正弦波逆变器设计说明
2000W正弦波逆变器说明书
★★★设备使用前,请仔细阅读使用说明书正弦波逆变器使用说明书11一、概述我公司生产的纯正弦波逆变器,可将蓄电池的直流电能逆变成额定电压输出的正弦波交流电,供用户负载使用。
本逆变器外观大方、指示直观、操作方便。
具有交流自动稳压输出、过压、欠压、过载、过热、短路、反接等完善的保护功能。
核心控制元件采用美国原装微控制器,功率器件则采用优质的进口器件。
本电源整机效率高,空载损耗底。
经大量实验证明,该系统运行安全、稳定、可靠,使用寿命长。
具有很高的性能价格比。
二、功能简介1、充电控制功能:风力发电机输出的交流电能先转换成直流电能,然后和太阳能电池板一起对蓄电池进行充电。
2、逆变输出功能:在打开前面板的“逆变开关”后,本电源即将蓄电池的直流电转化成额定电压220V的正弦波交流电,并从后面板的交流插座输出。
3、自动稳压功能:当蓄电池组电压在电压欠压点和过压点之间波动,负载在额定功率之内变化时,本机具有交流输出自动稳压功能。
4、过压保护功能:当蓄电池电压大于“过压点”时,设备将自动切断逆变输出,液晶显示“过压”,同时蜂鸣器发出十秒的报警声。
待电压下降到“过压恢复点”时,逆变才自动恢复;5、欠压保护功能:当蓄电池电压低于“欠压点”时,为了避免过放而损坏蓄电池,本设备将自动切断逆变输出。
此时,液晶显示“欠压”,同时蜂鸣器发出十秒的报警声。
待电压上升到“欠压恢复点”时,逆变才自动恢复.6、过载保护功能:当交流输出功率超额定功率时,本设备将自动切断逆变输出,同时,液晶显示“过载”,蜂鸣器发出十秒的报警声。
关闭前面板的“逆变开关”,可使“过载”显示消失。
如需重新开机,则必须检查确认负载功率在允许范围内,然后再打开“逆变开关”恢复逆变输出.7、短路保护功能:如果交流输出回路发生短路,本设备将自动切断逆变输出,同时,液晶闪烁显示“过载”,同时蜂鸣器发出十秒的报警声。
关闭前面板的“逆变开关”,可使“过载”显示消失。
如需重新开机,则必须检查确认输出线路正常后,再打开“逆变开关”,恢复逆变输出.8、过热保护功能:如果机箱内部控制部分的温度过高,本设备将自动切断逆变输出,同时,液晶显示“过热”,同时蜂鸣器发出十秒的报警声。
小型风力发电系统正弦波逆变器设计
灏忓瀷椋庡姏鍙戠數绯荤粺姝e鸡娉㈤€嗗彉鍣ㄨ璁?鎴风敤灏忓瀷椋庡姏鍙戠數鏈虹殑杈撳嚭鐢靛帇鍌ㄥ瓨鍦?4 V銆?2 V鎴?8V绛夌殑钃勭數姹犱腑锛岃繖灏变娇璁稿浜ゆ祦鐢靛櫒鏃犳硶鐩存帴閰嶅浣跨敤銆備负浜嗚В鍐宠繖涓€闂锛屽氨闇€瑕佸湪灏忓瀷椋庡姏鍙戠數绯荤粺涓厤缃€嗗彉鍣紝灏嗙洿娴佺數鍙樹负220 v锛?0 Hz鐨勪氦娴佺數杈撳嚭锛屼互婊¤冻浜ゆ祦鐢靛櫒鐨勯渶瑕併€傛寮︽尝閫嗗彉鎶€鏈湪椋庡姏鍙戠數绯荤粺涓槸涓€涓瀬鍏跺叧閿殑鎶€鏈紝瀹冩壙鎷呯潃灏嗙洿娴佺數璋冨埗鎴愮ǔ鍘嬬ǔ棰戠殑浜ゆ祦鐢电洿鎺ヤ緵缁欒礋杞芥垨瀹夊叏骞惰仈鍒颁氦娴佺數缃戠殑浠诲姟銆傜敱浜庡皬鍨嬮鍔涘彂鐢电郴缁熶娇鐢ㄧ殑宸ュ喌鍗佸垎澶嶆潅锛岄€嗗彉鍣ㄤ綔涓虹郴缁熺殑鏈€鏈竴绾у彉鎹㈣缃紝鍏跺搧璐ㄧ殑濂藉潖鐩存帴褰卞搷鏁翠釜鍙戠數绯荤粺鐨勬姇璧勫拰鎬ц兘銆傚洜姝わ紝姝e鸡娉㈤€嗗彉鎶€鏈殑鎬ц兘鐩存帴鍐冲畾鐫€椋庡姏鍙戠數绯荤粺鐨勬帹骞垮拰搴旂敤銆? 绯荤粺璁捐1锛? 绯荤粺鏋勬垚鍙婇€嗗彉鍣ㄤ富鐢佃矾1锛?锛? 绯荤粺鏋勬垚灏忓瀷椋庡姏鍙戠數绯荤粺閫嗗彉鍣ㄤ富瑕佺粍鎴愬寘鎷細涓荤數璺€佽緭鍏ョ數璺€佽緭鍑虹數璺€佹帶鍒剁數璺€佽緟鍔╃數婧愬拰淇濇姢鐢佃矾锛屽叾鍩烘湰缁撴瀯銆?閫嗗彉涓荤數璺緭鍏ヤ负鐩存祦鐢电敱钃勭數姹犳彁渚涖€傝緭鍑虹數璺竴鑸寘鎷緭鍑烘护娉㈢數璺紝瀵逛簬寮€鐜帶鍒剁殑閫嗗彉绯荤粺锛岃緭鍑洪噺涓嶇敤鍙嶉鍒版帶鍒剁數璺紝闈㈠浜庨棴鐜帶鍒剁殑閫嗗彉绯荤粺锛岃緭鍑洪噺杩樿鍙嶉鍒版帶鍒剁數璺€傛帶鍒剁數璺殑鍔熻兘鏄寜瑕佹眰浜х敓鍜岃皟鑺備竴绯诲垪鐨勬帶鍒惰剦鍐叉潵鎺у埗閫嗗彉寮€鍏崇鐨勫閫氬拰鍏虫柇锛屼粠鑰岄厤鍚堥€嗗彉涓荤數璺畬鎴愰€嗗彉鍔熻兘銆傚湪閫嗗彉绯荤粺涓紝鎺у埗鐢佃矾鍜岄€嗗彉鐢佃矾鍏锋湁鍚屾牱鐨勯噸瑕佹€с€傝緟鍔╃數婧愮殑鍔熻兘鏄皢閫嗗彉鍣ㄧ殑杈撳叆鐢靛帇鍙樻崲鎴愰€傚悎鎺у埗鐢佃矾宸ヤ綔鐨勭洿娴佺數鍘嬨€備繚鎶ょ數璺富瑕佸疄鐜拌繃鍘嬫瑺鍘嬩繚鎶ゃ€佽繃杞戒繚鎶ゃ€佽繃娴佸拰鐭矾淇濇姢銆?锛?锛? 涓荤數璺? 鎴风敤椋庡姏鍙戠數绯荤粺涓昏鐢ㄦ埛鏄タ閮ㄥ亸杩滃湴鍖虹殑鍐滅墽姘戯紝閭i噷鐜姣旇緝鎭跺姡锛屾妧鏈潯浠剁浉瀵硅杽寮便€傚洜姝ゆ墍閫夋嫇鎵戠粨鏋勫繀椤荤ǔ瀹氬彲闈狅紝鎶€鏈浉瀵规瘮杈冩垚鐔燂紱鑰冭檻鍒伴偅閲岀殑缁忔祹鏉′欢锛屾嫇鎵戠粨鏋勪篃蹇呴』鍏锋湁鎴愭湰浣庛€佹晥鐜囬珮鐨勭壒鐐广€傜患鍚堣€冭檻涓婅堪鍥犵礌锛屼富鐢佃矾閲囩敤鍗曞悜鐢靛帇婧愰珮棰戠幆鑺傞€嗗彉鐢佃矾锛岃鐢佃矾缁撴瀯涓昏閲囩敤楂橀璁捐鎬濇兂锛岀渷鎺変簡浣撶Н搴炲ぇ涓旂閲嶇殑宸ラ鍙樺帇鍣紝闄嶄綆浜嗘暣涓€嗗彉鐢佃矾鐨勫櫔澹帮紝鑰屼笖璇ョ數璺叿鏈夊彉鎹㈡晥鐜囪緝楂樸€佽緭鍑虹數鍘嬬汗娉㈠皬绛夌壒鐐广€? 瀹冨寘鎷洿娴佸崌鍘嬮儴鍒嗗拰鐩翠氦鍙樺寲涓ら儴鍒嗐€傚叾涓洿娴佸崌鍘嬮儴鍒嗕负鎺ㄦ尳鐢佃矾缁撴瀯锛岀洿浜ゅ彉鍖栭噰鐢ㄥ叏妗ラ€嗗彉缁撴瀯銆備富鐢佃矾銆?鐢佃矾涓殑涓や釜寮€鍏崇VQ1銆乂Q2鎺ュ湪甯︽湁涓績鎶藉ご鐨勫彉鍘嬪櫒鍒濈骇涓ょ锛屽湪鐢佃矾宸ヤ綔涓紝涓や釜寮€鍏崇浜ゆ浛瀵奸€氾紝鍦ㄥ対鏁板潎涓篘鐨勭粫缁勪袱绔垎鍒舰鎴愮浉浣嶇浉鍙嶇殑鏂规尝鐢靛帇锛屾鐢佃矾鍙互鐪嬫垚瀹屽叏瀵圭О鐨勪袱涓崟绔婵€鍙樻崲鍣ㄧ粍鍚堣€屾垚銆傜敱浜庤緭鍑虹數鍘嬩负楂樺帇锛屾墍浠ラ噰鐢ㄤ簡鍏ㄦˉ鏁存祦鐢佃矾锛屼互闄嶄綆姣忎釜鏁存祦绠$殑鍙嶅悜鎵垮彈鐢靛帇锛孷D1銆乂D2銆乂D3銆乂D4涓烘暣娴佷簩鏋佺锛孡銆丆涓鸿緭鍑烘护娉㈢數鎰熷拰婊ゆ尝鐢靛銆傞€嗗彉鍣ㄥ悓涓€妗ヨ噦鐨勪笂涓嬩袱涓紑鍏冲櫒浠朵氦鏇块€氭柇锛屽苟澶勪簬浜掕ˉ宸ヤ綔鏂瑰紡锛屽嵆鍔熺巼绠1鍜孷2浜掕ˉ銆乂3鍜孷4浜掕ˉ锛孷1鍜孷3鍦ㄧ浉浣嶄笂鐩稿樊180°鐢佃搴︺€傞€嗗彉鍣ㄥ姛鐜囧紑鍏崇閲囩敤浜哛CVD缂撳啿鐢佃矾锛岀紦鍐茬數璺IGBT鐨勫畨鍏ㄥ伐浣滆捣鐫€閲嶈浣滅敤锛屽畠鍙互鏈夋晥鍦版姂鍒跺紑閫氭椂娴秾鐢垫祦鍜屽叧鏂椂娴秾鐢靛帇銆傞噰鐢≧CVD缂撳啿鐢佃矾鍙互浣跨紦鍐茬數闃诲澶э紝閬垮紑浜嗗紑閫氭椂IGBT鍔熻兘鍙楅樆鐨勯棶棰橈紱涔熷洜鍏舵梺璺簡鐢甸樆涓婄殑鍏呯數鐢垫祦锛屽厠鏈嶄簡杩囧啿鐢靛帇銆?锛? 鎺у埗鐢佃矾璁捐閫嗗彉鐢垫簮鎺у埗鐢佃矾閲囩敤浜?鐗囬泦鎴愯剦瀹借皟鍒剁數璺姱鐗嘢G3524锛屼竴鐗囩敤鏉ヤ骇鐢烶WM娉紝鎺у埗鎺ㄦ尳鍗囧帇鐢佃矾锛涘彟涓€鐗囦笌姝e鸡鍑芥暟鍙戠敓鑺墖ICL8 038杩炴帴鏉ヤ骇鐢烻PWM娉紝鎺у埗鍏ㄦˉ閫嗗彉鐢佃矾銆傞泦鎴愯姱鐗囨瘮鍒嗙珛鍏冨櫒浠舵帶鍒剁數璺叿鏈夋洿绠€鍗曘€佹洿鍙潬鐨勭壒鐐瑰拰鏄撲簬璋冭瘯鐨勪紭鐐广€傝搫鐢垫睜涓洿娴佺數鍘嬬粡杩囨帹鎸界數璺繘琛屽崌鍘嬶紝鍦ㄧ洿娴佺幆涓婂緱鍒颁竴涓鍚堣姹傜殑鐩存祦鐢靛帇330 V宸﹀彸(50 Hz锛?20 V浜ゆ祦杈撳嚭鏃?銆備负淇濊瘉绯荤粺鍙潬杩愯锛岄槻姝富鐢佃矾瀵规帶鍒剁數璺殑骞叉壈锛岄噰鐢ㄤ富銆佹帶鐢佃矾瀹屽叏闅旂鐨勬柟娉曪紝鍗抽┍鍔ㄤ俊鍙风敤鍏夎€﹂殧绂伙紝鍙嶉淇″彿鐢ㄥ彉鍘嬪櫒闅旂銆係PWM娉㈠舰鍙戠敓鐢佃矾銆?瑕佸緱鍒癝PWM娉紝蹇呴』寰楀埌涓€涓箙鍊煎湪1锝?锛? V锛屾寜姝e鸡瑙勫緥鍙樺寲鐨勯澶存尝锛屽皢瀹冨姞鍒癝G3524鍐呴儴锛屽苟涓庨敮榻挎尝姣旇緝锛屽氨鍙緱鍒版寮﹁剦瀹借皟鍒舵尝銆傛寮︽尝鐢靛帇ua鐢卞嚱鏁板彂鐢熷櫒ICL8038浜х敓銆傛寮︽尝鐨勯鐜囩敱R2銆丷3鍜孋1鏉ュ喅瀹氾紝f=0锛?5锛?R2+R3)C1锛屼负璋冭瘯鏂逛究锛屽皢R2鍙奟3閮界敤鍙皟鐢甸樆锛孯1鐢ㄦ潵璋冩暣姝e鸡娉㈠け鐪熷害銆傚湪瀹為獙涓祴寰楀綋f=50 Hz鏃讹紝R2+R3=9锛? kΩ锛屽叾涓瑿1=0锛?2 μF銆傛寮︽尝淇″彿浜х敓鍚庝竴璺粡杩囩簿瀵嗗叏娉㈡暣娴侊紝寰楀埌棣掑ご娉c銆傚彟涓€璺粡杩囨瘮杈冨櫒寰楀埌涓庢寮︽尝鍚岄鐜囷紝鍚岀浉浣嶇殑鏂规尝ub锛寀c 涓? V鍩哄噯鐢靛帇缁忚繃鍔犳硶鍣ㄥ悗寰楀埌ud銆倁d杈撳叆鍒癝G3524鐨?鍙疯剼锛?鑴氫笌9鑴氱浉杩烇紝杩欐牱ud鍜岄敮榻挎尝灏嗗湪SG3524鍐呴儴鐨勬瘮杈冨櫒杩涜姣旇緝浜х敓SPWM娉c銆傚皢寰楀埌鐨勪袱璺┍鍔ㄤ俊鍙峰姞鍒伴┍鍔ㄧ數璺殑鍏夎€﹀師杈癸紝灏卞彲浠ュ疄鐜版寮﹁剦瀹借皟鍒躲€?锛? 