实数的运算,涉及了立方根、负整数指数幂等,熟练掌握各运算的运算法则是解题的关键.14.29 4【分析】按顺序分别利用完全平方公式展开,化简二次根式,利用负指数幂进行计算,然后再按运算顺序进行计算即可.解:原式﹣14=294. 【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1532【分析】首先计算乘方、负整数指数幂、算术平方根、立方根和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:解:()202011-+)1=1212+-+ 1=1212+- 32【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.3-【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.解:解:原式=4-[32-2]=4-[32-2]-4=4--4=3-【点拨】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.17【分析】根据二次根式的混合运算法则进行计算.解:解:原式143+=(14327+=-==【点拨】本题考查二次根式的运算,解题的关键是掌握二次根式的运算法则.18.(1)﹣6;(2)9.【解析】【分析】(1)先进行二次根式的乘法运算,再把二次根式化为最简二次根式和去绝对值,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:(13|3﹣3=﹣6;(2)3﹣﹣2(2)=3﹣﹣6﹣=9.【点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1) 3√2;(2) 3√5.【解析】【分析】(1)先利用分配律进行计算,然后再合并同类二次根式即可;(2)按顺序进行二次根式的除法运算、化简二次根式,然后再合并同类二次根式即可.解:(1)原式=3√2+2√3-2√3=3√2;(2)原式=4√5-2√5+√5=3√5.【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.5【分析】按照乘方,算术平方根,零指数幂,负整数指数幂的性质化简,进行计算即可解答解:解:原式4313=-++5=【点拨】此题考查算术平方根,零指数幂,负整数指数幂,解题关键在于掌握运算法则21.解:原式=。

