2构造全等三角形的六种常用方法
构造全等三角形的四种技巧
构造全等三角形的四种技巧在几何学中,全等三角形是一个非常重要的概念。
全等三角形是指两个或两个以上的三角形,它们的形状和大小完全相同。
理解并能够构造全等三角形,对于解决各种几何问题有着至关重要的作用。
以下是构造全等三角形的四种技巧:利用公理:全等三角形的公理是:如果两个三角形的三边对应相等,那么这两个三角形全等。
这个公理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后根据这些边长画出两个三角形。
这两个三角形的形状和大小将会完全相同。
利用角平分线:角平分线定理指出,一个角的平分线将对应的边分为两段,这两段与角的两边形成的两个小三角形是全等的。
通过这个定理,你可以通过一个角的平分线,构造出一个全等三角形。
利用中垂线:中垂线定理指出,一条中垂线将一个线段分为两段,这两段与线段的两端形成的两个小三角形是全等的。
这个定理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后通过中垂线将这些边分为两段。
这样,你就可以得到两个全等的三角形。
利用平行线:平行线定理指出,如果两条平行线被第三条直线所截,那么截得的对应线段成比例。
这个定理可以用来构造全等三角形。
确定你需要构造的全等三角形的所有边长,然后在两条平行线上画出对应的线段。
由于这些线段成比例,因此它们形成的两个小三角形是相似的。
如果这些相似三角形的对应边长度相等,那么它们就是全等的。
以上就是构造全等三角形的四种技巧。
理解和掌握这些技巧,对于解决各种几何问题有着重要的作用。
已知两个三角形全等,则它们对应边上的高也________;对应角平分线也________;对应边上的中线也________。
两个直角三角形全等,除了用定义外,还可以用以下________判定。
已知三角形ABC全等三角形DEF,且AB=18cm,BC=20cm,CA=15cm,则DE=________cm,DF=________cm,EF=________cm.做衣服需要依据身体部位的大小来选择布料,而教学则需要依据学生原有的知识基础来选择教学方法。
构造全等三角形的技巧大全【难】——八年级数学上册同步精华
第8讲 构造全等三角形的技巧【难】【补形法】 1、【★★】如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD+∠C=180°,求证:AD=CD 。
2、【★★仿上题】如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.【难点突破】有角平分线时的辅助线1——作边的垂线,可得两组全等三角形3、【★★】已知:如图,在△ABC 中.∠BCA=90°,AC=BC ,AE 平分∠BAC ,BE ⊥AE .求证:BE=21AD .【难点突破】有角平分线时的辅助线2——作角平分线的垂线,可得两组全等三角形4、【★★】如图,∠AOB=90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.【难点突破】有两个内角互补的四边形——当图中∠P+∠O=180时,∠D=∠ACP 。
为什么?5、【★★★】如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB= ∠DCB=90°,则四边形ABCD 的面积为____。
【难点突破】求不规则图形面积的重要方法——图形拼接。
6、【仿上题,★★★】如图,在四边形ABCD中,AB=AD ,∠BAD=∠BCD =90°,若AC=6,则四边形ABCD 的面积为________.【难点突破】和上题完全一样,换个方向就不认识了! 7、【★★★】如图,在直角梯形ABCD 中,AD//BC ,∠C =90°,AD =5,BC =9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,求△ADE 的面积【难点突破】旋转——对应边相等。
(AE=AB )8、【★★★】如图,在△ABC 中,∠ACB=90°,AB=2,点D 是线段AC 上的点,点E 是线段CB 延长线上的点,且BE=AD ,连接DE 交AB 于点F ,过点D 作DG ⊥AB ,垂足为G ,则线段FG 的长为_________.【难点突破】给你相等的线段就是要构造全等三角形。
全等三角形证明方法总结