淇濇姢鐢佃矾杩囨祦淇濇姢鏄埄鐢⊿G3524鐨?0鑴氬姞楂樼數骞冲皝閿佽剦鍐茶緭鍑虹殑鍔熻兘銆傚綋10鑴氫负楂樼數骞虫椂锛孲G3524鐨?1鑴氬強14鑴氫笂杈撳嚭鐨勮剦瀹借皟鍒惰剦鍐插氨浼氱珛鍗虫秷澶辫€屾垚涓洪浂銆傝繃娴佷俊鍙峰彇鑷數娴佷簰鎰熷櫒锛岀粡鏁存祦鍚庡緱鍒扮數娴佷俊鍙凤紝鍔犺嚦杩囨祦淇濇姢鐢佃矾涓娿€傝繃娴佷俊鍙风粡杩囩簿瀵嗘暣娴佸姞鑷崇數鍘嬫瘮杈冨櫒LM339鐨勫悓鐩哥銆傚綋杩囨祦淇″彿浣垮悓鐩哥鐢靛钩姣斿弽鐩哥鍙傝€冪數骞抽珮鏃讹紝姣旇緝鍣ㄥ皢杈撳嚭楂樼數骞筹紝鍒欎簩鏋佺灏嗕粠鍘熸潵鐨勫弽鍚戝亸缃姸鎬佽浆鍙樹负姝e悜瀵奸€氾紝骞舵妸鍚岀浉绔數浣嶆彁鍗囦负楂樼數骞筹紝杩欎竴鍙樺寲灏嗕娇寰楃數鍘嬫瘮杈冨櫒涓€鐩寸ǔ瀹氳緭鍑洪珮鐢靛钩灏侀攣鑴夊啿锛屽垯DC—DC鐢佃矾鍋滄宸ヤ綔銆傚湪姝e父鐘舵€佷笅锛屾瘮杈冨櫒杈撳嚭闆剁數骞筹紝涓嶅奖鍝岲C—DC鐢佃矾宸ヤ綔銆傝繃娴佷繚鎶ょ數璺€?2 瀹為獙缁撴灉鍒嗘瀽涓轰簡楠岃瘉涓婅堪璁捐鐨勫彲琛屾€э紝鍦? kW椋庡姏鍙戠數瀹為獙骞冲彴涓婅繘琛岃瘯楠屻€傞噰鐢ㄧ洿娴佺數鏈烘ā鎷熼鍔涙満锛屽彂鐢垫満浣跨敤姘哥鍚屾鍙戠數鏈猴紝鐢?鍙?2 V锛?00 Ah鐨勮搫鐢垫睜杩涜涓插苟鑱旀瀯鎴愯搫鐢垫睜缁勶紝绔數鍘?8 V銆傝緭鍏ユ护娉㈢數瀹癸細450 V锛? 000μF锛岃緭鍑烘护娉㈢數鎰燂細8 mH锛屾护娉㈢數瀹癸細4锛? μF銆傞噰鐢?00 W鐧界偨鐏场浣滀负闃绘€ц礋杞藉拰闃绘姉瑙掍负20°鐨勬劅鎬ц礋杞芥潯浠朵笅瀵归€嗗彉鍣ㄨ緭鍑烘尝褰㈣繘琛屽垎鏋愶紝銆?瀵瑰疄楠岀粨鏋滆繘琛屽垎鏋愶紝閫嗗彉鍣ㄨ緭鍑虹數鍘嬩负220±5 V锛岄鐜?0 Hz±0锛?锛咃紝THD<5锛咃紝鐗瑰埆鏄湪钃勭數姹犵數鍘嬪湪42—53 V娉㈠姩鏃朵粛鐒惰兘杈冨ソ鐨勪繚鎸佽緭鍑烘尝褰€? 缁撹閫氳繃瀹為獙瀹為檯娴嬭瘯浜嗘寮︽尝閫嗗彉鍣ㄧ殑鎬ц兘锛屼粠瀹為獙缁撴灉鏉ョ湅锛岀數璺伐浣滅ǔ瀹氾紝杈撳嚭鐢靛帇娉㈠舰骞虫粦锛屾姉骞叉壈鑳藉姏寮猴紝鍏锋湁杈冨ソ鐨勬寮﹀害銆傛湰鏂囨墍璁捐鐨勯噰鐢?鐗囬泦鎴愯剦瀹借皟鍒剁數璺姱鐗囧垎鍒帶鍒舵帹鎸界數璺拰鍏ㄦˉ閫嗗彉鐢佃矾锛屼互鍙婇€氳繃SPWM鎺у埗鏂规硶璁捐鐨勯€嗗彉鐢垫簮鎴愭湰浣庛€佺粨鏋勭畝鍗曘€佺ǔ瀹氭€ч珮銆佹槗浜庡競鍦哄寲锛岄€傚悎鐗у尯銆佹捣宀涖€侀€氫俊鍩虹珯绛夊伐鍐靛鏉傘€佺敤鐢甸噺杈冨皬鐨勫湴鍖轰娇鐢ㄧ殑灏忓瀷椋庡姏鍙戠數绯荤粺銆。
单相正弦波逆变电源设计原理
单相正弦波逆变电源设计原理逆变拓扑结构主要有全桥逆变拓扑、半桥逆变拓扑和H桥逆变拓扑等。
其中,全桥逆变拓扑是应用最广泛的一种结构。
其基本原理是通过四个功率开关器件(IGBT、MOSFET等)将直流电源分别与交流负载的两端相连,通过对这四个开关器件进行不同的控制,实现正负半周期交替地对交流负载端进行开关切换,从而输出正弦波形的交流电信号。
控制策略是逆变电源设计中的关键,其主要目标是根据输入直流电源电压的大小和方向,调整开关器件的通断时间,使输出交流电信号能够呈现出正弦波形。
常见的控制策略包括PWM控制策略和SPWM控制策略。
其中,PWM(脉宽调制)控制策略通过对比输入直流电压与参考正弦波形的大小关系,调整开关器件的通断时间比例,以保证输出电压信号的波形准确度。
SPWM(正弦PWM)控制策略则通过比较输入直流电压与参考正弦波形的大小关系,调整开关器件的通断时间点,以保证输出电压信号的谐波失真程度较小。
滤波电路是为了进一步提高逆变电源输出电压信号的波形质量,减小谐波失真。
其主要由电感、电容等元件组成。
一般而言,设计中采用LC滤波器结构来实现对输出正弦波形谐波成分的滤除。
滤波器的参数选择与设计是设计过程中的关键环节,通过合理选择滤波器的参数可以实现输出电压稳定,谐波失真小的效果。
此外,逆变电源设计中还需要考虑过温保护、过压保护、过流保护等安全措施,以保证电源的稳定性和可靠性。
这些保护功能通过在逆变电源系统中加入温度传感器、电流传感器以及相应的控制电路来实现。
总之,单相正弦波逆变电源的设计基于逆变拓扑结构、控制策略和滤波电路的原理,通过合理的参数选择和安全措施的设计,可实现稳定、可靠、高质量的正弦波形交流电信号输出。
200W正弦波逆变电源的设计方法
200W正弦波逆变电源的设计方法设计一个200W正弦波逆变电源,我们需要考虑以下几个关键方面:输入电路设计、逆变电路设计、输出滤波电路设计和保护电路设计。
1.输入电路设计:输入电路的主要功能是将交流电源转换为恒定的直流电源,并对其进行滤波,以确保逆变电路的稳定性。
输入电路一般包括变压器、整流电路和滤波电路。
-变压器的选择:选择输入电压和输出功率相匹配的变压器。
计算变压器的边缘电流,以确定适当的变压器尺寸和线圈。
-整流电路设计:选择合适的整流器(如整流桥)将交流电源转换为直流电源。
-滤波电路设计:使用合适的电容器和电感器来滤除直流电源中的脉动。
计算所需电容和电感的值,并合理布局。
2.逆变电路设计:逆变电路的主要功能是将直流电源转换为纯正弦波的交流电源。
逆变电路一般采用全桥逆变器。
-全桥逆变器的选择:选择合适的IGBT或MOSFET作为开关器件,并确定其额定电压和电流。
选择合适的驱动电路来控制开关器件的开关。
-锁相环(PLL)控制方法:使用PLL控制方法来保持逆变器输出频率与输入频率同步。
选择合适的PLL控制电路,并根据需要调整参数。
3.输出滤波电路设计:输出滤波电路的主要功能是滤除逆变电路输出中的谐波和高频噪声,以获得干净的正弦波输出。
输出滤波电路一般包括LC滤波器。
-选择合适的电感和电容:根据需要计算出适当的电感和电容的值,以滤除所需谐波频率。
-合理布局:合理布局电感和电容,以减小干扰和交叉耦合。
4.保护电路设计:保护电路的主要功能是确保逆变器和输出负载的安全运行。
保护电路一般包括过电流保护、过温保护和短路保护等。
-过电流保护:使用电流传感器监测逆变器输出电流,并在超过额定值时触发保护装置。
-过温保护:使用温度传感器监测逆变器和输出负载的温度,并在超过设定温度时触发保护装置。
-短路保护:使用电流传感器监测输出负载的电流,并在短路发生时迅速切断逆变器输出。
除了上述关键方面的设计,还需要注意以下几个方面:-整个设计过程中需要进行稳定性分析,并采取合适的控制措施来保证系统的稳定工作。
纯正弦波逆变器 研究内容
纯正弦波逆变器研究内容一、逆变器工作原理纯正弦波逆变器是一种将直流电源转换为交流电源的设备。
它通过将直流电转换为高频脉冲信号,然后经过变压器升压或降压,最终输出纯正弦波。
这种逆变器适用于需要高品质电源的设备,如电子设备、通讯设备、医疗器械等。
二、正弦波生成技术纯正弦波逆变器的核心是正弦波生成技术。
这种技术通过数字信号处理技术或模拟电路技术生成正弦波。
数字信号处理技术可以通过编程实现,而模拟电路技术则需要设计专门的电路。
正弦波生成技术的精度和稳定性直接影响到逆变器的性能。
三、逆变器电路设计纯正弦波逆变器的电路设计是关键。
它需要考虑到电路的稳定性、效率、体积、重量等因素。
在电路设计中,需要选择合适的功率器件、滤波器、变压器等,以满足逆变器的性能要求。
四、逆变器控制策略逆变器的控制策略对于其性能和稳定性至关重要。
常用的控制策略包括PID控制、模糊控制、神经网络控制等。
这些控制策略需要根据逆变器的实际情况进行选择和优化,以确保逆变器的稳定性和效率。
五、逆变器性能优化为了提高逆变器的性能,需要进行性能优化。
这包括提高输出电压和电流的稳定性和精度,降低噪声和失真,提高效率和可靠性等。
可以通过优化电路设计、改进控制策略、使用高性能元件等方法实现性能优化。
六、逆变器应用领域纯正弦波逆变器广泛应用于各个领域,如通信、电力、交通、航空航天等。
在通信领域,纯正弦波逆变器可以用于基站、交换机等设备的电源供应;在电力领域,可以用于风力发电、太阳能发电等可再生能源设备的电源转换;在交通领域,可以用于电动汽车、电动自行车等设备的电源供应;在航空航天领域,可以用于飞机、卫星等设备的电源供应。
七、逆变器与其它逆变器的区别纯正弦波逆变器与其它类型的逆变器相比,具有以下区别:输出波形:纯正弦波逆变器的输出波形为纯正弦波,具有更好的失真度和稳定性。
而其它类型的逆变器如方波逆变器或PWM逆变器的输出波形则存在失真或噪音。
频率和相位:纯正弦波逆变器的输出频率和相位可以通过控制策略进行精确调整,以满足不同应用的需求。
正弦波逆变器电路图及制作过程
1000W正弦波逆变器制作过程详解作者:老寿电路图献上!!这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