4.3实数(十大题型)(解析版) 八年级数学上学期

4.3实数(十大题型)(解析版) 八年级数学上学期

八年级上册数学《第4章实数》4.3实数◆1、实数的概念:有理数和无理数统称为实数.◆2、实数的分类:(1)按定义分类.(2)按性质分类.◆1、实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.◆2、与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.◆3、实数的大小比较①正实数大于零,负实数小于零,正实数大于负实数;②两个正实数,绝对值大的数较大;③两个负实数,绝对值大的数反而小.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.◆1、数a的相反数是-a,这里a表示任意一个实数.◆2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示任意一个实数,则|a|=o>0)0(=0)−o<0)◆1、当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.◆2、实数的混合运算顺序与有理数的混合运算的顺序一样,实数运算过程中的运算顺序为:先算乘方、开方、再算乘法、除法,最后算加法、减法,同级运算按照自左向右的顺序进行,有括号先算括号里的.◆3、实数的运算律.①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:ab=ba;④乘法结合律:(ab)c=a(bc)⑤分配律:a(b+c)=ab+ac.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.【例题1】(2022秋•丽水期中)把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③−13,④0.618,⑤−16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{……};分数集合:{……};无理数集合:{……}.【分析】利用整数、分数、无理数的定义分类填空.【解答】解:整数有:⑤−16=−4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③−13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1),故答案为:⑤⑥⑦⑧;①③④⑨;②2⑩.【点评】本题考查了实数的定义,解题的关键是掌握整数、分数、无理数的定义.【变式1-1】(2022秋•社旗县期末)实数−13,−6,0,﹣1中,为负整数的是()A.﹣1B.−6C.0D.−13【分析】根据实数的分类进行解答即可.【解答】解:这一组数中的负整数是﹣1.故选:A.【点评】本题考查的是实数,熟知实数的分类是解题的关键.【变式1-2】(2022秋•宁波期中)下列实数:2,39,1,2,−73,0.3⋅,分数有()A.2个B.3个C.4个D.5个【分析】根据实数的分类及分数的定义进行解答即可.−73,0.3⋅共3个.故选:B.【点评】本题考查的是实数,熟知所有的分数都是有理数是解题的关键.【变式1-3】(2022春•宜秀区校级月考)下列说法正确的是()A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B错误,无限不循环的小数是无理数,故C错误,实数分为有理数和无理数,故D正确.故选:D.【点评】考查了实数的概念,以及有理数和无理数概念及分类.【变式1-4】下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是2;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个【答案】B;【分析】直接利用有关实数的性质分别分析得出答案.【解答】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如4=2是有理数.故选:B.【变式1-5】(2022春•夏津县期末)下列说法中错误的是()A.3−27是整数B.−1713是有理数C.33是分数D.9的立方根是无理数【分析】根据立方根,算术平方根,有理数,无理数的意义,即可解答.【解答】解:A、∵3−27=−3,∴3−27是整数,故A不符合题意;B、−1713是有理数,故B不符合题意;C、33是无理数,不是分数,故C符合题意;D、∵9=3,3的立方根是33,33是无理数,∴9的立方根是无理数,故D不符合题意;故选:C.【点评】本题考查了实数,熟练掌握有理数,无理数的意义是解题的关键.【变式1-6】(2022秋•黑山县期中)把下列各数分别填入相应的集合内:33,−4,−34,0,﹣0.2121121112…(相邻两个2之间的1的个数逐次加1)【分析】根据无理数以及正实数的定义,在给定实数中分别挑出无理数以及正实数,此题得解.【解答】解:如图所示:【点评】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【变式2-7】(2023秋•滨湖区期中)将下列各数的序号填入相应的括号内:①﹣2.5;②313;③0;④2;⑤﹣8;⑥10%;⑦−27;⑧﹣1.12121112…;⑨2;⑩−0.345⋅⋅.整数集合:{…};负分数集合:{…};正有理数集合:{…};无理数集合:{…}.【分析】根据实数的分类,即可解答.【解答】解:整数集合:{③⑤⑨…};负分数集合:{①⑦⑩…};正有理数集合:{②⑥⑨…};无理数集合:{④⑧…}.故答案为:③⑤⑨;①⑦⑩;②⑥⑨;④⑧.【点评】本题考查了实数,熟练掌握实数的分类是解题的关键.【例题2】(2022•海淀区校级模拟)实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解答】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.【点评】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式2-1】(2022春•南岸区期中)实数a在数轴上对应点的位置如图所示,若实数b满足a<b<2,则b的值可以是()A.﹣2B.﹣1C.2D.3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:∵1<a<2,∴﹣2<﹣a<﹣1,∵﹣a<b<a,∴b只能是﹣1.故选:B.【点评】本题考查了数轴上的点和实数的对应关系,解决本题的关键是根据数轴上的点确定数的范围.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【变式2-2】(2023秋•昌黎县期中)如图,在数轴上,点A表示实数a,则a可能是()A.−12B.−10C.−8D.−3【分析】根据数轴可得−9<<−4,再逐一分析各选项的数据即可.【解答】解:∵﹣3<a<﹣2,∴−9<<−4,∵9<12,9<10,∴−12<−9,−10<−9,故A,B不符合题意;∵3<4,∴−3>−4,故D不符合题意;∵4<8<9,∴−9<−8<−4,即−3<−8<−2,故选:C.【点评】本题考查的是实数与数轴,实数的大小比较,掌握实数的大小比较的方法是解本题的关键.【变式2-3】(2023秋•新吴区校级期中)如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.【点评】本题考查了实数与数轴,根据正方形的特点找出滚动规律是解题的关键.【变式2-4】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,2.【分析】先计算﹣(﹣1)=1,﹣|﹣4|=﹣4,再利用数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.【解答】解:﹣(﹣1)=1,﹣|﹣4|=﹣4,用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<2<3.【变式2-5】(2022春•海安市校级月考)7、如图:数轴上表示1、5的对应点分别为A、B,且点A为线段BC的中点,则点C表示的数是()A.5−1B.1−5C.5−2D.2−5【分析】设C点表示的数为x,再根据中点坐标公式求出x的值即可.【解答】解:设C点表示的数为x,则r52=1,解得x=2−5.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.【变式2-6】(2023•市南区一模)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.【点评】本题考查了实数与数轴,利用相反数的意义,绝对值的性质,数轴上的点右边的总比左边的大是解题关键.【变式2-7】(2023春•岳池县期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为1+【分析】根据正方形的面积求出正方形的半径,即圆的半径为5,所以E点表示的数为OE的长度,即1+5.【解答】解:∵正方形的面积为5,∴AB为5;∵以A点为圆心,AB为半径,和数轴交于E点,∴AE=AB=5;∵A点表示的数为1,∴OE=OA+AE=1+5故答案为:1+5【点评】本题主要考查了实数与数轴的位置关系,结合正方形面积以及圆的半径考查.解题关键是求出OE的长度.【变式2-8】(2022秋•西安月考)如图,已知实数−5,﹣1,5,3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a﹣b的值.【分析】(1)根据数轴上两点间距离的计算方法进行计算即可得出答案;(2)先根据数轴上两点间距离的计算方法计算出a的值,再求a﹣b即可得出答案.【解答】解:(1)根据题意可得,点C与点D之间的距离为3−5;(2)根据题意可得,a=|﹣1+5|=5−1,b=3−5,a﹣b=5−1﹣(3−5)=25−4.【点评】本题主要考查了实数与数轴及数轴上两点间距离,熟练掌握实数与数轴上的点是一一对应关系及数轴上两点间距离的计算方法进行求解是解决本题的关键.【例题3】实数−3的绝对值是()A.3B.C.−3D.33【分析】直接利用绝对值的性质分析得出答案.【解答】解:实数−3的绝对值是:3.故选:A.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.【变式3-1】−2的相反数是()A.−2B.2CD.2【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得−2的相反数是:2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.【变式3-2】(2023春•潮南区期中)5−2的相反数是()A.﹣0.236B.5+2C.2−5D.﹣2+5【分析】根据相反数的定义即可得出结论.【解答】解:5−2的相反数是2−5.故选C.【点评】本题考查的是相反数,熟知只有符号不同的两个数叫互为相反数是解题的关键.【变式3-3】(2023春•京山市期中)下列各组数中互为相反数的是()A.﹣2与(−2)2B.﹣2与3−8C.﹣2与−12D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、(−2)2=2,﹣2与(−2)2是互为相反数,故本选项正确;B、3−8=−2,﹣2与3−8相等,不是互为相反数,故本选项错误;C、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.【变式3-4】(2023秋•秦都区校级月考)下列说法正确的是()A.2的绝对值是22B.2的倒数是22C.2的相反数是22D.4的平方根为±2【分析】根据绝对值的知识、二次根式的知识、平方根的知识、相反数的知识分别对四个选项进行分析.【解答】解:2的绝对值是2,所以A选项不正确;2的倒数是22,所以B选项正确;2的相反数是−2,所以C选项不正确;4的平方根是±2,所以D选项不正确.故选:B.【点评】本题主要考查了绝对值的知识、二次根式的知识、平方根的知识、相反数的知识.【变式3-5】填空:(1)5的相反数是,绝对值是;(2)3−1的相反数是,绝对值是;(3)若|x|=3,则x=.【分析】根据相反数和绝对值的定义即可得出答案.【解答】解:(1)5的相反数是−5,绝对值是5;(2)3−1的相反数是1−3,绝对值是3−1;(3)∵|x|=3,∴x=±3.故答案为:(1)−5,5;(2)1−3,3−1;(3)±3.【点评】本题考查了实数的性质,算术平方根,掌握绝对值等于3的数有2个是解题的关键.【变式3-6】(2022秋•余姚市校级期中)a是4的算术平方根,b是27的立方根,c是15的倒数.(1)填空:a=,b=,c=;(2)求o+p+2−的值.【分析】(1)直接利用算术平方根的概念以及立方根的概念、倒数的概念分别分析得出答案;(2)直接利用绝对值的性质、立方根的性质、算术的性质分析得出答案.【解答】解:(1)∵a是4的算术平方根,b是27的立方根,c是15的倒数,∴a=2,b=3,c=5;故答案为:2,3,5;(2)原式=2(3+5)+22−2×5=6+25+4−25=10.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.【变式3-7】(2022秋•芗城区校级月考)31−2与33−2互为相反数,求代数式6x﹣9y+5的值.【分析】由题意得方程1﹣2x+3y﹣2=0,求得2x﹣3y=﹣1,再将其代入求解即可.【解答】解:由题意得1﹣2x+3y﹣2=0,整理,得2x﹣3y=﹣1,∴6x﹣9y+5=3(2x﹣3y)+5=3×(﹣1)+5=﹣3+5=2.【点评】此题考查了运用立方根和相反数进行化简、求值的能力,关键是能准确理解并运用以上知识和整体思想.【变式3-8】(2022春•如皋市校级月考)已知|x|=5,y是11的平方根,且x>y,求x+y的值.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=5,∴x=±5,∵y是11的平方根,∴y=±11,∵x>y,∴当x=5,则y=−11,故x+y=5−11,当x=−5,则y=−11,故x+y=−5−11,综上所述:x+y的值为5−11或−5−11.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.【例题4】(2023•潍坊)在实数1,﹣1,0,2中,最大的数是()A.1B.﹣1C.0D.2【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:∵﹣1<0<1<2,∴在实数1,﹣1,0,2中,最大的数是2,故选:D.【点评】本题主要考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【变式4-1】(2022•沂源县一模)在3,−3,0,2这四个数中,最小的一个数是()A.3B.−3C.0D.2【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小即可求解.【解答】解:在3,−3,0,2这四个数中,最小的一个数是−3.故选:B.【点评】此题考查了实数大小比较,可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.