❸由中点想到的辅助线 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长及其相关性质 (等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。
8
(1)中线把原三角形分成两个面积相等的小三角形 即如图 1,AD 是 ΔABC 的中线,则 SΔABD=SΔACD= SΔABC(因为 ΔABD 与 ΔACD 是等底同高的)。
成全等三角形
全等
造全等,则 P 是中点
三角形
图中有角平分线,可向两边 图中有角平分线,沿它对折 角平分线加垂线,“三线合 角平分线+平行线,等腰三
作垂线
关系现
一”试试看
角形必呈现
角平分线的常见倒角模型及相关结论 已知△ABC 中,BP,CP 分别为角平分线且交于点 P,探讨∠BPC 与∠A 的关系
角平 分线 倒角 模型
证法二:连接 AD,并延长交 BC 于 F
G
E
D
∵∠BDF 是△ABD 的外角 ∴∠BDF>∠BAD,同理,∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD
B
F
C
图2 1
即:∠BDC>∠BAC。
注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内 角位置上,再利用不等式性质证明。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠
BDC 处于在外角的位置,∠BAC 处于在内角的位置;
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC
(完整版)全等三角形证明方法(最新整理)
全等三角形的证明方法一、三角形全等的判定:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).二、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的高对应相等;(4)全等三角形的对应角的角平分线相等;(5)全等三角形的对应边上的中线相等;三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
①积极发现隐含条件:公共角对顶角公共边②观察发现等角等边:等边对等角同角的余角相等同角的补角相等等角对等边等角的余角相等等角的补角相等③推理发现等边等角:图1:平行转化图2 :等角转化图3:中点转化图4 :等量和转化图5:等量差转化图6:角平分线性质转化图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化图11:等段转化四、构造辅助线的常用方法:1、关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构造全等:如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
专题03 全等三角形的六种模型全梳理(解析版)-2024年常考压轴题攻略(8年级上册人教版)
专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
三角形全等添加辅助线的5种常用方法
三角形全等添加辅助线的5种常用方法
三角形全等的证明及相关问题,是初中几何部分的基础,也是重点和难点,不管是在中考还是平时的考试中,都是高频出现。
全等三角形的基础知识点就那么几条,很容易掌握,但是一般考试中的题目,不可能直接给出几组条件让我们直接写出证明过程,很多时候都要经过分析思考,添加辅助线,才能得到全等三角形。
下面就简单介绍一下构造全等三角形的五种常用方法。
一、等腰三角形三线合一法
当我们遇到等腰三角形(等边三角形)相关题目时,用三线合一性质,很容易找出思路。
它的原理就是利用三角形全等变换中的对折重叠。
我们来看一个例题:
二、倍长中线法
遇到一个中点的时候,通常会延长经过该中点的线段。
倍长中线指延长中线至一点,使所延长部分与该中线相等,并连接该点与这一条边的一个顶点,得到两个三角形全等。
如图所示,点D为△ABC边BC的中点.延长AD至点E,使得DE=AD,并连接BE,则△ADC≌△EDB(SAS)。
我们来看一个例题:
三、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。
可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
在很多综合几何题当中,关于角平分线的辅助线添加方法最常用的就是这个。
看看在具体题目中怎么操作吧!