:因为电流较大,所以用了三对6平方的软线直接焊在功率板上如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K 的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。
这是TO220封装的快恢复二极管,15A 1200V,也是张工提供的,价格不贵。
我觉得它安装在散热板上,散热效果肯定比普通塑封管要强。
10kw高频正弦波逆变器设计
10kw高频正弦波逆变器设计设计 10 kW 高频正弦波逆变器的要求和步骤如下:1. 电路拓扑选择:常见的高频逆变器电路拓扑有全桥、半桥和谐振等。
根据应用需求和成本因素,选择合适的电路拓扑。
2. 控制策略:设计逆变器的控制策略,包括输出电压控制、频率控制和保护控制等。
常见的控制方法有SPWM、SVPWM 和电流控制等。
3. 电源电路:设计逆变器的电源电路,包括输入滤波电路和直流电源电路。
输入滤波电路用于抑制输入电源的谐波和噪声,直流电源电路用于提供逆变器的工作电源。
4. 开关器件选型:根据逆变器的功率和工作频率选择合适的开关器件,如功率 MOSFET 或 IGBT。
考虑器件的导通和关断损耗、开关速度等因素。
5. 控制电路设计:设计逆变器的控制电路,包括信号调整、比较和驱动电路等。
确保控制电路能够准确控制开关器件的开关和关断。
6. 输出滤波电路:逆变器的输出通常需要通过滤波电路进行滤波,以去除输出的高频噪声和谐波。
根据应用需求选择合适的输出滤波电路。
7. 保护电路设计:对逆变器进行多种保护设计,如过流保护、过压保护、过温保护等。
保护电路可以保证逆变器在异常情况下的安全可靠运行。
8. 热管理:高功率逆变器在工作过程中会产生大量的热量,需要设计合适的散热器和风扇等热管理措施,以保证逆变器的稳定工作温度范围。
9. PCB 设计:根据逆变器电路的特点和布局要求,进行 PCB 的设计,确保电路连接可靠、布局合理、电磁兼容性良好。
10. 实验验证和优化:制作原型逆变器进行实验验证,测试逆变器的性能指标,如输出功率、效率、输出波形等,并根据实验结果进行逆变器的优化和改进。
以上是设计 10 kW 高频正弦波逆变器的基本步骤,具体每个步骤的细节和算法等需要根据具体的要求和应用进行进一步的研究和设计。
48V1500W正弦波逆变器说明书-全功能版
48V/1500W正弦波逆变器一体机说明书Sine wave all-in-one inverter specification 一、概述Introduction本逆变器使用本公司专为逆变器研发的纯正正弦波芯片,具有非常完善的保护功能(包括过载保护,过流保护,高温保护,短路保护,电池高、低压保护)和机器运行LCD状态指示功能。
采用优质的元器件,保证产品高质量,高性能。
本机的输出波形为纯正正弦波,可以适用于任何负载,具备:过流保护,短路保护,过压和欠压保护并且在发生保护后,都可以自动重启恢复输出,本机的体积小巧,便于携带,附带市电切换功能(Bypass)和MPPT光伏充电,是一款性能与功能最完美结合的产品。
功能特性简介:板载元件大部分采用SMD工艺焊接,具有非常高的一次成型率。
功率元件采用坚固耐冲击的平面工艺功率MOSFET,大大降低了大功率负载时候的损耗,提供高冲击功率输出。
采用高抗冲击性设计,保证在冰箱、空调、水泵等强冲击性负载下不会损坏机器。
采用高效率SPWM调制电路,实现最佳的效率与THD值的完美平衡。
采用MPPT充电,最大限度的获取太阳能输出功率并且智能的为电池充电。
内置短路保护,抗冲击保护。
横向散热风道设计,利于散热器风扇端部安装散热。
输入输出采用全隔离设计,隔离电压超过1KV。
极低的空载电流消耗。
极低的传导辐射干扰,完善的EMC电路,通过FCC CLASS B级认证,在敏感的设备上不会造成高频干扰,是这种机器的一大特点。
板载温度传感器,温控风扇开启与关闭。
工作状态指示采用高对比度,大视野LCD显示,所有工作参数一目了然。
蜂鸣器报警指示(可选)。
带有市电切换Bypass功能。
二、使用方法将足够功率的输入电源接上逆变器的输入端子,注意电源电压要在规定范围内,连接的电源线要有足够的承载电流能力,并且尽量短,打开逆变器的电源开关,输出负载在开机前或开机后接入均可。
三、输入电源要求输入电源电压必须在逆变器规定的电压范围内。
纯正弦波逆变器说明书
The inverter Installer must be professional, for the high pressure in the inverter, no-professional person please do not open it. The inverter should be installed at a dry, well ventilated environment and keep it more than 20cm away from the wall to avoid clogging its inlet. Do not expose the inverter to the heat,moisture, flammable, explosive, corrosive environment, dry cloth cleaning, avoiding water.1. Load power did not exceed the inverter's rated power. Red terminal is the inverter positive electrode, the black terminal is negative electrode, please connect the battery properly avoiding positive and negative reversed connecting.The connecting wire please use the factory assigned standard wire,avoiding too short of the wire.2. Switch in the OFF position before connecting the power, the power upply use battery, solar power system, DC power supply, connect the power to confirm if the input of the inverter nominal DC voltage is consistent with the power supply DC voltage, avoiding excessive voltage input inverter.3. The inverter for off-grid power, AC output cannot be connected to other power supply(electricity). Before using, the inverter shall be connected to the earth. If do not use the inverter, please turn off the switch avoiding excessive no-load loss.4. Inverter with the city power automatic switching, which internal has the AC bypass function, please connect the AC power to t he AC input correctly. Charging indicator light is red, full is green.5. City electricity complementary series inverter, which internal have the AC bypass function, please connect the AC power correctly.6. Please read above carefully, if you have the unclear point, please call our after-sales service to consultation. Not in accordance with the installation of this manual method