【变式4-2】三个数﹣π,﹣3,−3的大小顺序是()A.﹣3<﹣π<−3B.﹣π<﹣3<−3C.﹣π<−3<−3D.﹣3<−3<−π【分析】先对无理数进行估算,再比较大小即可.【解答】解:﹣π≈﹣3.14,−3≈−1.732,因为3.14>3>1.732.所以﹣π<﹣3<−3.故选:B.【点评】本题考查了同学们对无理数大小的估算能力及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.【变式4-3】(2023秋•农安县期中)将数“22,5,−2,0,﹣1.6”按从小到大的顺序排列,并用“<”连接起来是:.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵22=8>5,−2≈−1.57>﹣1.6,∴﹣1.6<−2<0<5<22,故答案为:﹣1.6<−2<0<5<22.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.【变式4-4】设a为实数且0<a<1,则在a2,a,,1这四个数中()A.1>>>2B.2>>>1C.>>1>2D.1>>>2【分析】根据正数比较大小的法则进行解答即可.【解答】解:∵0<a<1,∴0<a2<a<<1,1>1,∴1>>a>a2.故选:D.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.【变式4-5】比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.5<37<2D.37<2<5【分析】把2转化为4,38,即可比较大小.【解答】解:∵2=4,∴5>2,∵2=38,∴2>37,∴5>2>37,即37<2<5,故选:D.【点评】本题考查了实数大小的比较,解决本题的关键是把2转化为4,38.【变式4-6】比较大小:− 1.5.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:(−3)2=3,(﹣1.5)2=2.25,∵3>2.25,∴−3<−1.5.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.【例题5】已知:x<21<y(x,y是两个连续整数),则x,y的值为()A.x=2,y=3B.x=3,y=4C.x=4,y=5D.x=5,y=6【分析】根据16<21<25,即可得出x、y的值.【解答】解:∵16<21<25,∴x=4,y=5;故选:C.【点评】本题考查了估算算术平方根的大小,解题的关键是用有理数逼近算术平方根.【变式5-1】(2023秋•郁南县期中)估算57的值应在()A.6~7之间B.7~8之间C.8~9之间D.不能确定【分析】利用无理数的估算即可求得答案.【解答】解:∵49<57<64,∴7<57<8,即57的值在7~8之间,故选:B.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.【变式5-2】(2022春•香洲区期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【解答】解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:18,∵16<18< 4.52,∴4<18<4.5,∴大正方形的边长最接近的整数是4.故选:A.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题的关键.【变式5-3】(2022春•江津区校级月考)若x、y为两个连续的整数,且x<39<y,则x+y=.【分析】通过36<39<49求解.【解答】解:∵36<39<49,∴6<39<7,∴x=6,y=7,∴x+y=13.故答案为:13.【点评】本题考查了估算算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-4】(2023秋•青龙县期中)估算2+14的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间【分析】先估算出14的取值范围,进而可得出结论.【解答】解:∵9<14<16,∴3<14<4,∴5<2+14<6.故选:B.【点评】本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解题的关键.【变式5-5】(2023秋•秦都区期中)估计23−2的值在()A.2到3之间B.1到2之间C.3到4之间D.4到5之间【分析】先估算出23的大小,进而估算23−2的范围.【解答】解:∵16<23<25,∴4<23<5,∴2<23−2<3,∴23−2的值在2和3之间.故选:A.【点评】本题考查了估算无理数的大小,估算无理数大小要用逼近法.【变式5-6】(2022•南关区校级开学)已知x,y为两个连续的整数,且x<20<y,则5x+y的值为.【分析】先求出20的范围,求出x、y的值,求出5x+y的值,根据平方根的定义求出即可.【解答】解:∵4<20<5,∴x=4,y=5,∴5x+y=5×4+5=25,∴5x+y的平方根是±5,故答案为:±5.【点评】本题考查了算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-7】(2023秋•二七区校级月考)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2−1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将2减去其整数部分,差就是2的小数部分.请解答:(1)23的整数部分是,小数部分是;(2)如果7+1的小数部分为,9−17的整数部分为b,求+−7的平方根;(3)已知10+7=+,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)根据算术平方根的定义,估算无理数23的大小即可;(2)根据算术平方根的定义估算无理数7+1,9−17的大小即可确定a、b的值,再代入计算即可;(3)根据算术平方根的定义估算无理数10+7的大小确定整数部分x,小数部分是y,再求出x﹣y的相反数即可.【解答】解:(1)42=16,52=25,而16<23<25,∴4<23<5,∴23的整数部分是4,小数部分为23−4,故答案为:4,23−4;(2)∵22=4,32=9,而4<7<9,∴2<7<3,∴3<7+1<4,∴7+1的整数部分是3,小数部分为7+1﹣3=7−2,即a=7−2;∵4<17<5,∴﹣5<−17<−4,∴4<9−17<5,∴9−17的整数部分是4,即b=4,∴a+b−7=7−2+4−7=2,∴+−7的平方根是±2;(3)∵2<7<3,∴12<10+7<13,∴10+7的整数部分是12,小数部分是10+7−12=7−2,又∵10+7=+,其中x是整数,且0<y<1,∴x=12,y=7−2,∴x﹣y的相反数是y﹣x=7−14.【点评】本题考查估算无理数的大小,掌握算术平方根、平方根的定义是正确解答的前提.【例题6】通过估算,比较下列各组数的大小:(1)6(2(3)5−121;(4)3+12112.【分析】(1)利用平方运算,比较大小即可解答;(2)根据算术平方根的意义,比较大小即可解答;(3)先估算出5的值的范围,再估算出5−1的值的范围,进行计算即可解答;(4)先估算出3的值的范围,再估算出3+1的值的范围,进行计算即可解答.【解答】解:(1)∵62=36,(35)2=35,∴36>35,∴6>35,故答案为:>;(2)∵8<10,∴8<10,故答案为:<;(3)∵4<5<9,∴2<5<3,∴1<5−1<2,∴12<5−12<1,故答案为:<;(4)∵1<3<4,∴1<3<2,∴2<3+1<3,∴132,故答案为:<.【点评】本题考查了数的大小比较,熟练掌握估算算术平方根的值的大小是解题的关键.【变式6-1】(2023春•西城区校级期中)比较大小:(1;(2)5−11.【分析】(1)先把4写成算术平方根的形式,然后根据算术平方根的被开方数越大,那个数就越大进行解答;(2)先估算5的大小,然后进行判断即可.【解答】解:(1)∵4=16,17>16,∴17>4;(2)∵2<5<3,∴5−1>1,故答案为:(1)>;(2)>.【点评】本题主要考查了实数的大小比较,解题关键是能够正确的估算无理数的大小.【变式6-2】(2022秋•新津县校级月考)比较大小:3−1212,23.【分析】(1)比较出两个数的差的正负,即可判断出它们的大小关系.(2)首先比较出两个数的平方的大小关系;然后根据:两个正实数,平方大的,这个数也大,判断出原来的两个数的大小关系即可.【解答】解:(1)∵3−12−12=32−1<0,∴3−12<12.(2)(32)2=18,(23)2=12,∵18>12,∴32>23.故答案为:<、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个正实数,平方大的,这个数也大.【变式6-3】(2023春•前进区月考)比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.37<2<5D.37<5<2【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【解答】解:∵26=64,(5)6=[(5)2]3=125,(37)6=[(37)3]2=49,而49<64<125,∴(37)6<(5)6<26,∴37<2<5.故选:C.【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.【变式6-4】比较下列各组数的大小:(1)120与11.(2)5+12与2.【分析】(1)根据11=121,即可进行比较;(2)先通分,可得2=42,再比较分子5+1与4的大小即可求解.【解答】解:(1)∵11=121,120<121,∴120<11.(2)∵2=42,5+1<4,∴5+12<2.【点评】此题主要考查了算术平方根的估算能力,两个正数的算术平方根的比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的式子的值就大.【变式6-5】比较下列各组数的大小(1)8与10;(2)65与8;(3)5−12与0.5;(4)5−12与1.【分析】(1)根据8<10,即可解答;(2)根据8=64,即可进行比较;(3)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可;(4)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可.【解答】解:(1)∵8<10,∴8<10;(2)∵64=8,64<65,∴65>64,∴65>8;(3)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12>12.(4)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12<1.【点评】本题考查了数的大小比较的应用,主要考查学生能否选择适当的方法比较两个数的大小.【例题7】(2022秋•大竹县校级期末)实数a、b在数轴上对应点的位置如图,则|a﹣b|−2的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用算术平方根与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|−2=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、算术平方根与绝对值的性质.此题难度适中,注意2=|a|.【变式7-1】实数a、b在数轴上所对应的点如图所示,则|3−b|+|a+3|+2的值.【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【解答】解:由数轴可得:a<−3,0<b<3,故|3−b|+|a+3|+2=3−b﹣(a+3)﹣a=3−b﹣a−3−a=﹣2a﹣b.故答案为:﹣2a﹣b.【点评】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.【变式7-2】实数a、b、c在数轴上的位置如图,化简(−p2−|a+c|+(−p2−|b|【分析】利用数轴首先得出各式的符号,进而化简得出答案.【解答】解:如图所示:a﹣b<0,a+c<0,c﹣b<0,b>0,则原式=b﹣a+a+c+b﹣c﹣b=b.【点评】此题主要考查了实数与数轴,正确判断出各式的符号是解题关键.【变式7-3】(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:2+|a+b|+3(+p3−|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.【点评】此题主要考查了实数运算以及实数与数轴,正确化简各式是解题关键.【变式7-4】实数a,b,c表示在数轴上如图所示,完成下列问题,试化简:(−p2−|−U+3(−p3.【分析】根据题意可得:b<0<a<c,从而可得a﹣c<0,b﹣a<0,然后利用二次根式的性质,绝对值,立方根的意义进行化简计算,即可解答.【解答】解:由题意得:b<0<a<c,∴a﹣c<0,b﹣a<0,∴(−p2−|−U+3(−p3=c﹣a﹣(a﹣b)+b﹣c=c﹣a﹣a+b+b﹣c=2b﹣2a.【点评】本题考查了整式的加减,实数与数轴,准确熟练地进行计算是解题的关键.【变式7-5】(2022秋•保定月考)如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点B 表示3,设点A所表示的数为m.(1)实数m的值是;(2)求(m+2)2+|m+1|的值.【分析】(1)根据实数与数轴上的点是一一对应关系进行计算即可得出答案;(2)把(1)中m的值代入进行计算即可得出答案.【解答】解:(1)根据题意可得,m=3−2;故答案为:3−2;(2)m+1=3−2+1=3−1,∵1<3<2,∴0<3−1<1,(m+2)2+|m+1|=(3−2+2)2+|3−1|=(3)2+3−1=3+3−1=2+3.故答案为:2+3.【点评】本题主要考查了实数与数轴及绝对值,熟练掌握实数与数轴上的点是一一对应关系及绝对值的性质进行求解是解决本题的关键.【变式7-6】(2022秋•青龙县月考)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A 表示−2,设点B所表示的数为m.(1)实数m的值是;(2)求(m+1)(1﹣m)的值;(3)在数轴上还有C,D两点分别表示实数c和d,且|c+3|与−5互为相反数,求c+3d的平方根.【分析】(1)根据点A沿数轴向右爬了2个单位长度到达点B,即可得到m的值;(2)根据(1)的结果求值即可;(3)根据非负数的性质得到c,d的值,代入代数式求值,再求平方根即可得出答案.【解答】解:(1)∵一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示−2,∴m=−2+2,故答案为:−2+2;(2)(m+1)(1﹣m)=1﹣m2=1﹣(−2+2)2=1+42−6=42−5;(3)∵|c+3|与−5互为相反数,∴|c+3|+−5=0,∵|c+3|≥0,−5≥0,∴c+3=0,d﹣5=0,∴c=﹣3,d=5,∴c+3d=(﹣3)+3×5=﹣3+15。