四、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。
五、截长补短法
题目中出现线段之间的和、差、倍、分时,考虑截长补短法;截长补短的目的是把几条线段之间的数量关系转换为两条线段间的等量关系。
(完整版)几种证明全等三角形添加辅助线的方法
教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。
现分类加以说明。
一、延长中线构造全等三角形例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。
证明:延长AD至E,使AD=DE,连接CE。
如图2。
∵AD是△ABC的中线,∴BD=CD。
又∵∠1=∠2,AD=DE,∴△ABD≌△ECD(SAS)。
AB=CE。
∵在△ACE中,CE+AC>AE,∴AB+AC>2AD。
二、沿角平分线翻折构造全等三角形例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。
求证:AB+BD=AC。
证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。
如图4。
∵∠1=∠2,AD=AD,AB=AE,∴△ABD≌△AED(SAS)。
∴BD=ED,∠ABC=∠AED=2∠C。
而∠AED=∠C+∠EDC,∴∠C=∠EDC。
所以EC=ED=BD。
∵AC=AE+EC,∴AB+BD=AC。
三、作平行线构造全等三角形例3. 如图5,△ABC中,AB=AC。
E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。
求证:EF=FD。
证明:过E作EM∥AC交BC于M,如图6。
则∠EMB=∠ACB,∠MEF=∠CDF。
∵AB=AC,∴∠B=∠ACB。
∴∠B=∠EMB。
故EM=BE。
∵BE=CD,∴EM=CD。
又∵∠EFM=∠DFC,∠MEF=∠CDF,∴△EFM≌△DFC(AAS)。
EF=FD。
四、作垂线构造全等三角形例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。
M是AC边的中点。
AD ⊥BM交BC于D,交BM于E。
求证:∠AMB=∠DMC。
证明:作CF⊥AC交AD的延长线于F。
如图8。
∵∠BAC=90°,AD⊥BM,∴∠FAC=∠ABM=90°-∠BAE。
∵AB=AC,∠BAM=∠ACF=90°,∴△ABM≌△CAF(ASA)。
全等三角形的六种判定
全等三角形的六种判定
判定全等三角形(包括直角三角形全等的判定)有六种方法:(1)定义法:两个完全重合的三角形全等。
(2)SSS:三个对应边相等的三角形全等。
(3)SAS:两边及其夹角对应相等的三角形全等。
(4)ASA:两角及其夹边对应相等的三角形全等。
(5)AAS:两角及其中一角的对边对应相等的三角形全等。
(6)HL:斜边和一条直角边对应相等的两个直角三角形全等。
①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
中考数学专题《全等三角形中的六种模型梳理》解析
专题02 全等三角形中的六种模型梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。
目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中去。
例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC的边BC到D,使DC=BC,过D作DE△AB交AC延长线于点E,求证:△ABC△△EDC.【理解与应用】如图2,已知在△ABC中,点E在边BC上且△CAE=△B,点E是CD的中点,若AD平分△BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.【变式训练1】如图1,在ABC 中,CM 是AB 边的中线,BCN BCM ∠=∠交AB 延长线于点N ,2CM CN =.(1)求证AC BN =;(2)如图2,NP 平分ANC ∠交CM 于点P ,交BC 于点O ,若120AMC ∠=︒,CP kAC =,求CPCM的值.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>; (2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+; (3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【变式训练3】在ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,BM ⊥直线a 于点M .CN ⊥直线a 于点N ,连接PM ,PN .(1)如图1,若点B ,P 在直线a 的异侧,延长MP 交CN 于点E .求证:PM PE =.(2)若直线a 绕点A 旋转到图2的位置时,点B ,P 在直线a 的同侧,其它条件不变,此时7BMP CNP S S +=△△,1BM =,3CN =,求MN 的长度.(3)若过P 点作PG ⊥直线a 于点G .试探究线段PG 、BM 和CN 的关系.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例.在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,P 为△ABC 外一点,且△MPN =60°,△BPC =120°,BP =CP .探究:当点M 、N 分别在直线AB 、AC 上移动时,BM ,NC ,MN 之间的数量关系.(1)如图①,当点M 、N 在边AB 、AC 上,且PM =PN 时,试说明MN =BM +CN . (2)如图②,当点M 、N 在边AB 、AC 上,且PM ≠PN 时,MN =BM +CN 还成立吗? 答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M 、N 分别在边AB 、CA 的延长线上时,请直接写出BM ,NC ,MN 之间的数量关系.