of operation may cause personal injury or cause damage to machinery and equipment.7. Protection Features: Low voltage protection: when the battery in low voltage condition, shut down output, buzzer light at the same time work. Over -voltage protection: when the battery voltage is higher than the range of the machine rated voltage, the machine shut down output, buzzer and light work. Overload: when the load power is greater than the machine rated power, the machine shut down output, buzzer and light work. Thermal protection: when the123458、300W Panel indicate diagram:internal temperature is above about 75 ℃, the machine shut down output, buzzer and lights at the same time work. Short-circuit protection: output short circuit, the machine shut down output, buzzer and lights at the same time work. Anti-anti-connect protection: when input positive and negative poles reversed, the diode anti-anti-burn fuse to protect theinverter, need to replace the fuse, MOS FET anti-anti-connect inverter does not work: can be work after reversed. When the inverter internal temperaturereach about 45 ℃, the cooling fan start working,force air cooling.Description:1. Blue: inverter working light2. Red: fault light3. Power on switch4. AC output socket5. USB port213123459. 500~1000WPanel indicate diagram:132Description: 1. Red is the DC input positive pole 2. Black is the DC input negative pole 3. Cooling fanDescription:1. Blue: inverter working light2. Red: fault light3. Power on switch4. AC output socket5. USB portDescription:1. Red is the DC inputpositive pole2. Black is the DC inputnegative pole3. Cooling fan10、1500~2500W Panel indicate diagram:123456123411、3000~8000W Panel indicate diagram:1234567Description: 1. Red is the DC input positive pole 2. Black is the DC input negative pole 3. Cooling fan Description:1. Blue: inverter working light2. Red: fault light3. Power on switch 4(5). AC output socket 6. USB portDescription:1. Blue: inverter working light 2. Red: fault light 3. Power on switch 4(5). AC output socket 6. USB port 7.250A wiring rowredb l ac k GNDe of the environment: Ambient Storage Relative Elevation: <100012. Wiring diagram:123 Description: 1. Red is the DC input positive pole 2. Black is the DC input negative pole3. Cooling fanBattery pack PowerInverter Load12. Troubleshooting:1) Inverter did not respond: check the connect condition,reconnect the wire;check the positive and negative pole to confirm connected correctly,reconnect properly, replace the fuse.2) Alarm red with no output. Check the voltage is higher or lower than the inverter's rated voltage range, replace the battery or control the voltage in the range. Check the temperature, if too high, cooling the inverter and put it in a ventilated place. Check the load power, if too high, please remove part of the load power and restart the inverter. Check the output, eliminate the short circuit condition and restart. Check the wire, if too short, replace it. Open fail, then restart.13. This product is guaranteed for one year from date of purchase If artificially damaged, disassemble or modify, the Company is not responsible for warranty.Products within 7 days from date of purchase have any problem, free exchange of new machines, man -made damage the casing or packaging is not in the exchange range.This manual is only used to guide the use and can't represent their products exactly the same. If any problem, please consult our technical service department, and it will be solved with the guidance of professional engineers.Name :Tel :E m a i l :-10-Pure sine wave inverterPRODUCT CERTIFICATIONInspection:Factory inspector:Date:Users stubsTo protect your rights ,please fill in the following blackcarefully.. And safekeeping ,as after-sales service credentialsProduct model :Product serial NO :Date :Add :。