八年级上册数学实数练习题

八年级上册数学实数练习题

实数单元习题练习(三)一、选择题:(48分) 1. 9的平方根是 ( )A 、3B 、-3C 、 3D 、81 2. 下列各数中,不是无理数的是 ( )A 、7B 、0.5C 、2πD 、…)个之间依次多两个115(3. 下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限小数 …C 、无限小数是无理数D 、3π是分数 4. 下列说法错误的是( )A 、1的平方根是1B 、–1的立方根是-1C 、2是2的平方根D 、–3是2)3(-的平方根 5. 若规定误差小于1, 那么60的估算值为( ) A 、3 B 、7 C 、8 D 、7或8 6. 和数轴上的点一一对应的是( )A 、整数B 、有理数C 、无理数D 、实数 %7. 下列说法正确的是( )A 、064.0-的立方根是B 、9-的平方根是3±C 、16的立方根是316D 、的立方根是 8. 若a 和a -都有意义,则a 的值是( )A 、0≥aB 、0≤aC 、0=aD 、0≠a 9. 边长为1的正方形的对角线长是( )A 、整数B 、分数C 、有理数D 、不是有理数 10.38-=( )*A 、2B 、-2C 、±2D 、不存在11.2a a =-,则实数a 在数轴上的对应点一定在( )A 、原点左侧B 、原点右侧C 、原点或原点左侧D 、原点或原点右侧 12.下列说法中正确的是( )A 、实数2a -是负数 B 、a a =2C 、a -一定是正数D 、实数a -的绝对值是a二. 填空题:(32分)13. 9的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 . |14. –1的立方根是 ,271的立方根是 , 9的立方根是 . 15.2的相反数是 , 倒数是 , -36的绝对值是 .16. 比较大小;6 .(填“>”或“<”)17. =-2)4( ;=-33)6( ; 2)196(= .18.37-的相反数是 ;32-= .19.若2b +5的立方根,则a = ,b = .20.a 的两个平方根是方程223=+y x 的一组解,则a = ,2a 的立方根是 . 三、解答题:(20分) }21.求下列各数的平方根和算术平方根:① 1; ② ③ 256 ④8125:22. 求下列各数的立方根: ①21627; ②610--.23.求下列各式的值: $①44.1; ②3027.0-; ③610-; ④649;⑤44.1-21.1; ⑦)32(2+{附加题:(20分)24.若21(2)0x y -+-=,求x y z ++的值。

(完整版)北师大版八年级数学上册第二章实数计算题

(完整版)北师大版八年级数学上册第二章实数计算题

北师大版八年级数学上册第二章实数计算题一、算术平方根:例1 求下列各数的算术平方根:(1)900; (2)1; (3)6449; (4)14. 答案:解:(1)因为302=900,所以900的算术平方根是30,即30900=;(2)因为12=1,所以1的算术平方根是1,即11=;(3)因为6449872=⎪⎭⎫ ⎝⎛,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14. 反馈练习:一、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ; 3.2)32(的算术平方根是 ; 4.若22=+m ,则2)2(+m = . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(.三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3 ;3.32;4.16;二、6;1211;15;0.8;210-;15;1;三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在Rt △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是 10米. 识.对学生的回答,教师要给予评价和点评。

二、平方根例2 求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11(1)解:()2648=±,648∴±的平方根是8±=±即(2)解:()24949771211211111,=∴±±的平方根为711±=±即(3)解:()20.0004,0.00040.020.02=∴±±的平方根是0.02±=±即(4) 解:()()()22,25252525=∴±±--2的平方根是25=±即(5) 解:11的平方根是思考提升()25-的平方根是 ,2== ,==2a 。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

八年级上册数学北师版计算题

八年级上册数学北师版计算题

八年级上册数学北师版计算题一、实数运算类。

1. 计算:√(16) - sqrt[3]{-8} + √(0)- 解析:- 先分别计算各项。

√(16)=4,因为4^2 = 16。

- sqrt[3]{-8}=- 2,因为(-2)^3=-8。

- √(0) = 0。

- 所以原式=4-(-2)+0=4 + 2=6。

2. 计算:(√(3))^2+ - 2√(9)- 解析:- (√(3))^2 = 3。

- 2=2。

- √(9)=3。

- 则原式=3 + 2-3=2。

3. 计算:√(25)+sqrt[3]{64}-√(169)- 解析:- √(25) = 5。

- sqrt[3]{64}=4,因为4^3 = 64。

- √(169)=13。

- 所以原式=5 + 4-13=-4。

二、整式运算类。

4. 计算:(2x^2y)^3·(- 3xy^2)÷6xy- 解析:- 先计算幂的乘方,(2x^2y)^3=2^3×(x^2)^3× y^3 = 8x^6y^3。