【变式训练1】如图,在四边形ABCD 中,,180AB AD B ADC =∠+∠=︒,点E 、F 分别在直线BC 、CD 上,且12EAF BAD ∠=∠.(1)当点E 、F 分别在边BC 、CD 上时(如图1),请说明EF BE FD =+的理由.(2)当点E 、F 分别在边BC 、CD 延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF 、BE 、FD 之间的数量关系,并说明理由.【变式训练2】(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,180A C ∠+∠=︒.求证:DA DC =.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题; 方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题. 结合图1,在方法1和方法2中任选一种....,添加辅助线并完成证明. (2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC ∠=︒时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C ∠+∠=︒,DA DC =,过点D 作DE BC ⊥,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.【变式训练3】在ABC 中,BE ,CD 为ABC 的角平分线,BE ,CD 交于点F . (1)求证:1902BFC A ∠=︒+∠;(2)已知60A ∠=︒.①如图1,若4BD =, 6.5BC =,求CE 的长; ②如图2,若BF AC =,求AEB ∠的大小.类型三、做平行线证明全等 例1.如图所示:ABC 是等边三角形,D 、E 分别是AB 及AC 延长线上的一点,且BD CE =,连接DE 交BC 于点M . 求让:MD ME =【变式训练1】 P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D . (1)证明:PD =DQ .(2)如图2,过P 作PE △AC 于E ,若AB =6,求DE 的长.【变式训练2】已知在等腰△ABC 中,AB =AC ,在射线CA 上截取线段CE ,在射线AB 上截取线段BD ,连接DE ,DE 所在直线交直线BC 与点M .请探究:(1)如图(1),当点E 在线段AC 上,点D 在AB 延长线上时,若BD =CE ,请判断线段MD 和线段ME 的数量关系,并证明你的结论.(2)如图(2),当点E 在CA 的延长线上,点D 在AB 的延长线上时,若BD =CE ,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;类型四、旋转模型 例.如图1,AC BC =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点M ,连接CM .(1)求证:BE AD =,并用含α的式子表示AMB ∠的度数;(2)当90α=︒时,取AD ,BE 的中点分别为点P 、Q ,连接CP ,CQ ,PQ ,如图2,判断CPQ 的形状,并加以证明.【变式训练1】四边形ABCD 是由等边ABC ∆和顶角为120︒的等腰ABD ∆排成,将一个60︒角顶点放在D 处,将60︒角绕D 点旋转,该60︒交两边分别交直线BC 、AC 于M 、N ,交直线AB 于E 、F 两点.(1)当E 、F 都在线段AB 上时(如图1),请证明:BM AN MN +=;(2)当点E 在边BA 的延长线上时(如图2),请你写出线段MB ,AN 和MN 之间的数量关系,并证明你的结论;(3)在(1)的条件下,若7AC =, 2.1AE =,请直接写出MB 的长为 .【变式训练2】(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE .则:①△AEB 的度数为 °;②线段AD 、BE 之间的数量关系是 . (2)拓展研究:如图2,△ACB 和△DCE 均为等腰三角形,且△ACB =△DCE =90°,点 A 、D 、E 在同一直线上,若AD =a ,AE =b ,AB =c ,求a 、b 、c 之间的数量关系. (3)探究发现:图1中的△ACB 和△DCE ,在△DCE 旋转过程中,当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索△AOE 的度数,直接写出结果,不必说明理由.【变式训练3】如图1,在Rt ABC 中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______. (2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.类型五、手拉手模型例.在等边ABC 中,点D 在AB 上,点E 在BC 上,将线段DE 绕点D 逆时针旋转60°得到线段DF ,连接CF .(1)如图(1),点D 是AB 的中点,点E 与点C 重合,连接AF .若6AB =,求AF 的长; (2)如图(2),点G 在AC 上且60AGD FCB ∠=︒+∠,求证:CF DG =;(3)如图(3),6AB =,2BD CE =,连接AF .过点F 作AF 的垂线交AC 于点P ,连接BP 、DP .将BDP △沿着BP 翻折得到BQP ,连接QC .当ADP △的周长最小时,直接写出CPQ 的面积.【变式训练1】△ACB 和△DCE 是共顶点C 的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A ,D ,E 在同一直线上,连接AE ,BE . ①求证:△ACD △△BCE ;②求△AEB 的度数.(2)类比探究:如图2,点B 、D 、E 在同一直线上,连接AE ,AD ,BE ,CM 为△DCE 中DE 边上的高,请求△ADB 的度数及线段DB ,AD ,DM 之间的数量关系,并说明理由. (3)拓展延伸:如图3,若设AD (或其延长线)与BE 的所夹锐角为α,则你认为α为多少度,并证明.