300w正弦波逆变器毕业设计
300w正弦波逆变器毕业设计毕业设计是大学生在校期间最后一个重要的学习任务,学生需要通过毕业设计来检验自己所学专业知识的掌握情况,并展示自己的综合能力。
在电气工程专业中,一些学生选择设计一个正弦波逆变器作为毕业设计是比较有挑战性的。
正弦波逆变器是一种电子电路设备,它能够将直流电源转换成交流电源,其输出的交流电压和频率可以很好地模拟正弦波形。
毕业设计的主题是“300w正弦波逆变器”,这是一个挑战性的课题,需要综合运用电路理论、电子器件、控制系统等多方面的知识。
我们来看一下300w正弦波逆变器的设计要求和参数,然后再探讨一下具体的设计方案和实现过程。
设计要求:1. 输出功率:300w;2. 输出电压:220V交流;3. 输出波形:正弦波;4. 效率要求:尽量高;5. 控制方式:PWM控制。
300w正弦波逆变器的设计需要考虑的内容非常多,比如电源电路、控制电路、输出滤波等。
我们需要设计一个合适的电源电路,将输入的直流电源转换成高频交流电源,然后再通过变压器降压变频,最终输出所需的220V交流电压。
在这个过程中,需要考虑电路的损耗问题,以及如何提高整个系统的效率。
我们需要设计一个PWM控制电路,用来精确控制逆变器的输出电压和频率,以确保输出的交流电压是符合要求的正弦波。
为了减小谐波等干扰,还需要设计一个合适的输出滤波电路,让输出的交流电压更加纯净稳定。
在300w正弦波逆变器的毕业设计中,学生不仅需要理论知识的扎实运用,还需要动手实际搭建电路,并进行调试。
在这个过程中,可能会碰到各种各样的问题,需要学生具备一定的动手能力和问题解决能力。
总结来说,300w正弦波逆变器的毕业设计是一个综合性的项目,需要学生充分发挥自己的创造力和动手能力。
通过这样的设计,学生不仅可以加深对电力电子领域知识的理解,还能锻炼自己的实际动手能力和解决问题的能力。
希望学生可以在毕业设计中取得成功,为自己的未来工作打下坚实的基础。
电气工程专业的学生通常需要在毕业设计中展现他们所学专业知识的掌握情况,并展示自己的综合能力。
300w正弦波逆变器毕业设计
300w正弦波逆变器毕业设计摘要:1.毕业设计背景与意义2.300W 正弦波逆变器的原理及结构3.毕业设计的具体实现过程4.毕业设计的总结与展望正文:一、毕业设计背景与意义随着科技的发展,逆变器在众多领域中得到了广泛的应用。
逆变器是一种将直流电转换为交流电的设备,其输出波形可以分为正弦波和修正弦波。
在毕业设计中,我选择了300W 正弦波逆变器作为研究对象,旨在通过本次设计,提高自己的实践能力和对电力电子技术的理解。
二、300W 正弦波逆变器的原理及结构300W 正弦波逆变器主要由电源、控制电路、逆变器电路和输出滤波器组成。
其中,电源为整个系统提供直流电压;控制电路负责对整个系统进行调节和控制;逆变器电路将直流电转换为正弦波交流电;输出滤波器用于滤除逆变器电路中可能存在的高频谐波,以保证输出电压的纯净。
三、毕业设计的具体实现过程1.电路设计在电路设计阶段,我首先选择了合适的元件,包括NE555、SG3525 等。
接着,我绘制了电路原理图和PCB 布局图,并对电路进行了仿真。
2.元件选购与焊接根据电路原理图,我购买了所需的元件,并进行了焊接。
在焊接过程中,我注意了焊接技巧,确保焊点牢固可靠。
3.电路调试在电路焊接完成后,我对电路进行了调试。
我首先检查了电路中各个元件的连接是否正确,然后通过改变输入电压和电流,观察输出电压和电流是否符合预期。
在调试过程中,我发现了一些问题,并对电路进行了优化。
4.系统测试在电路调试完成后,我对整个系统进行了测试。
我测量了逆变器的输出电压、输出电流、效率等参数,并与理论值进行了对比。
测试结果表明,整个系统性能良好,满足设计要求。
正弦波逆变器设计方案
正弦波逆变器设计方案一、引言正弦波逆变器是一种将直流电转换为交流电的电力转换设备,在各类电力应用领域广泛应用。
在许多应用中,需要高质量的交流电源,如电子设备、家用电器、医疗设备等。
本文将讨论正弦波逆变器的设计方案,以提供稳定、高质量的交流电。
二、基本原理正弦波逆变器的基本原理是将直流电通过逆变器电路转换为交流电。
其主要组成部分包括直流输入电源、逆变电路和输出滤波电路。
直流输入电源提供逆变器的输入电压,逆变电路将直流电转换为交流电,并通过输出滤波电路来滤波输出波形。
三、逆变电路设计1. 调制技术选择逆变电路的调制技术决定了输出波形的质量。
常见的调制技术有PWM(脉宽调制)和SPWM(正弦波调制)。
在正弦波逆变器中,选择SPWM调制技术可以获得更接近纯正弦波的输出。
2. 逆变器拓扑选择常见的逆变器拓扑有单相桥式逆变器、三相桥式逆变器等。
根据实际需求选择逆变器拓扑,单相桥式逆变器适用于单相负载,而三相桥式逆变器适用于三相负载。
3. 电路元件选择逆变电路中的元件选择直接影响到逆变器的性能。
选择合适的功率晶体管、电容器和电感器可以提高逆变器的功率输出和效率。
四、输出滤波电路设计输出滤波电路用于滤除逆变电路产生的谐波成分,生成纯正弦波的交流电。
常用的输出滤波电路包括LC滤波电路和LCL滤波电路。
LC滤波电路结构简单,但不能有效滤除高频成分;而LCL滤波电路在滤除谐波的同时,还能提供较好的带宽特性。
五、保护措施设计正弦波逆变器在实际应用中需要具备安全可靠的特性。
常见的保护措施包括过压保护、过流保护、温度保护等。
通过合理设计电路,设置过压、过流和温度保护装置,可以有效保护逆变器及其外部负载。
六、控制电路设计正弦波逆变器的控制电路主要包括运算放大器、比较器和PWM 控制电路等。
通过运算放大器进行误差放大和控制信号处理,再经过比较器和PWM控制电路产生PWM信号,并控制逆变电路,从而实现对逆变器输出波形的控制。
七、实验验证与结果分析在设计完成后,进行实验验证并对实验结果进行分析。
单相正弦波逆变电源设计说明
单相正弦波逆变电源摘要:本单相正弦波逆变电源的设计,以12V蓄电池作为输入,输出为36V、50Hz的标准正弦波交流电。
该电源采用推挽升压和全桥逆变两级变换,在控制电路上,前级推挽升压电路采用SG3525芯片控制,闭环反馈;逆变部分采用驱动芯片IR2110进行全桥逆变,采用U3990F6完成SPWM的调制,后级输出采用电流互感器进行采样反馈,形成双重反馈环节,增加了电源的稳定性;在保护上,具有输出过载、短路保护、过流保护、空载保护等多重保护功能电路,增强了该电源的可靠性和安全性;输出交流电压通过AD637的真有效值转换后,再由STC89C52单片机的控制进行模数转换,最终将电压值显示到液晶12864上,形成了良好的人机界面。
该电源很好的完成了各项指标,输入功率为46.9W,输出功率为43.6W,效率达到了93%,输出标准的50Hz正弦波。