- 然后进行乘法运算:8x^6y^3·(-3xy^2)=-24x^7y^5。

- 最后进行除法运算:-24x^7y^5÷6xy=-4x^6y^4。

5. 计算:(3a + 2b)(2a - 3b)- 解析:- 利用多项式乘法法则展开:- 原式=3a×2a-3a×3b+2b×2a - 2b×3b- =6a^2-9ab + 4ab-6b^2- =6a^2-5ab - 6b^2。

6. 计算:(x + 2y)^2-(x - 2y)^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2和(a - b)^2=a^2-2ab + b^2。

- 则(x + 2y)^2=x^2+4xy+4y^2,(x - 2y)^2=x^2-4xy + 4y^2。

- 原式=(x^2 + 4xy+4y^2)-(x^2-4xy + 4y^2)- 去括号得:x^2+4xy + 4y^2-x^2 + 4xy-4y^2 = 8xy。

北师大版八年级数学上册第二章实数计算题

北师大版八年级数学上册第二章实数计算题

例1 求下列各数的算术平方根:(1)900; (2)1; (3)6449; (4)14. 一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;.9的算术平方根是 ;3.2)32(的算术平方根是 ;4.若22=+m ,则2)2(+m = .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(.三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?例2 求下列各数的平方根:(1)64; (2)49121; (3) 0.0004; (4)()225-; (5) 11()25-的平方根是,2==,==2a。

20≥=当a , 例3求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-.1.求下列各数的立方根: ().1656464125.03333333 ;;-;;-(1)3332-; (2)2122313⋅+⋅; (3)2)52(.(1)5312-⨯; (2)236⨯; (3)2)15(-;(4))12)(12(-+; (5))82(23-⋅.化简:(1)2095⨯; (2)8612⨯; (3)2)323(-;(4)2)132(-; (5))32)(31(-+.﹡1.化简:(1)250580⨯-⨯; (2))25)(51(-+;(3)2)313(-; (4)10405104+; (5))82(2+.﹡2.一个直角三角形的两条直角边的长分别是cm 5和cm 45,求这个直角三角形的面积.化简:(1)45; (2)27; (3)54; (4)98; (5)16125. (1)50; (2)348-; (3)515-. .﹡例8 化简:(1)81; (2)278; (3)2.1; (4)62⨯. 化简:(1)128; (2)9000; (3)48122+;(4)325092-+; (5)5145203--; (6)3223+.。

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试题(含答案解析)

一、选择题1.下列计算正确的是( )A +=B =C 6=-D 1-= 2.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 3.一个正方形的面积为29,则它的边长应在( ) A .3到4之间 B .4到5之间 C .5到6之间 D .6到7之间 4.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,42max -=.则方程{},34max x x x -=+的解为( )A .-1B .-2C .-1或-2D .1或25.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=6. )A .8 B .4C D 7.下列计算正确的是( ). A .()()22a b a b b a +-=- B .224x y xy +=C .()235a a -=-D .=8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 9.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmB CD .3dm10( )A .1与2之间B .2与3之间C .3与4之间D .5与6之间 11.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9 B .3 C .1D .81 12.下列对于二次根式的计算正确的是( )A =B .2C .2=D .=二、填空题13.a b -=________.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.已知6y x =+,当x 分别取1,2,3,…,2021时,所对应y 值的总和是__.16.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 17.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.已知2a =+,2b =,则227a b ++的算术平方根是_____.20.已知2x =,2y =+x 2+y 2﹣2xy 的值为_____.三、解答题21.计算:(1)(π﹣2020)0﹣.(2.22.(3++-.23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.25.计算下列各题:(1(2)()(3)(226.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.2.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.3.C解析:C一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.A解析:A【分析】利用题中的新定义化简已知方程,求解即可.【详解】①当0x >时,即x x >-,此时max }{34x x x x -==+,, 解得2x =-,不符合题意舍去. ②当0x <时,即x x <-,此时max }{34x x x x -=-=+,, 解得1x =-且符合题意.故选:A .【点睛】此题考查了新定义下实数的运算以及解一元一次方程,运用分类讨论的思想是解答本题的关键. 5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a 2−b 2,故A 错误;B.2x 与2y 不是同类项,不能合并,故B 错误;C.原式=a 6,故C 错误;D.原式=D 正确;故选:D .【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a ,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a =,解得:a =∴dm .故选:B .【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键. 10.C解析:C【分析】【详解】解:<34∴<<,故选:C .【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可.【详解】解:由题意得:2120a a --+=,解得:1a =-,213a -=-,23a -+=,则这个正数为9.故选:A .【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数. 12.C解析:C【分析】利用二次根式的加减和乘除运算法则进行计算即可.【详解】解:=B.=C.2=,故原题计算正确;D.10=,故原题计算错误.故选:C【点睛】此题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解答此题的关键.二、填空题13.2【分析】根据最简二次根式同类二次根式的性质计算即可得到a 和b 的值;再将a 和b 的值代入到代数式通过计算即可得到答案【详解】根据题意得:∴∵最简二次根式与是同类最简二次根式∴∴∴故答案为:2【点睛】本 解析:2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a 和b 的值代入到代数式,通过计算即可得到答案.【详解】根据题意得:12a -=∴3a =∵与∴252b b +=-∴1b =∴312a b -=-=故答案为:2.【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键.15.4054【分析】先化简二次根式求出y 的表达式再将x 的取值依次代入然后求和即可得【详解】解:当时当时则所求的总和为故答案为:【点睛】本题考查了二次根式的化简求值绝对值运算等知识点掌握二次根式的化简方法 解析:4054【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】解:646y x x x =+=--+当4x <时,46102y x x x =--+=-当4x ≥时,462y x x =--+=则所求的总和为(1021)(1022)(1023)222-⨯+-⨯+-⨯++++86422018=+++⨯4054=故答案为:4054.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.16.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键 解析:20212022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=11111111202111223342021202220222022-+-+-++-=-=. 故答案为:20212022. 【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键. 17.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=,∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】 本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=)2+)2+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+ =2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键. 22.10-【分析】根据二次根式运算法则计算即可.【详解】解:原式=2253+-5924=+-1424=-10=-.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运用算法则进行计算,注意:平方差公式的运用.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.25.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

(必考题)初中数学八年级数学上册第二单元《实数》测试(有答案解析)(1)

(必考题)初中数学八年级数学上册第二单元《实数》测试(有答案解析)(1)