【变式训练2】(1)如图1,锐角△ABC 中,分别以AB 、AC 为边向外作等腰直角△ABE 和等腰直角△ACD ,使AE =AB ,AD =AC ,∠BAE =∠CAD =90°,连接BD ,CE ,试猜想BD 与CE 的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD 中,AB =5,BC =2,∠ABC =∠ACD =∠ADC =45°,求BD 2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD 全等的三角形,将BD 进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD 中,AB =BC ,∠ABC =60°,∠ADC =30°,AD =6,BD =10,则CD = .【变式训练3】(1)问题发现:如图1,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,连接AD ,BE ,点A 、D 、E 在同一条直线上,则AEB ∠的度数为__________,线段AD 、BE 之间的数量关系__________;(2)拓展探究:如图2,ACB △和DCE 均为等腰直角三角形,90ACB DCE ∠=∠=︒,连接AD ,BE ,点A 、D 、E 不在一条直线上,请判断线段AD 、BE 之间的数量关系和位置关系,并说明理由. (3)解决问题:如图3,ACB △和DCE 均为等腰三角形,ACB DCE α∠=∠=,则直线AD 和BE 的夹角为__________.(请用含α的式子表示)类型六、一线三角模型例.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC △CEB △;②DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【变式训练1】【问题解决】(1)已知△ABC 中,AB =AC ,D ,A ,E 三点都在直线l 上,且有△BDA =△AEC =△BAC .如图①,当△BAC =90°时,线段DE ,BD ,CE 的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<△BAC<180°时,线段DE,BD,CE的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC=BC,△ACB=90°,点C的坐标为(-2,0),点B的坐标为(1,2),请求出点A的坐标.【变式训练2】(1)如图1,在△ABC中,△BAC=90°,AB=AC,直线m经过点A,BD△直线m,CE△直线m,垂足分别为点D、E.求证:△ABD△△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问结论△ABD△△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为△BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若△BDA=△AEC=△BAC,求证:△DEF是等边三角形.【变式训练3】探究:(1)如图(1),已知:在△ABC中,△BAC=90°,AB=AC,直线m经过点A,BD△直线m,CE△直线m,垂足分别为点D、E.请直接写出线段BD,DE,CE之间的数量关系是.拓展:(2)如图(2),将探究中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有△BDA=△AEC=△BAC=α,其中α为任意锐角或钝角.请问探究中的结论是否成立?如成立,请你给出证明;若不成立,请说明理由.应用:(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为△BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若△BDA=△AEC=△BAC,请直接写出△DEF的形状是.。
证明全等的五种方法
证明全等的五种方法全等是几何中的一个重要概念,指的是两个图形在形状和大小上完全相同。
在证明两个图形全等时,通常可以使用以下五种方法:SAS、ASA、SSS、AAS和HL。
下面将分别介绍这五种方法的原理和应用。
1. SAS(边-角-边)SAS是三角形全等的一个重要准则,它表示如果两个三角形的两边和夹角分别相等,则这两个三角形全等。
具体地,如果在两个三角形ABC和DEF中,AB=DE,AC=DF,且∠BAC=∠EDF,则可以得出三角形ABC≌DEF。
这种方法常用于证明两个三角形全等的情况。
2. ASA(角-边-角)ASA也是三角形全等的一个重要准则,它表示如果两个三角形的两个角和夹边分别相等,则这两个三角形全等。
具体地,如果在两个三角形ABC和DEF中,∠BAC=∠EDF,∠ABC=∠DEF,且BC=EF,则可以得出三角形ABC≌DEF。
这种方法常用于证明两个三角形全等的情况。
3. SSS(边-边-边)SSS是三角形全等的一个重要准则,它表示如果两个三角形的三条边分别相等,则这两个三角形全等。
具体地,如果在两个三角形ABC和DEF中,AB=DE,BC=EF,且AC=DF,则可以得出三角形A BC≌DEF。
这种方法常用于证明两个三角形全等的情况。
4. AAS(角-角-边)AAS是三角形全等的一个重要准则,它表示如果两个三角形的两个角和非夹边的对边的夹角分别相等,则这两个三角形全等。
具体地,如果在两个三角形ABC和DEF中,∠BAC=∠EDF,∠ABC=∠DEF,且BC=EF,则可以得出三角形ABC≌DEF。
这种方法常用于证明两个三角形全等的情况。
5. HL(斜边-斜边-直角边)HL是直角三角形全等的一个重要准则,它表示如果两个直角三角形的一条斜边和直角边分别相等,则这两个直角三角形全等。
具体地,如果在两个直角三角形ABC和DEF中,AB=DE,且∠BAC=∠EDF,则可以得出直角三角形ABC≌DEF。
小专题(三) 构造全等三角形的常用方法
AB=FB, ∠ABE=∠FBE, BE=BE,
∴△ABE≌△FBE(SAS). ∴∠A=∠BFE.