关键词:单相正弦波逆变 DC-DC DC-AC SPWMAbstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use of push-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control,closed-loop feedback;inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed,level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power.In protection, with output overload, short circuit protection, overcurrent protection, the protection of multiple no-load protection circuit, which enhancing the reliability of the power supply and safety.AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liquid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W,the efficiency reached 93%, 50Hz sine wave output standards. Key words: Single-phase sine wave inverter DC-DCDC-ACSPWM目录1.系统设计41.1设计要求41.2总体设计方案41.2.1设计思路41.2.2方案论证与比较51.2.3系统组成82.主要单元硬件电路设计92.1DC-DC变换器控制电路的设计 92.2DC-AC电路的设计102.3 SPWM波的实现 102.4 真有效值转换电路的设计112.5 保护电路的设计122.5.1 过流保护电路的设计 122.5.2 空载保护电路的设计132.5.3 浪涌短路保护电路的设计142.5.4 电流检测电路的设计152.6 死区时间控制电路的设计152.7 辅助电源一的设计152.8 辅助电源二的设计152.9 高频变压器的绕制172.10 低通滤波器的设计183.软件设计183.1 AD转换电路的设计183.2液晶显示电路的设计 194.系统测试204.1测试使用的仪器204.2指标测试和测试结果214.3结果分析245.结论25参考文献25附录1 使用说明25附录2 主要元器件清单25附录3 电路原理图与印制板图28 附录4 程序清单391.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
正弦波逆变器设计方案
逆变器建议删除该贴!! | 收藏| 回复| 2008-03-15 12:18:15楼主搞正弦波,难度最大的就是要生产稳定的SPWM波,还有就是要有合理的电压调整电流,电流检测.很多在网上都介绍些用单片机,分立元件等.其实不用哪么麻烦的.主要一个U3990加一个IR2110,4 个IRF460,两个滤波器就可以做成一款精度误差为2%的纯正弦波电源.在这里详细原理图我就不发了,我发一些提示性的东西给大家;U3990:U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构.为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便.U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz) 时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成.整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示:图二是U3988的引脚图.VDD是芯片的电源引脚,接单一+5V;GND是地;OSC1、OSC2是时钟引脚,接20MHz晶振;OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死区控制电路才能送到逆变桥;OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作;AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测;BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V;AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V;ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑;AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变;CHARG引脚是充电控制输出,高电平有效;LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压;LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁;PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入 ,该引脚在逆变和市电状态都可以响应外部的保护请求;BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详细用法,将在后面介绍;NC引脚是空余的引脚,一定要接到高电平.在逆变状态下,OUTA、OUTB引脚输出的是双极性的SPWM脉冲序列,见图三所示:OUTA 输出的SPWM脉冲序列,经过逆变后对应正弦波的正半周;OUTB输出的SPWM脉冲序列,对应正弦波的负半周.逆变输出电压反馈引脚的作用是测量逆变输出的交流电压,根据测量值计算输出电压的误差并对输出电压值作出调整.当输出电压升高时,该引脚的电压也随之升高,芯片内部的调压电路会降低输出电压,反之,当该引脚的电压降低时,芯片会升高输出电压.该引脚采用的峰值电压取样法,如图四所示:图中的虚线标识就是芯片的取样点,峰值取样的优点是测量值准确、对电压变化反应迅速.在大多数情况下对于发生偏离的输出电压,芯片可以在1-5个交流电周期内调整完毕,为了降低正弦波形的失真度、保证波形的完整性,这种调整是在下一个交流电周期起作用的.该引脚也可以测量整流滤波后的直流电压(平均值),只是因为滤波电容的存在,使芯片对输出电压的变化反应迟钝.加在AV_CK 引脚上的电压必须是实时的,不能是静态的电压.例如:在某一应用中为了能够调节逆变输出电压,在该引脚施加了一个固定的直流电压,这个电压是可以调节的,但不是输出电压的反馈,这种情况是不允许的(但不会损坏芯片),因为这个电压不是反馈回来的,芯片始终会认为这个值偏高(或偏低),从而会一直做出相反的调整,直到把输出电压调到了最低(或最高),才会停止.芯片的调压 / 稳压范围大约是最高输出电压的50%-100%.该引脚能够测量的电压范围是 0-5V,为了保护该引脚不会因为过压而损坏,要在该引脚串接一只10K的电阻(特别重要).该引脚是以4.5V作为稳压基准的.AV_CK引脚同时还要检测输出电压的短路情况,短路检测的周期是100uS检测一次,同时检测的还有扩展保护引脚,但是在输出电压过零点的前后10度范围内不进行上述检测,在这段时间内,芯片要检测电池电压和市电电压以及市电状态.BT_CK引脚对电池电压检测的动作阀值:该引脚的电压低于1.9V为欠压保护;低于2V为欠压告警;低于2.4V时开始充电(在有市电时),高于2.8V时停止充电.充电控制引脚CHARG的动作带有10秒钟的延迟.并且每次上电芯片都尝试对电池进行充电.AC_CK引脚对市电电压检测的动作阀值:该引脚电压低于1.9V或者高于2.4V表示市电异常,芯片会自动转入逆变;该引脚带有施密特触发特性,在市电高于2V或者低于2.3V时,芯片才认为市电正常.蜂鸣器控制引脚BEEP/TEST是具有两个功能的双向引脚,它的外围电路建议如图五所示:正常情况下,跳线器TEST是断开的,由BEEP/TEST引脚输出的蜂鸣信号通过R3、C1、D1、Q1驱动电磁蜂鸣器发声;在芯片加电启动的过程中,若芯片检测到TEST跳线短接,就会进入测试状态.在测试状态,芯片不理会各种保护信号和市电状态,始终处在可以稳压、调压的逆变状态.图五中的R1为TEST跳线提供高电平上拉,R2是为了及时释放掉C3上的电压,保证跳线未短接时BEEP/TEST引脚是低电平.改变跳线后要对芯片重新加电.蜂鸣器采用不同长度的发声来代表芯片的状态:市电/逆变切换时短鸣一声;电池欠压告警时以3秒钟的间隔短鸣;欠压、短路、扩展保护时以1秒的间隔短鸣;进入测试状态时短鸣两声. PCB布线时要注意的问题:一.时钟引脚要接一20MHz的普通晶振,晶体的两个引脚还要各接一只外部电容,尽管没有外部电容C,振荡电路也能起振,但为了工作稳定和避免干扰,最好采用15-30PF的电容; 二.三个模拟量测量引脚BT_CK、AC_CK、AV_CK的线条要尽可能短,并且能与地平行或者被地包围,以减小干扰;三.U3988的+5V供电和地线要单独到走电源,不要从其它的电路单元分支过来,这样可以把芯片受到的干扰降到最低程度;U3988芯片有两个系列:50Hz和60Hz.每个系列又有不同的版本变化,用户可以从芯片型号的后缀字符加以区分.