一、选择题 1.16的平方根是( ) A .4 B .4± C .2± D .-2 2.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 3.81的平方根是( )A .81B .9-C .9D .9±4.下列计算中,正确的是( )A .()()()22253532-=-= B .()3710101010+⨯=⨯= C .()()a b a c a bc +-=- D .()()3232321+-=-= 5.下列各式中,正确的是( ) A .93±= B .93=± C .()233-=- D .()233-=6.若a 化成最简二次根式后,能与2合并,则a 的值不可以是( )A .12B .8C .18D .287.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b8.1x -x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤19.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 10.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③3323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个11.下列计算正确的是( )A +=B =C 4=D 3=- 12.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±5二、填空题13.+|2x ﹣y |=0,那么x ﹣y =_____.14.对于任意非零实数a ,b ,定义运算“※”如下:“a b ※”a b ab-=,则12233420202021++++※※※※的值为__________.15.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.16.的整数部分a=_____,小数部分b=__________.17.已知3y x =+,当x 分别取1,2,3,,2020⋯时,所对应的y 值的总和是_________.18.在实数π,87,0中,无理数的个数是________个.19.若代数式x 有意义,则实数x 的取值范围是_________. 20.已知:15-=m m,则221m m -=_______. 三、解答题21.(123-+.(2)先化简,再求值:()()()2212352x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭,其中4x =,2y =.22.设a 为正整数,对于一个四位正整数,若千位与百位的数字之和等于a ,十位与个位的数字之和等于1a -,则称这样的数为“a 级收缩数”.例如在正整数2634中,因为268+=,34781+==-,所以2634是“8级收缩数”,其中8a =.(1)直接写出最小的“6级收缩数”和最大“7级收缩数”;(2)若一个“6级收缩数”的千位数字与十位数字之积为6,求这个“6级收缩数”.⋅=,且c是有理数,则称a与b是关于c的共23.定义:若两个二次根式a、b满足a b c轭二次根式.(1)若a4的共轭二次根式,则a=;(2)若2+4+是关于2的共轭二次根式,求m的值.24.计算.(1(2.25.(1)计算:;).(2)解方程:①4(x-1)2-9 =0;②8x3+125=0.26.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵4=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.2.D解析:D【分析】根据2ndf键是功能转换键列算式,然后解答即可.【详解】1==.4故选:D.【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf键的功能.3.D解析:D【分析】根据平方根的定义求解.【详解】∵2±=81,(9)∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.4.D解析:D【分析】根据二次根式的性质逐一判断即可;【详解】222=-=-A错误;8=B错误;=a C错误;=-=,故D正确;321故答案选D.【点睛】本题主要考查了二次根式的性质,结合平方差公式和完全平方公式计算是解题的关键.5.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意;故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.6.D解析:D 【分析】是否为同类二次根式即可. 【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D .【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.7.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b +=-a-b+a=-b ,故选:A .【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.8.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;③=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.11.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;D3=,故D错误;故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.12.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.二、填空题13.﹣3【分析】先根据非负数的性质列出方程组求出xy的值进而可求出x﹣y 的值【详解】解:∵+|2x﹣y|=0∴解得所以x﹣y=3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.14.【分析】根据已知将原式变形进而计算得出答案【详解】解:根据题意∵∴……∴=====故答案为:【点睛】此题主要考查了实数运算正确将原式变形是解题关键 解析:20202021-【分析】根据已知将原式变形进而计算得出答案.【详解】解:根据题意, ∵“a b ※”a b ab-=, ∴12※121(1)122-==--⨯,231123()2323-==--⨯※,……, ∴12233420202021++++※※※※ =122320202021122320202021---+++⨯⨯⨯ =11111(1)()()22320202021------- =111111(1)223320202021--+-+-+- =1(1)2021-- =20202021-. 故答案为:20202021-. 【点睛】此题主要考查了实数运算,正确将原式变形是解题关键. 15.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 16.【分析】将已知式子分母有理数后先估算出的大小即可得到已知式子的整数部分与小数部分【详解】解:∵4<7<9∴2<<3即2+3<<3+3∴即实数的整数部分是则小数部分为故答案为:【点睛】本题考查了分母有解析:2 【分析】的大小即可得到已知式子的整数部分与小数部分.【详解】==, ∵4<7<9,∴2<3,即2+3<3+<3+3,∴532<<的整数部分是2a =,则小数部分为31222b =-=.故答案为:2,【点睛】本题考查了分母有理化,以及估算无理数的大小,熟练掌握估算无理数大小的方法是解题的关键.17.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.18.【分析】无理数就是无限不循环小数理解无理数的概念一定要同时理解有理数的概念有理数是整数与分数的统称即有限小数和无限循环小数是有理数而无限不循环小数是无理数由此即可判定选择项【详解】由无理数的定义可知 解析:2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】由无理数的定义可知,π故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±【点睛】本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)1-+;(2)44x y -,8.【分析】(1)先计算算术平方根和立方根,在加减即可;(2)先按整式运算法则化简,再代入求值.【详解】解:(1)原式233(32)=-+-+1=-+(2)原式()222221443352x xy y x xy xy y y x =++--+--⎛⎫⎡⎤ ⎪⎣⎦⎝÷⎭-()222221443252x xy y x xy y y x ⎛⎫=++--+-÷- ⎪⎝⎭()2122442x xy x x y ⎛⎫=-+÷-=- ⎪⎝⎭把4x =代入,原式44428=⨯-⨯=.【点睛】本题考查了立方根和算术平方根,整式的化简求值,解题关键是熟练运用二次根式和整式运算法则进行计算.22.(1)最小的“6级收缩数”为:1505,最大的“7级收缩数”为:7060;(2)这个“6级收缩数”为:2432、3323或6014【分析】(1)根据“a 级收缩数”的定义可写出所有的可能性,进而即可确定最小的“6级收缩数”以及最大的“7级收缩数”;(2)在第(1)问的基础上,结合条件“一个“6级收缩数”的千位数字与十位数字之积为6”将所拥有的可能性进行分类讨论,即可得到答案.【详解】解:(1)∵千位与百位的数字之和等于6,十位与个位的数字之和等于5∴千位与百位上的数字可能是0和6、1和5、2和4、3和3、4和2、5和1、6和0,十位与个位上的数字可能是0和5、1和4、2和3、3和2、4和1、5和0∴最小的“6级收缩数”为:1505;同理,∵千位与百位的数字之和等于7,十位与个位的数字之和等于6∴最大的“7级收缩数”为:7060.(2)设这个“6级收缩数”千位上的数字为x ,十位上的数字为y ,则这个“6级收缩数”百位上的数字为6x -,个位上的数字为615y y --=-∵09x ≤<,069x ≤-≤,09y ≤≤,059y ≤-≤∴06x ≤<,05y ≤≤∵6xy =∴当1x =时,6y =,不合题意舍去;当2x =时,3y =,符合题意,此时,百位是4,个位是2,为2432;当3x =时,2y =,符合题意,此时,百位是3,个位是3,为3323;当4x =时,32y =,不合题意舍去; 当5x =时,65y =,不合题意舍去; 当6x =时,1y =,符合题意,此时,百位是0,个位是4,为6014∴这个“6级收缩数”为:2432、3323或6014.【点睛】本题考查了新定义问题以及分类讨论的数学思想,认真审题是解题的关键.23.(1)2)2m =-【分析】(1)根据共轭二次根式的定义列等式可得a 的值;(2)根据共轭二次根式的定义列等式可得m 的值.【详解】解:(1)a 2是关于4的共轭二次根式,4=,a ∴==(2)23+与4+是关于2的共轭二次根式,(2)2∴++=,4∴+==4=-2m ∴=-.【点睛】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.24.(1)2)【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并;(2)先把二次根式化为最简二次根式,然后合并即可.【详解】解:(1=﹣=(2)原式==【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;【详解】解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.26.-4【分析】利用立方根的定义、二次根式的乘法法则及二次根式的性质进行化简,再合并化简结果即可.【详解】=-+--1342=-.4【点睛】此题考查了实数的混合运算,掌握立方根的定义、二次根式的乘法法则以及二次根式的性质是解题的关键.。

八年级数学上册实数经典例题及习题试题

八年级数学上册实数经典例题及习题试题

卜人入州八九几市潮王学校实数经典例题及习题类型一.有关概念的识别1.下面几个数:0.23…,,3π,,,其中,无理数的个数有〔〕A、1B、2C、3D、4举一反三:【变式1】以下说法中正确的选项是〔〕A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,那么点A表示的数是〔〕A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,那么以下结论正确的选项是〔〕A. B.C. D.举一反三:【变式1】1〕5的算术平方根是__________;平方根是__________.2〕-27立方根是__________.3〕___________,___________,___________.【变式2】求以下各式中的〔1〕〔2〕〔3〕类型三.数形结合3.点A在数轴上表示的数为,点B在数轴上表示的数为,那么A,B两点的间隔为______ [变式2]实数、、在数轴上的位置如下列图:化简类型四.实数绝对值的应用4.化简以下各式:(1)||(2)|π-42|(3)|-|(4)|x-|x-3||(x≤3)(5)|x2+6x+10|举一反三:【变式1】化简:类型五.实数非负性的应用5.:=0,务实数a,b的值。

举一反三:【变式1】(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

【变式2】那么a+b-c的值是___________类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

〔4个长方形拼图时不重叠〕〔1〕计算中间的小正方形的面积,聪明的你能发现什么?〔2〕当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.类型七.易错题7.判断以下说法是否正确〔1〕的算术平方根是-3;〔2〕的平方根是±15.〔3〕当x=0或者2时,〔4〕是分数类型八.引申进步8.〔1〕的整数局部为a,小数局部为b,求a2-b2的值.〔2〕把以下无限循环小数化成分数:①②③学习成果测评:A组〔根底〕一、细心选一选1.以下各式中正确的选项是〔〕A. B. C. D.2.的平方根是()A.4B. C.2D.3.以下说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。

八年级(上)数学第二章:“实数”专题训练之计算

八年级(上)数学第二章:“实数”专题训练之计算

八年级(上)数学第二章:“实数”专题训练之计算姓名:___________一、计算题(共39小题)1.计算:+|-2|+-(-).2.已知实数x,y满足关系式+|y2-1|=0.(1)求x,y的值;(2)判断是有理数还是无理数?并说明理由.3.计算:.4.(1)解方程:(x+1)2=64;(2)计算:(-2)3×+×()2-.5.已知直角三角形两边x,y的长满足+|y2-5y+6|=0,求第三边的长.6.已知x-2的平方根是±2,5y+32的立方根是-2.(1)求x3+y3的平方根.(2)计算:|2-的值.7.已知一个数的平方根是3a+2和a+10,求a的值.8.计算:.9.已知2x-y的算术平方根为4,-2是y的立方根,求-2xy的平方根.10.已知:x3+3=-,求x.11.计算:(1)+-(2)|-2|-(-)-|-|12.计算:|-2|+(4-π)0-+(-1)-2017.13.计算:(1)-12014-×(-)-2+(π-)0-|-4|+(2)(a2b-2ab2-b3)÷b-(a+b)(a-b).14.计算:(1)(π-2013)0-()-2+|-4|;(2)4(a+2)(a+1)-7(a+3)(a-3).15.计算:|-2|+-(-1)2017.16.(1)化简:(-x3)2+(2x2)3+(x-3)-2 (2)计算:-+(-1)0.17.计算:(1)÷-×+(2)(3+2)(3-2)-(-)2.18.计算:(1)3-(+)(2)(1-2)(1+2)-(-1)2.19.计算:(1)(+)-(-)(2)(+)÷.20.计算:.21.计算:(1)-(+)÷×(2)(-4)-(3-2)(3)(3+)(3-)-(-1)2 (4)(-+1)(-1)-+.22.计算:2×.23.计算:(1)-2(2)(3-2)2 (3)+5 (4)(+)×-2.24.计算:(1)(2)()()-.25.(1)÷-×+(2)先化简再求值:•(x-1),其中x=+1.26.计算:(1)(2).27.计算:.28.计算:(1)(2).29.若+2=b+2,求a+b的平方根.30.计算:(1)-+(2)(-)²-(-)(+)31.(1)计算:(-)-(+);(2)计算(2-)2+(+2)÷.32.计算:-()-1-+|-2| 33.计算:(-)2+(+3)(-3).34.计算:(1)--4(2)×+÷-.35.计算()-(+) 36.计算:(-1)101+(π-3)0+()-1-.37.计算:(1)(2).38计算:(1)5+;(2)÷×.答案1.【答案】解:原式=-2+2-+3+=3.2.【答案】解:(1)由题意,得,解得:;(2)当x=2,y=1时,=,是无理数.当x=2,y=-1时,==2,是有理数.3.【答案】解:,=,=,=.4.【答案】解:(1)∵(x+1)2=64,∴x+1=±8,当x+1=8时,x=7;当x+1=-8时,x=-9.(2)(-2)3×+×()2-.=(-8)×4+(-4)×-3=-32-1-3=-365.【答案】解:由题意得,x2-4=0,y2-5y+6=0,解得,x=±2,y=2或3,当2、3是两条直角边时,第三边==,当2、2是两条直角边时,第三边==2,当2是直角边,3是斜边时,第三边==.6.【答案】解:(1)由题意得:x-2=4,5y+32=-8,解得:x=6,y=-8,则原式=216-512=-296,无平方根;(2)原式=|2-|-|+2|+=-2--2+=-3.7.【答案】解:根据题意得:3a+2+a+10=0,移项合并得:4a=-12,解得:a=-3.8.【答案】解:原式=3+3-8-5=-7.9.【答案】解:∵2x-y的算术平方根为4,-2是y的立方根,∴2x-y=16,y=-8,解得:x=4,则-2xy=64,64的平方根是±8.10.【答案】解:方程整理得:x3=-,开立方得:x=-.11.【答案】解:(1)原式=8-3-7=-2;(2)原式=2--+-=2-2.12.【答案】解:|-2|+(4-π)0-+(-1)-2017=2+1-2-1=013.【答案】解:(1)原式=-1-3×4+1-4+3=-1-12+1-4+3=-13;(2)原式=a2-2ab-b2-a2+b2=-2ab.14.【答案】解:原式=-4=-215.【答案】解:(1)原式=1-9+4=-4;(2)原式=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.16.【答案】解:原式=2-2+1=1.17.【答案】解:(1)原式=x6+8x6+x6=10x6;(2)原式=-2+1=1-.18.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=18-12-(3-2+2)=6-5+2=1+2.19.【答案】解:(1)原式=3-2-=;(2)原式=1-12-(3-2+1)=-11-4+2=-15+2.20.【答案】解:(1)原式=5+3-3+2=2+5;(2)原式=(4+)÷2=2+.21.【答案】解:,=6-3---4,=6-4-(+)-3,=2-4-3,=-2-3,22.【答案】解:(1)原式=-(+)××=-(+)×=-1-=-1;(2)原式=4--+=3;(3)原式=9-5-(3-2+1)=4-4+2=2;(4)原式=-(3-2+1)-3-(+2)=-4+2-3--2=2--9.23.【答案】解:原式=(2××),=.24.【答案】解:(1)原式=2-=;(2)原式=18-12+4=22-12;(3)原式=+5=7+5=12;(4)原式=(4+)×-=4+1-.25.【答案】解:(1)原式=4-2+12=14;(2)原式=2-1-(3-4+4)=1-3+4-4=4-6.26.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=•(x-1)=,当x=+1时,原式==.27.【答案】解:(1)原式=-+2=4-+2=4+;(2)原式=5-++1=6+.28.【答案】解:原式=÷×3=××3=9.29.【答案】解:(1)原式=2-+3--1+-2=;(2)原式=[(2-)+][(2-)-]=(2-)2-()2=24-12+3-2=25-12.30.【答案】解:+2=b+2,a-5≥0,10-2a≥0,a=5,b+2=0b=-2,a+b=5+(-2)=3.所以a+b的平方根是±.31.【答案】解:(1)原式=-+=;(2)原式=12-+18-(6-5)=30--1=29-.32.【答案】解:(1)原式=2---=- ;(2)原式=12-12+6++2=18-12+3+2=18-7.33.【答案】解:原式=2-4-+2-=-2.34.【答案】解:原式=3-2+2+5-9 =1-2.35.【答案】解:(1)原式=4-5-=-2;(2)原式=+-4=2+2-4=2-2.36.【答案】解:原式=2---=- .37.【答案】解:原式=-1+1+2-(-1)=3-.38.【答案】解:(1)原式===;(2)原式=== .。