∵AB∥CD, ∴∠A+∠D=180°. ∴∠BFE+∠D=180°. ∵∠BFE+∠CFE=180°, ∴∠CFE=∠D. 在△FCE和△DCE中,
方法2 利用“截长补短法”构造全等三角形
截长补短法的具体做法:在某一条线段上截取一条线 段与特定线段相等,或将某条线段延长,使之与特定线段 相等,再利用三角形全等的有关性质加以说明.这种方法 适用于证明线段的和、差、倍、分等题目.
2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点 E在AD上,求证:BC=AB+CD.
∠CFE=∠D, ∠FCE=∠DCE, CE=CE,
∴△FCE≌△DCE(AAS). ∴CF=CD. ∴BC=BF+CF=AB+CD.
3.(德州中考)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°, ∠B=∠ADC=90°.点E,F分别是BC,CD上的点,且 ∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系. (1)小王同学探究此问题的方法是:延长FD到点G,使 DG=BE,连接AG.先证明△ABE≌△ADG,再证明 △AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF;
(2) 如图 2,若在四边形 ABCD 中,AB=AD, ∠B+∠D=180°.E,F 分别是 BC,CD 上的点,
且∠EAF=12∠BAD,上述结论是否仍然成立?并说明理由. 解:EF=BE+DF仍然成立. 理由:延长FD到G,使DG=BE,连接AG, ∵∠B+∠ADC=180°,∠ADC+∠ADG=180°, ∴∠B=∠ADG. 在△ABE和△ADG中,
全等三角形证明方法总结
敷学培fit 方法*»1-2価明三廊形全箸(舍倦段相著、角相等)的几种方法一、三角形全等的判定:① 三组对应边分别相等的两个三角形全等(SSSJo 【最简单,考得也最少,考试过程中没有注意点】② 有两边及其夹角对应相等的两个三角形全等(SAS)。
【最常考,而且考试就考“角是不是两边夹角”】 r 当题目中得出“2对边及1对角相等”时,一定要检査“角是不是两边夹角“。
i ③ E鬲爲反養美另另航蒔京满不三浦花荃,新忑「① 有两角及一角的对边对应相等的两个三角形全等(AAS)o⑤直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)o F ............................ } j 直角三角形全等的特殊证法。
但当该方法不行时,前面的4种方法也能用来证明直角三角形全等。
: !如何找斜边:斜边是直角所对的边,只要找90。
的角所对的边就能找到斜边: ................................................................................................. J 二、全等三角形的性质: ① 全等三角形的对应边相等;全等三角形的对应角相等。
② 全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
①全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
几种常见全等三箱形的基本图形: 【平移】i 题目中只要得出“1对边及2对角相等",那就能证明三角\ ;形全等,唯一要做的就是区分好是ASA 还是AAS三、找全等三痢形的方法:①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中:②可以从己知条件出发,看己知条件可以确定哪两个三角形相等;③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;①若上述方法均不行,可考虑添加辅助线,构造全等三角形。
初中数学三角形全等常用几何模型及构造方法大全
初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。
B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2:对称半角模型说明:上图依次是45°、30°、 45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。
初中数学三角形全等常用几何模型及构造方法大全初二
初中数学三角形全等常用几何模型及构造方法大全初二文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。
B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2:对称半角模型说明:上图依次是45°、30°、 45+ °、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
初中数学三角形全等常用几何模型及构造方法大全
初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。
B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