如:U3988T5-50表示50Hz系列的T5版本,U3988T5-60表示60Hz系列的T5版本.目前U3988提供的版本是T8.RI2110;在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动和隔离驱动两种方式.美国IR公司生产的IR2110驱动器,兼有光耦隔离和电磁隔离的优点,是中小功率变换装置中驱动器件的首选.IR2110引脚功能及特点简介内部功能如图4.18所示:LO(引脚1):低端输出COM(引脚2):公共端Vcc(引脚3):低端固定电源电压Nc(引脚4): 空端Vs(引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压HO(引脚7):高端输出Nc(引脚8): 空端VDD(引脚9):逻辑电源电压HIN(引脚10): 逻辑高端输入SD(引脚11):关断LIN(引脚12):逻辑低端输入Vss(引脚13):逻辑电路地电位端,其值可以为0VNc(引脚14):空端IR2110的特点:(1)具有独立的低端和高端输入通道.(2)悬浮电源采用自举电路,其高端工作电压可达500V.(3)输出的电源端(脚3)的电压范围为10—20V.(4)逻辑电源的输入范围(脚9)5—15V,可方便的与TTL,CMOS电平相匹配,而且逻辑电源地和功率电源地之间允许有 V的便移量.(5)工作频率高,可达500KHz.(6)开通、关断延迟小,分别为120ns和94ns.(7)图腾柱输出峰值电流2A.桥电路驱动原理IR2110内部功能由三部分组成:逻辑输入;电平平移及输出保护.如上所述IR2110的特点,可以为装置的设计带来许多方便.尤其是高端悬浮自举电源的设计,可以大大减少驱动电源的数目,即一组电源即可实现对上下端的控制.高端侧悬浮驱动的自举原理:IR2110驱动半桥的电路如图所示,其中C1,VD1分别为自举电容和自举二极管,C2为VCC 的滤波电容.假定在S1关断期间C1已经充到足够的电压(VC1 VCC).当HIN为高电平时如图4.19 :VM1开通,VM2关断,VC1加到S1的栅极和源极之间,C1通过VM1,Rg1和栅极和源极形成回路放电,这时C1就相当于一个电压源,从而使S1导通.由于LIN与HIN是一对互补输入信号,所以此时LIN为低电平,VM3关断,VM4导通,这时聚集在S2栅极和源极的电荷在芯片内部通过Rg2迅速对地放电,由于死区时间影响使S2在S1开通之前迅速关断.当HIN为低电平时如图4.20:VM1关断,VM2导通,这时聚集在S1栅极和源极的电荷在芯片内部通过Rg1迅速放电使S1关断.经过短暂的死区时间LIN为高电平,VM3导通,VM4关断使VCC经过Rg2和S2的栅极和源极形成回路,使S2开通.在此同时VCC经自举二极管,C1和S2形成回路,对C1进行充电,迅速为C1补充能量,如此循环反复./play/4356/1.html/html/zipaitoupai/list_5_6.html。
300w正弦波逆变器毕业设计
300w正弦波逆变器毕业设计摘要:I.引言- 介绍300w正弦波逆变器毕业设计的背景和意义II.逆变器原理- 解释逆变器的作用和基本原理- 介绍正弦波逆变器的特点和优势III.设计方案- 详述300w正弦波逆变器的设计方案- 包括电路原理图、元器件选型和参数设计等IV.电路实现- 介绍300w正弦波逆变器的具体电路实现- 包括主电路、控制电路和辅助电路等V.调试与测试- 详述300w正弦波逆变器的调试和测试过程- 包括测试仪器、测试方法和测试结果等VI.总结与展望- 总结300w正弦波逆变器毕业设计的主要成果和经验- 展望逆变器技术的未来发展前景正文:I.引言随着可再生能源的广泛应用,逆变器在电力系统中发挥着越来越重要的作用。
其中,300w正弦波逆变器作为一种典型的电力电子设备,具有高效、稳定和可靠等特点,广泛应用于太阳能发电、风力发电等领域。
本文将详细介绍300w正弦波逆变器的设计和实现过程,为相关领域的研究提供参考。
II.逆变器原理逆变器是一种将直流电转换为交流电的电力电子设备,其作用是将电池、太阳能电池板等直流电源转换为家用电器、照明设备等所需的交流电源。
正弦波逆变器是逆变器的一种类型,其输出电压波形为正弦波,具有较高的电压质量和电磁兼容性,适用于对电源质量要求较高的场合。
III.设计方案300w正弦波逆变器的设计方案主要包括电路原理图、元器件选型和参数设计等。
电路原理图主要包括输入电路、逆变器主体电路、输出电路和控制电路等部分。
元器件选型主要根据电路原理图和性能指标要求,选择合适的半导体器件、电容、电感等元器件。
参数设计主要包括器件参数、电路参数和控制策略等,以满足性能要求和可靠性要求。
IV.电路实现300w正弦波逆变器的具体电路实现主要包括主电路、控制电路和辅助电路等。
主电路采用全桥逆变器拓扑结构,实现直流电到交流电的转换。
控制电路采用SPWM(正弦波脉宽调制)技术,实现对逆变器输出电压波形的调制。
电力电子课程设计:正弦波逆变器设计
逆变器的概述逆变器(inverter)是将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。
它由逆变桥、控制逻辑和滤波电路组成。
主要用于把直流电力转换成交流电力。
一般由升压回路和逆变桥式回路构成。
升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。
广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、油烟机、冰箱,录像机、按摩器、风扇、照明等。
引言电力系统变电站和调度所的继电保护和综合自动化管理设备有的是单相交流供电的,其中有一部分是不能长时间停电的。
普通UPS设备因受内置蓄电池容量的限制,供电时间比较有限,而直流操作电源所带的蓄电池容量一般都比较大,所以需要一套逆变电源将直流电逆变成单相交流电。
电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。
目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。
IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。
它的并联不成问题,由于本身的关断延迟很短,其串联也容易。
尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦波逆变器逆变主电路介绍主电路及其仿真波形图1主电路的仿真原理图图1.1是输出电压的波形和输出电感电流的波形。
上部分为输出电压波形,下面为电感电流波形。
图1.1输出电压和输出电感电流的波形图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。
图1.2 开关管波形从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。
图1.3放大的开关管波形图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。
从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。
图1.4工作模态仿真波形图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电感电流波形、S3驱动波形、S1驱动波形。
从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。
根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。
图1.5开关管的驱动电压波形和电感电流波形2 滤波环节参数设计与仿真分析2.1 输出滤波电感和电容的选取对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。
滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。
C f 越大,则THD小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。
逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。
要保证输出的谐波含量较低,滤波电感的感值不能太小。