专题14-12 《实数》计算题(专项练习)(基础篇100题)-2021-2022学年八年级数学上册

专题14-12 《实数》计算题(专项练习)(基础篇100题)-2021-2022学年八年级数学上册

专题14.12 《实数》计算题(专项练习)(基础篇100题)1.计算:2.计算:(π﹣3.14)0(﹣1)2020﹣(﹣12)﹣1. 34.计算:21|2|⎛-+ ⎝5.计算:120201(1)3-⎛⎫-+ ⎪⎝⎭6262--.7.计算8.计算:0|1|(1)π---9.计算:|-2|10.计算:21||2-11.()20211--12.计算:20(2)|3|(6)----.13.计算:0( 3.14)π-+14.计算(12|--; (225|2-.1501)|3|--16.计算:0213+33⎛⎫--- ⎪⎝⎭.17.计算:()0223 3.14π----.18.计算:()()2222-. 19.计算:(1)()23-+(22020210.2122.计算:(1(2))32. 23.计算(1(2)24.计算题:(1(2)2112524⎡⎤⎛⎫⎛⎫-⨯-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25.计算:()232---.26.计算:())0222--+-+.27.计算:)10113-⎛⎫+ ⎪⎝⎭28.(1π-(2)解方程:()38127x +=29.求下列各式中的x 的值:(1)2490x -=(2)()3164x -=30.计算:22020(5)(1)--.31.计算:(12(2)(23233.计算:(1)2341132⎛⎫--+- ⎪⎝⎭;(2)904056384572.5︒︒︒︒''-+- 34.计算(10|2|(2021)π-+(2)2(3(1++35()10132π-⎛⎫+- ⎪⎝⎭. 36.计算:(1)43(6)-+--(2)2(1)42(1)--++-37123-⎛⎫-+ ⎪⎝⎭ 38.计算:(1(2)39.(1)计算0212)()2-+; (2)已知2824x =,求x 的值.40.计算:(1) (2)(2-41.计算(1(2)1|42.计算:(1(2)1)(343.计算:2)44)21 45.计算:1031(2)|3|93π-⎛⎫⎛⎫+-+-- ⎪ ⎪⎝⎭⎝⎭46.求下列各式中的x 值:(1)169x 2=144;(2)(x -2)2-36=0.47.计算:1).48+ .49.计算:11|2|1)2-⎛⎫-+- ⎪⎝⎭. 50.计算:201332-⎛⎫+- ⎪⎝⎭.51.化简:(1(2(3(452.化简求值:(1(2)23)3)+.53.若a ,b+a +a b 的值.54.计算:()225243⎛⎫--+÷-⎪⎝⎭ 55.计算:201811-+ 56.先化简,再求值:22()()()2x y x y x y x +++--,其中xy = 5758.计算下列各题:(112(2)计算:6×(π﹣2019)0﹣|5|﹣(12)﹣259.计算:(1)(2)2×(1-1)2;60.先化简,再求值:()()()()22412121x x x x x ---++-,其中x =61的矩形的面积,若该三角形的62.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)0a -=.63.64.计算:22()()19(6)2-+--+-÷.65.计算+2﹣ 66.已知x ﹣2的一个平方根是﹣2,2x +y ﹣1的立方根是3,求x +y 的算术平方根.67168 69.计算:(2)|1+702 .71.计算:-.7221+ 73.计算:(1(201211()32---74.计算:()2301(2018)312π-⎛⎫-+--+- ⎪⎝⎭.75.计算:76.求值: (1)已知(x ﹣1)2=4,求x 的值;(22+)77.计算:-+÷78.求下列各式的值:(1)(2)-32+3| 79.化简求值:2(23)(23)(2)4(3)x x x x +--+++,其中x =80.解方程:(1)216(1)10x +-=;(2)解方程:38(1)270x -+=;(33-;(4(21.-- 81.计算:(1);(2)22-1)0.82.计算:101()1)2sin 4523-++︒+.83.计算:2(2)1-841-.85.化简:(211)2)+.86.计算:871.88.计算:(1)(-2-1)2;89.化简下列各式:(1);;(3).90.计算:|﹣2|(﹣1)×(﹣3)91()11--.92.计算:()2022π+---. 93.求下列各式中x 的值.(1)225312x +=;(2)()331240x ++=;9495()20201-962.97.计算:|﹣(﹣1)2.98(π﹣3)0﹣23|992. 100.计算:(1)+ 2|(2参考答案1.【分析】先化简二次根式,再计算二次根式的加减运算即可得.解:原式==【点拨】本题考查了二次根式的加减运算,熟练掌握二次根式的运算法则解题关键.2.7【分析】直接利用指数幂的运算性质、算术平方根的性质化简得出答案.解:(π﹣3.14)0(﹣1)2020﹣(﹣12)﹣1=1+3+1+2=7【点拨】本题考查了实数的运算,包括0指数和负指数、算术平方根、乘方,解题关键是准确化简各数,再进行计算.3.1【分析】先算二次根式的乘除法,再算减法,即可求解.解:原式=54-=1.【点拨】本题主要考查二次根式的混合运算,掌握二次根式的运算法则,是解题的关键.4.【分析】运用一个数的平方的相反数,绝对值的计算,三次方根的概念,算术平方根的概念进行计算即可解:原式=1 12(3)3⎛⎫-+-⨯-⎪⎝⎭=11=【点拨】本题考查了个数的平方的相反数,绝对值的计算,三次方根的概念,算术平方根的概念,实数的混合运算,注意符号的正负是解题的关键.5.2.【分析】()202011,-= 1133-⎛⎫= ⎪⎝⎭, ,代入求解即可.解:原式132=+-2=.【点拨】本题考查负数的偶数次幂运算、有理数的负指数幂运算、立方根的运算,根据相关运算原则计算是解题关键.6.4.,-6=6,计算出结果.解:原式2644=+-=故答案为:4.【点拨】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 7.7.【分析】先计算立方根、算术平方根,再计算有理数的加减即可得.解:原式27=-+52=+,7=.【点拨】本题考查了立方根、算术平方根等知识点,熟练掌握各定义和运算法则是解题关键.8.【分析】直接利用绝对值的性质,零指数幂的性质和二次根式的性质分别化简得出答案.解:原式=1-1+=【点拨】本题考查实数运算,正确利用绝对值的性质,零指数幂的性质和二次根式的性质化简求出各数是解题关键.9.【分析】先算绝对值,化简二次根式,再算加减法,即可求解.解:原式=2+【点拨】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.10.3.【分析】根据二次根式的运算法则即可求出答案.解:原式=1133 22+-=.【点拨】本题考查实数的运算,熟练运用运算法则是解题的关键.11.5-【分析】直接利用二次根式的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.解:原式131=--5=-【点拨】此题主要考查了实数运算,正确化简各数是解题关键.12.6【分析】根据有理数的乘方,绝对值的意义,二次根式的乘法,零指数幂分别计算,再进行有理数的加减混合运算即可.解:原式4341=-++6=.【点拨】此题考查了实数的混合运算,根据有理数的乘方,绝对值的意义,二次根式的乘法,零指数幂,计算出各个项的值是本题的关键.13.-4【分析】利用零指数幂的性质以及立方根的性质和二次根式的性质分别化简,即可;解:原式=1﹣3﹣2=﹣4;【点拨】本题考查实数的混合运算,关键在熟练掌握立方根和二次根式的最简化形式;14.(1(2)8【分析】(1)直接利用二次根式的性质以及绝对值的性质分别化简得出答案;(2)直接利用绝对值的性质、二次根式的性质、立方根的性质、绝对值的性质分别化简得出答案.解:(1﹣(3+2﹣=5﹣(2)原式=5+522﹣(-52)=8【点拨】此题主要考查了实数运算,二次根式的性质,正确化简各数是解题关键. 15.1【分析】任何非零实数的零次幂为1,负数的绝对值等于它的相反数,9的算术平方根为3,然后进行有理数的加减法计算.01)|3|--=3+1-3=1.【点拨】本题主要考查了实数的运算.掌握熟练掌握运算法则是解题关键. 16.8【分析】根据绝对值,二次根式化简,零指数幂,乘方4个考点逐一计算,然后根据实数的运算法则求得计算结果.解:原式=3﹣3﹣1+9=8.【点拨】本题考查了绝对值,二次根式化简,零指数幂,乘方,实数的混合运算;关键在于掌握好相关的基础知识.17.2【分析】根据平方,绝对值,零指数幂,二次根式化简4个考点逐一计算,然后根据实数运算法则进行计算即可得出答案.解:原式=-4+3-1= 2.【点拨】本题考查了含有乘方实数的加减乘除混合运算,解题的关键是熟悉掌握运算法则,以及运算顺序.18.【分析】利用平方差公式计算即可.解:()()2222-=()()()()2222⎡⎤⎡⎤+-⎣⎦⎣⎦=4⨯=【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.19.(1)7+(2【分析】(1)直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则化简得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.解:(1)原式92=+7=+(2)原式==【点拨】本题主要考查了立方根的性质、绝对值的性质、有理数的乘方运算法则、二次根式的混合运算法则,熟练掌握这些运算法则是解题的关键.20.0【分析】直接利用立方根的性质、二次根式的性质、零指数幂的性质分别化简,然后再进行加减计算即可.解:原式=﹣2+3﹣1=0.【点拨】本题考查了实数的运算、立方根、二次根式、零指数幂等知识,正确化简各数是解题的关键.21.3【分析】根据二次根式的乘法法则运算.=3=3.【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式加减运算,再合并即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性,选择恰当的解题途径,往往能事半功倍.22.(1);(21.7【分析】(1)先分别对二次根式化简,再相加减即可;(2)先利用多项式的乘法计算,再合并即可.解:(1)原式-(2)原式=561.【点拨】本题考查二次根式的混合运算.(1)中能正确对二次根式化简是解题关键;(2)中正确运用多项式乘多项式法则计算是解题关键.23.(1(2)0【分析】(1)首先化简二次根式,然后再合并同类二次根式即可;(2)利用平方差计算乘法,再计算加减即可.解:(1)原式=(2)原式222=--=5﹣3﹣2=0.【点拨】本题考查的是二次根式的化简,二次根式的混合运算,平方差公式的运用,掌握二次根式的混合运算是解题的关键.24.(1)10;(2) 3.-【分析】(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案.解:(110,(2)2112524⎡⎤⎛⎫⎛⎫-⨯-÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ ()12544⎛⎫=-⨯⨯- ⎪⎝⎭ ()85444⎛⎫=-⨯- ⎪⎝⎭()3434=⨯-=- 【点拨】本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键.25.7【分析】先算平方、绝对值、二次根式化简,再计算加减法即可求解.解:原式=9-4+2=7.【点拨】本题考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方、二次根式、绝对值等知识点的运算.26.5【分析】先用去括号、绝对值、零次幂的相关知识化简,然后计算即可.解:原式=2215++=.【点拨】本题考查了实数的综合运算能力,解决此类题的关键在于熟练掌握零指数幂、绝对值、去括号等知识点.27.2+【分析】先计算零次幂,负整数指数幂,二次根式的化简,再计算加减运算,从而可得答案.解:原式132=+-+=2+【点拨】本题考查的是零次幂,负整数指数幂,二次根式的化简,合并同类二次根式,掌握以上知识是解题的关键.28.(1)5π+;(2)12x =. 【分析】(1)先计算开平方,开立方,绝对值,再依次计算加减即可;(2)等式两边同时除以8,再让方程两边同时开立方,即可求解.解:(1)原式()23π=--+,23π=++,5π=+;(2)()32718x +=, 312x +=, 解得:12x =. 【点拨】本题考查了实数的运算、平方根、立方根、绝对值的意义、利用立方根解方程,解题的关键是熟练掌握以上知识点.29.(1)32x =±;(2)5x = 【分析】(1) 移项后两边同时开平方即可求解;(2)开立方,化为一元一次方程即可求解.解:()21490x -= 解:249x =294x =.3x=±2()()3x-=2164x-=解:14x=5【点拨】本题考查了学生开平方、立方的能力,也考查了解方程的方法.30.22【分析】按照平方、算术平方根、乘方法则进行计算即可.-+解:原式=2541=22.【点拨】本题考查了平方、算术平方根、乘方的运算,解题关键是熟练掌握相关法则并准确进行计算.31.(1)5;(2)1【分析】(1)根据平方根和立方根的概念求解即可;(2)根据平方根和立方根的概念求解即可.=-+=;解:(1)原式6325=--=.(2)原式6321【点拨】本题考查平方根和立方根的概念,属于基础题,计算过程中细心即可.32.【分析】先利用二次根式的乘除法则运算,然后合并即可.⨯解:原式22==故答案为:【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.33.(1)10;(2)1519'︒【分析】(1)根据有理数的混合运算法则和算术平方根的运算法则进行计算; (2)根据角度的运算法则进行计算.解:(1)原式1142711627104=--÷+=--+=; (2)原式89604056384572301519'''''=︒-︒+︒-︒=︒.【点拨】本题考查有理数的混合运算,算术平方根的计算,角度的计算,解题的关键是掌握这些计算方法.34.(1)1;(2)10+【分析】(1)原式利用二次根式的化简,绝对值以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.解:(10|2(2021)π-+=21=1;(2)2(3(1++=2129++-=10+【点拨】本题考查了二次根式的混合运算,零指数幂,熟练掌握运算法则是解题的关键. 35.12- 【分析】先将每一部分化简,然后再合并计算即可求解解:原式32212=--+ 12=- 【点拨】本题考查了二次根式、负指数幂、立方根、零指数幂四个考点,解题的关键是熟练掌握这四部分内容,能准确对每一部分进行化简36.(1)5;(2)1.【分析】(1)先把运算统一为省略加号的和的形式,再计算即可得到答案;(2)先分别计算乘方运算,算术平方根,绝对值,再进行加减运算即可. 解:(1)43(6)-+--436=-++49=-+5=(2)2(1)42(1)--++- 13421=+-+-1=【点拨】本题考查的是有理数的加减运算,有理数的乘方,算术平方根,绝对值的含义,掌握以上知识是解题的关键.37.3【分析】分别化简各项,再作加减法.123-⎛⎫-+ ⎪⎝⎭=32=3322- =3 【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.38.