2:对称半角模型说明:上图依次是45°、30°、 45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。
全等三角形证明方法总结-关于全等三角形的证明方法
如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,从而得到一个等腰三角形,可总结 为:“延分垂,等腰归”。
5
例题 3:如上右图所示,已知∠BAD=∠DAC,AB>AC,CD⊥AD 于 D,H 是 BC 中点。 求证:DH= (AB-AC) 提示:延长 CD 交 AB 于点 E,则可得全等三角形。问题可证。
成全等三角形
全等
造全等,则 P 是中点
三角形
图中有角平分线,可向两边 图中有角平分线,沿它对折 角平分线加垂线,“三线合 角平分线+平行线,等腰三
作垂线
关系现
一”试试看
角形必呈现
角平分线的常见倒角模型及相关结论 已知△ABC 中,BP,CP 分别为角平分线且交于点 P,探讨∠BPC 与∠A 的关系
角平 分线 倒角 模型
8、线段垂直平分线上的点 到线段两端距离相等
9、两全等三角形的对应边相等
10、等于同一线段的两线段相等
数形结合找条件【规律总结】
■已知两边
找另一边→SSS 找夹角→SAS 找直角→HL
■已知两角
找夹边→ASA 找除夹边外的任一边→AAS
■已知一边一角
找与边相邻的另一角A、OB 作垂线,垂足为 E、F,连接 DE、DF。 则有:DE=DF,△OED≌△OFD。
例题 2:如上右图所示,已知 AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180。
(3)作角平分线的垂线构造等腰三角形。 如下左图所示,从角的一边 OB 上的一点 E 作角平分线 OC 的垂线 EF,使之与角的另一边 OA 相交,则截
构造全等三角形种常用方法
构造全等三角形种常用方法在证明两个三角形全等时,选择三角形全等得五种方法(“SSS ”,“SA S”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等得边,因此在应用时要养成先找边得习惯。
如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边得夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角得另一组对应边用“SAS”;若就就是判定两个直角三角形全等则优先考虑“HL ”。
上述可归纳为:搞清了全等三角形得证题思路后,还要注意一些较难得一些证明问题,只要构造合适得全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了、下面举例说明几种常见得构造方法,供同学们参考、1、截长补短法例1、如图(1)已知:正方形ABCD 中,∠BAC 得平分线交B C于E ,求证:A B+BE=AC 、 解法(一)(补短法或补全法)延长AB 至F使AF=AC ,由已知△AEF ≌△AEC,∴∠F =∠ACE=45º, ∴BF =B E,∴AB+BE =A B+BF=AF=AC 、 解法(二)(截长法或分割法)在A C上截取AG=AB,由已知 △ AB E≌△AGE,∴EG=B E, ∠A GE=∠ABE,∵∠ACE =45º, ∴CG =EG, ∴AB +BE =AG+CG=AC、 2、平行线法(或平移法)若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边得中线、例2、△ABC 中,∠BAC=60°,∠C =40°A P平分∠BAC 交B C于P,B Q平分∠ABC 交A C于Q, 求证:A B+B P=BQ+A Q、证明:如图(1),过O 作O D∥BC 交AB 于D,∴∠ADO =∠ABC=180°-60°-40°=80°,又∵∠AQ O=∠C +∠QBC=80°,∴∠ADO=∠AQO ,又∵∠DA O=∠QAO ,OA=AO, ∴△ADO ≌△AQO,∴OD=O Q,AD=AQ ,又∵OD ∥BP,∴∠PBO=∠DOB ,又∵∠PBO=∠D BO,∴∠DBO=∠D OB,∴BD=O D,∴AB +BP=AD+DB+B P=A Q+OQ+B O=AQ+BQ 、说明:⑴本题也可以在AB 截取AD=AQ ,连OD,构造全等三角形,即“截长补短法”、⑵本题利用“平行法”解法也较多,举例如下: ① 如图(2),过O 作OD ∥BC 交AC 于D, 则△ADO ≌△ABO 来解决、 ② 如图(3),过O 作D E∥BC 交AB 于D,交AC 于E,则△ADO≌△AQ O,△A BO ≌△AE O来解决、 ③ 如图(4),过P作P D∥B Q交A B得延长线于D,则△A PD ≌△APC 来解决、 ④ 如图(5),过P 作PD ∥BQ 交A C于D, 则△AB P≌△ADP 来解决、 (本题作平行线得方法还很多,感兴趣A B C P Q D OO A B C P Q D图(2) A B C PQ D E 图(3) O A B C P Q图(4)DOA BCP Q 图(5)D OD得同学自己研究)、 3、旋转法对题目中出现有一个公共端点得相等线段时,可试用旋转方法构造全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
3
4
5
6
方法 1 翻折法
1.如图,在△ABC中,BE是∠ABC的平分线, AD⊥BE,垂足为D.