增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。
不仅如此,滤波电感的大小还影响逆变器的动态特性。
滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。
而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。
综合以上的分析,在LC 滤波器的参数设计时应综合考虑。
本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。
电容的电抗为112C X C fC ωπ==,C X 随频率的升高而减小。
1L Cωω=所对应的频率为谐振频率c f,即1cf =。
设逆变器输出电压的基波频率为0f ,开关频率为s f ,则有0f cf s f 。
由于0f c f ,故001L Cωω,电感对基波信号的阻抗小,电容对基波分流信号很小,即基波器允许基波信号通过。
由于c f s f ,故1s s L Cωω,电感对开关频率分量阻抗很大,电容对开关频率分量分流很大,即滤波器不允许开关频率分量通过,更不允许它的高次谐波分量通过。
则该滤波器可以满足滤波要求。
由于采用了高频开关技术,输出正弦波的谐波分量主要集中在开关电源附近,因此谐振频率可以选得较高。
设1ρ=,而谐振频率c f =,则可得L 、C 的计算公式:2c L f ρπ=,12c C f πρ=(式1-1) 本文的逆变电源功率为输出电压为235V ,开关频率为15KHZ ,额定负载为56Ω。
ρ一般取额定负载L R 的0.4~0.8倍,而f c一般取开关频率的0.04~0.1倍,本设计取0.08c s f f =,0.6L R ρ=,则由式(1-1)可计算出:33.6 4.4622 3.141200f C L mH f ρπ==≈⨯⨯(式1-2) 11 3.94922 3.14120033.6f C C F f μπρ==≈⨯⨯⨯(式1-3) 2.2输出滤波电感的设计本文f L 为4.46mH 。
滤波电容电流的有效值为:6002 3.14100 3.949102350.583cf f I C U A ω-==⨯⨯⨯⨯⨯≈ (式2-1) 110%负载时,负载的电流有效值为max max 1000110% 4.681235o o O P I A U ⨯==≈(式2-2)容性负载时电感电流最大,因此电感电流的有效值为:5.08Lf I A =≈(式2-3)其中,1cos 0.75L ϕ-=。
考虑到滤波电感电流的脉动量,滤波电感的电流峰值为:max (1 1.1 5.087.90Lf Lf I A=+=⨯⨯≈(式2-4) 电感选用MnZn - 2R KBD 型铁氧体材料铁心6249PM ⨯,其磁路截面积24.9()C S cm =,窗口面积23.26()Q cm =, 3500m B GS =,滤波电感的匝数为:3max444.46107.90205.44350010 4.910f Lf m C L I N B S ---⨯⨯==≈⨯⨯⨯(式2-5) 取N=206匝,气隙:200.40.58558C f N S L cm δπ==。
按滤波电感电流有效值 5.08Lf I A =。
选取导线,取23j A mm =,导线的截面积为2623Lf I j mm ==,导线选用0.12cm ⨯的铜皮。
窗口利用系数0.1202060.120 1.26326K N Q u ⨯⨯=⨯⨯==,可以成功绕制。
2.3滤波环节仿真分析为了验证滤波环节的参数设计,根据主电路拓扑结构,对电容和电感值进行了仿真分析。
图2.1(a )的参数为: 4.46f L mH =, 3.949f C F μ=,可以明显看出输出电压的波形优于其他两个输出波形;图 2.1(b )为0.446f L mH =的输出电压波形,从图中可以看出,由于电感的值变小,输出电压的谐波含量变大;图2.1(c )为12f C F μ=,的输出电压波形,由于电容的过大,反而使输出电压的纹波加大。
(a )标准输出电压波形(b)L=0.446mH,输出电压波形(b)C=10µF,输出电压波形图2.1 滤波环节参数仿真分析3: 逆变数字控制系统硬件设计数字信号处理器(Digital Signal Processor, DSP )是针对数字信号处理的需求而设计的一种可编程的单片机,也称DSP 芯片,是现代电子技术、计算机技术和信号处理技术相结合的产物。
DSP 在20世纪70年代有了飞速的发展,到20世纪80年代,数字信号处理已应用到各个工程技术领域,不管在军用还是在民用系统中都发挥了积极的作用。
工作中常见的应用有传真机、调制解调器、磁盘驱动器和电机控制等。
而数码相机、MP3和手机等都是日常生活中DSP 的典型应用。
3.1 HPWM 调制方式下ZVS 的实现逆变电源越来越趋向高频化设计,传统的硬开关所固有的缺陷变得不可容忍:开关元件开通和关断损耗大;容性开通问题;二极管反向恢复问题;感性关断问题;硬开关电路的EMI问题。
因此,有必要寻求较好的解决方案尽量减少或消除硬开关带来的各种问题。
软开关技术是克服以上缺陷的有效办法。
最理想的软开通过程是:电压先下降到零后,电流再缓慢上升到通态值,开通损耗近零。
因功率管开通前电压已下降到零,其结电容上的电压即为零,故解决了容性开通问题,同时也意味着二极管已经截止,其反向恢复过程结束,因此二极管的反向恢复问题亦不复存在。
最理想的软关断过程为:电流先下降到零,电压再缓慢上升到断态值,所以关断损耗近似为零。
由于功率管关断前电流已下降到零,即线路电感中电流亦为零,所以感性关断问题得以解决。
基于此,本文采用了全桥逆变桥HPWM控制方式实现ZVS软开关技术,其设计思路是在尽量不改变硬开关拓扑结构的前提下即尽量不增加或少增加辅助元件的前提下,有效利用现有的电路元件及功率管的寄生参数,为逆变桥主功率管创造ZVS软开关条件,最大限度的实现ZVS。
从而达到减少电路损耗,降低EMI,提高可靠性的目的。
HPWM软开关方式在整个输出电压的一个周期共有12种开关状态,基于正负半周两个桥臂工作的对称性,以输出电压正半周为例,分析其一个开关周期工作模态。
如图2.2为输出电压正半周的一个开关周期的电路的主要波形,此时S4工作在常通状态,S2处于关断状态,S1和S3处于互补调制状态。
由于载波的频率远大于输出电压基波频率,在一个开关周期Ts 近似认为输出电压U保持不变,电感电流的相邻开关周期的瞬时极值不变。
Uge1Uc1Uc3Uge3I 1i L-I 0t 0t 1t 6t 5t 4t 3t 2i ds1i ds3图2.2 ZVS 主要工作波形1、模式A ,从t 0和t 1时刻,对应的电路等效工作模式如图2.3。
图2.3模式A 电路等效工作模式图S1和S4导通,电路为正电压输出模式,滤波电感电流线性增加,直到t 1时刻S1关断为止。
电感电流:()dLfU Ui t tL-=(式3-1)2、模式B,从t1和t2时刻,对应的电路等效工作模式如图2.4。
图2.4模式B电路等效工作模式图在t1时刻,S1关断,电感电流从S1中转移到C1和C3支路,给C1充电,同时给C3放电。
由于C1、C3的存在,S1为零电压关断。
在此很短的时间,可以认为电感电流近似不变,为恒流源,则C1两端电压线性上升,C3两端电压线性下降。
到t2时刻,C3电压下降到零,S3的体二极管D3自然导通,电路模式B 结束。
11()LI i t=(式3-2)11()2CeffIU t tC=(式3-3)13()2C deffIU t U tC=-(式3-4)3、模式C,从t2和t3时刻, 对应的电路等效工作模式如图3.6。
图3.6模式C电路等效工作模式图D3导通后,开通S3,所以S3为零电压开通。
电流由D3向S3转移,此时S 3工作于同步整流状态,电流基本上由S3流过,电路处于零态续流状态,电感电流线性减小,直到t3时刻,减小到零。
此期间要保证S3实现ZVS,则S1关断和S3开通之间需要死区时间1deadt,并且满足以下要求:112eff ddeadC UtI>(式3-5)1()LfUi t I tL=-(式3-6)4、模式D,从t3和t4时刻, 对应的电路等效工作模式如图3.7。
图3.7模式D电路等效工作模式图在此模式加在滤波电感Lf上的电压为-U0,则电感电流开始由零向负向增加,电路处于零态储能状态,S3中的电流也相应由零正向增加,到t4时刻S3关断,结束D模式。