(1)(2)5【分析】(1)分别化简各项,再作加减法;(2)利用平方差公式展开,再计算.解:(1==(2)=(22-=83-=5 【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.39.(1)7;(2)x =【分析】(1)利用算术平方根的定义,零指数幂,负整数指数幂进行化简,然后再计算加法即可;(2)方程整理后,利用平方根定义开方即可求出答案.解:(1)原式214=++7=;(2)方程整理得:23x =,开方得:x =.【点拨】本题考查了实数的运算,算术平方根,平方根,零指数幂,负整数指数幂,掌握运算法则是解题的关键.40.(1)0;(2)-5【分析】(1)分别化简各项,再相减;(2)先算括号和乘法,再算加减法.解:(1)==0;(2)(2-=436--=-5【点拨】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.41.(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.解:(1,353=-+,27=.2(2)1|,=,1=.1【点拨】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.42.(1)-(2)2-.2【分析】(1)先把二次根式华为最简二次根式,然后合并即可;(2)先利用多项式乘多项式展开,然后合并即可.解:(1,=,=;2(2)1)(3=+53=-2.【点拨】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往事半功倍.43.12-【分析】根据单项式乘以多项式的运算法则把括号展开,再化简,然后合并同类项即可解:原式15=-153=-12=-【点拨】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.44.12-【分析】由题意利用二次根式的性质结合完全平方差公式进行运算即可得出答案.)21()31=-84=+-12=-【点拨】本题考查二次根式的运算,熟练掌握算术平方根化简以及完全平方差公式是解题的关键.45.3【分析】先分别化简各项,再作加减法.解:1031(2)|3|93π-⎛⎫⎛⎫+-+--⎪ ⎪⎝⎭⎝⎭=9831-+-=3【点拨】本题考查了实数的混合运算,解题的关键是掌握运算法则和运算顺序.46.(1)x=±1213;(2)x=8或x=-4.【解析】【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为:(1)x=±1213;(2)x=8或x=-4.【点拨】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.47.(1)(2)17【解析】【分析】(1)先对二次根式化简,然后进行减法运算;(2)运用平方差公式进行计算.解:解:(1)原式3.(2)原式2-12=18-1=17.【点拨】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.48.8-解:试题分析:第一项运用乘法分配律进行计算;第二项运用平方差公式进行计算即可. 试题解析:原式=5-+15-12=8-49.【分析】利用乘法公式以及负指数幂的性质和绝对值的性质分别化简进而得出答案.解:11|2|1)2-⎛⎫+- ⎪⎝⎭22(51)=+--2251=+-+=故答案为【点拨】本题考查二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.也考查了负整数指数幂.50.【解析】【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.解:原式143=++=【点拨】此题主要考查了实数运算,正确化简各数是解题关键.51.(1);(2);(3;(4. 【解析】试题分析:(1化简;(2(3(4试题解析:(1==;(2=(3==;(4552.(1(2)16- 【解析】分析:(1)根据二次根式的性质,化简各二次根式,然后合并同类二次根式即可; (2)利用完全平方公式和平方差公式化简,然后合并即可.详解:(123=53(2)))2333+=5--9=16-【点拨】:此题主要考查了二次根式的混合运算,利用二次根式的性质,乘法公式进行计算,关键是利用二次根式的性质化简和最简二次根式的、同类二次根式的确定.53.1.解:试题分析:首先化简各式,进而得出,a b 的值,即可得出答案.== 因为a b 、都为有理数,所以2104a b ==,, 所以021 1.4a b ⎛⎫== ⎪⎝⎭ 54.0【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可.解:原式=5-3+4-6=0【点拨】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.55.【解析】分析:收下根据立方根、算术平方根、绝对值、立方根的性质求出各式的值,然后进行求和得出答案.详解:原式 15123=-++-=.【点拨】:本题主要考查的是实数的计算,属于基础问题.解决这个问题的核心就是要明确各种计算法则.56.2xy ;【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.解:原式2222222x xy y x y x =+++--2xy =,将x =y =原式2==故答案为:【点拨】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.572【分析】先对二次根式进行化简,然后再进行二次根式的加减运算.解:原式=+【点拨】本题主要考查二次根式的加减,熟练掌握二次根式的加减运算是解题的关键.58.(1)4(2)2【解析】【分析】(1)先进行二次根式的乘法运算、乘方计算再进行减法计算即可.(2)先计算乘方,然后计算计算乘法、去绝对值,最后从左向右依次计算即可.解:(11﹣)==4;(2)原式=﹣4=2【点拨】本题考查了实数的混合运算,熟练掌握运算法则是正确解题的关键59.(1)-1;(2)2;-4【分析】根据二次根式的混合运算法则先去括号,再进行乘除后加减依次进行计算即可.解:解(1=-1.(2)2×(1=2-=2.-1)2=32-(2-2-=9-5-1=(9-5-3-2-2=3-(7-)-4.【点拨】此题主要考查二次根式的混合运算,解题的关键是熟知二次根式的运算法则. 60.2x 3+,5.【分析】先利用整式的乘除与加减运算化简代数式,再代入求值即可.解:()()()()22412121x x x x x ---++- 222444441x x x x x =-+-++-2 3.x =+当x =2(3 5.=+=【点拨】本题考查的是整式的化简求值,二次根式的乘方运算,掌握整式加减乘除运算是解题的关键.61【分析】首先利用矩形的面积计算方法求得三角形的面积,根据三角形的面积公式:S 12=ah 列式计算即可求解.解:223==.答:这条边上的高为3. 【点拨】本题考查了二次根式的混合运算,掌握矩形和三角形的面积计算方法是解决问题的关键.62.1a b-+,-1 【分析】根据平方差公式进行变形,再根据分式混合运算法则进行计算,再根据平方差公式的性质和二次根式的性质进行求解,即可得到答案. 解:原式2()2()()()a b a a b a b a a b a b-=-+--+ 12a b a b=-++ 1a b =-+,∵a ,b 满足2(2)0a -=,∵20a -=,10b +=,2a =,1b =-,原式1121=-=--. 【点拨】本题考查平方差公式和二次根式的性质,解题的关键是掌握平方差公式和二次根式的性质.63.1146. 【解析】【分析】将原式中的二次根式和三次根式先化简,然后按照“先乘除,后加减”的原则计算即可.=9+4-72×(-13) =13+76 =1146. 【点拨】本题二次根式、立方根的化简,及二次根式的混合运算.64.13.【分析】分别运算每一项然后再求解即可.解:22()()19(6)2-+--+-÷1693=++-13=.【点拨】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.65.(1;(2) 【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据完全平方公式和平方差公式计算,然后合并即可.解:(1)原式=(2)原式=8(53)+-=82+=6+.【点拨】本题考查了二次根式的混合运算.先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.66【分析】根据x ﹣2的一个平方根是﹣2,可以得到x 的值,根据2x +y ﹣1的立方根是3,可以得到y 的值,从而可以求得x +y 的算术平方根.解:∵x ﹣2的一个平方根是﹣2,∵x ﹣2=4,解得:x =6.∵2x +y ﹣1的立方根是3,∵2x +y ﹣1=27.∵x =6,∵y =16,∵x +y =22,∵x +y即x +y【点拨】本题考查了立方根、平方根、算术平方根,解题的关键是明确立方根、平方根、算术平方根的定义.67.103【分析】原式利用算术平方根,立方根,绝对值的代数意义,以及二次根式性质计算即可得到结果.解:原式=7-1+13=103 【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.68.0【解析】【分析】根据二次根式的混合运算的法则计算即可.解:原式=0.【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.69.(1);(2 1.【分析】(1)直接合并同类二次根式即可;(2)先根据绝对值的性质去掉绝对值符号,再合并同类二次根式即可.解:(1)原式=(3+=(211.【点拨】本题考查二次根式的加减法.70.10【分析】根据平方根运算法则、立方根运算法则及绝对值性质,进行代数式求值2=-++9322=10故答案为:10【点拨】本题考查了平方根运算法则、立方根运算法则及绝对值性质.71.【分析】先化简,然后去括号合并同类二次根式即可.解:原式=(-(=【点拨】本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再去括号合并同类二次根式即可.72.0【分析】原式第一项利用立方根的定义化简,第三项利用了平方根定义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.21+-=-231231=-+-=.【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.73.(1)(2)0【解析】【分析】(1)先算二次根式的除法和乘法,然后化成最简二次根式,再合并同类二次根式即可;(2)先化简二次根式、零次幂、负指数幂、绝对值,再合并同类二次根式即可;解:(1)原式=﹣+2=4+(2)原式=2﹣×+1﹣(﹣1)﹣2=2﹣+1﹣+1﹣2=2﹣2=0【点拨】本题考查了实数的运算,用到的知识点有二次根式的乘、除法,零指数幂和负整数指数幂,绝对值的化简,二次根式的合并,熟练掌握实数的运算法则是解答本题的关键.74.1【分析】根据零指数幂、负整数指数幂、绝对值、乘方的意义逐项化简,然后按有理数的加减法计算.解:原式=1431+--=1.【点拨】本题考查了实数的运算,熟练掌握零指数幂、负整数指数幂、绝对值、乘方的意义是解答本题的关键.75.20 3【分析】根据二次根式的乘除运算法则计算即可.解:==20 3【点拨】本题考查了二次根式的乘除运算,解题的关键是掌握运算法则.76.(1)x=3或x=﹣1;(2)2【分析】(1)根据一个数的平方根的求法,可得x﹣1=2或x﹣1=﹣2,据此求出x的值是多少即可.(22+)即可.解:(1)∵(x﹣1)2=4,∵x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1,即x的值是3或﹣1.(2)原式=2+2【点拨】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.77.2+解:试题分析:先把各二次根式化为最简二次根式,再利用多项式除以单项式的法则进行计算.试题解析:原式=((562⨯⨯==+78.(1) -1; (2) -8【分析】(1)先算立方根和算术平方根,再求差即可;(2)先分别求乘方、绝对值、算术平方根,再计算和差.解:(1)原式=2-3=-1.(2) 解:原式=-9+32=-8【点拨】本题考查了实数的混合运算,熟练掌握实数的运算顺序及立方根、算术平方根的意义是解答本题的关键.79.231x -,5【分析】利用平方差公式,完全平方公式和去括号的法则对原式进行展开化简,然后将x 解:原式=22(49)(44)412x x x x --++++=224944412x x x x ----++=231x -将x ==3×2-1=5.【点拨】本题考查了平方差公式,完全平方公式和去括号,掌握运算法则是解题关键.80.(1)53,44x x =-=-;(2)12x =-;(3)0;(4)4-. 【分析】(1)由题意先移项化简,进而开平方即可求出方程的解;(2)由题意先移项化简,进而开立方即可求出方程的解;(3)根据题意开立方、去绝对值后进而合并同类项即可;(4)根据题意开立方、开平方、去绝对值以及去括号后进而合并同类项即可.解:(1)216(1)10x +-=216(1)1x +=21(1)16x += 114x +=± 5344x x =-=-,; (2)38(1)270x -+=38(1)27x -=-327(1)8x -=- 312x -=- 12x =-;(33-235=+0=;(4(21-=-+4921=-.4【点拨】本题考查解方程以及开立方、开平方、去绝对值,熟练掌握平方根和立方根的性质进行解方程是解题的关键.81.(1)(2)(3)(4.【分析】根据二次根式的公式化简即可.解:(1) 原式-(2) 原式(3) 原式(4) 原式【点拨】本题考查二次根式的计算,注意合并同类二次根式.82.6.【解析】【分析】利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案=+++解:原式3122=426=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键83【分析】利用乘方的意义、绝对值的代数意义、立方根定义计算即可得到结果.解:原式=413-【点拨】本题考查实数的运算.84.3【分析】根据立方根与平方根的意义以及绝对值的意义计算.1=371-+=3【点拨】本题考查了实数的混合运算运算,正确理解平方根与立方根的意义是解题的关键.85.8-解:【分析】运用平方差公式和完全平方公式可求出结果.【详解】解:原式=2﹣1+3﹣=8﹣【【点拨】】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.86.2【分析】先化简二次根式,然后再进行二次根式的加减乘除运算即可.解:=2=2【点拨】本题主要考查二次根式的混合运算,熟练掌握二次根式的混合运算是解题的关键.87【分析】首先计算开方和去绝对值,然后从左向右依次计算,求出算式的值是多少即可.解:原式=3﹣1【点拨】本题综合考查了立方根、算术平方根和绝对值的运算,解决本题的关键是牢牢记住公式和法则,按规定的顺序计算即可.88.(1)12;(2)(3)(4)4【分析】根据二次根式的运算法则与整式的乘法法则依次计算即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档