求证:∠2=∠1+∠C.
证明:如图,延长AD交BC于点F(相当于将AB边向下 翻折,与BC边重合,A点落在F点处,折痕 为BD).
∵BE平分∠ABC, ∴∠ABE=∠CBE. ∵BD⊥AD, ∴∠ADB=∠BDF=90°.
返回
方法 2 构造基础三角形法
2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D 为BC的中点,CE⊥AD于点E,其延长线交AB于点 F,连接DF.求证:
∠ADC=∠BDF.
证明:
∴△ACD≌△CBG(ASA). ∴∠ADC=∠G,CD=BG. ∵D为BC的中点,∴CD=BD. ∴BD=BG. ∵∠ACB=90°,AC=BC, ∴∠CBF=∠BAC=45°. 又∵∠DBG=90°,
∵AP平分∠BAC,∴∠DAO=∠QAO. 又∵OA=OA, ∴△ADO≌△AQO(AAS). ∴OD=OQ,AD=AQ. ∵OD∥BP,∴∠PBO=∠DOB. 又∵∠PBO=∠DBO,∴∠DBO=∠DOB. ∴BD=OD. ∴BD=OQ.
∵∠BAC=60°,∠ABC=80°, BQ平分∠ABC,AP平分∠BAC, ∴∠BAP=30°,∠ABQ=40°. ∴∠BOP=70°. ∵∠BAP=30°,∠ABC=80°, ∴∠APB=70°. ∴∠BOP=∠APB. ∴BO=BP. ∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ.
(2)解:∵AB-BE<AE<AB+BE, ∴AB-AC<2AD<AB+AC. ∵AB=5,AC=3, ∴2<2AD<8. ∴1<AD<4.
返回
方法 6 截长补短法
6.如图,AB∥CD,CE,BE分别平分∠BCD和 ∠CBA,点E在AD上.
求证:BC=A方法 5 倍长中线法
5.如图,在△ABC中,D为BC的中点. (1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围.
(1)证明:如图,延长AD至点E,使DE=AD,连接BE. ∵D为BC的中点,∴CD=BD. 又∵AD=ED,∠ADC=∠EDB, ∴△ADC≌△EDB(SAS). ∴AC=EB. ∵AB+BE>AE, ∴AB+AC>2AD.
返回
方法 3 旋转法 3.如图,在正方形ABCD中,E为BC上的一点,
F为CD上的一点,BE+DF=EF, 求∠EAF的度数.
解:
∴AH=AF,∠BAH=∠DAF. ∴∠BAH+∠BAF=∠DAF+∠BAF, 即∠HAF=∠BAD=90°. ∵BE+DF=EF, ∴BE+BH=EF, 则HE=EF.
返回
方法 4 平行线法
4.如图,在△ABC中,∠BAC=60°,∠C=40°,AP 平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q ,且AP与BQ相交于点O.
求证:AB+BP=AQ+BQ.
证明: 如图,过点O作OD∥BC交AB于点D, ∴∠ADO=∠ABC. ∵∠BAC=60°,∠C=40°, ∴∠ABC=80°. ∴∠ADO=80°. ∵BQ平分∠ABC,∴∠QBC=40°. ∴∠AQO=∠C+∠QBC=80°. ∴∠ADO=∠AQB.