九年级数学基础知识竞赛试卷及答案
九年级数学竞赛初赛试卷【含答案】
九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。
A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。
A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。
A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。
()2. 任何数乘以0都等于0。
()3. 二次函数的图像一定是一个抛物线。
()4. 平行四边形的对角线互相平分。
()5. 一元一次方程的解一定是整数。
()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。
2. 若等差数列的首项为a,公差为d,则第n项为______。
3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。
4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。
5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述二次函数的图像特点。
3. 简述勾股定理。
4. 简述平行线的性质。
5. 简述一元二次方程的解法。
五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。
2. 已知等差数列的首项为3,公差为2,求第10项。
3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。
4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。
初三数学竞赛试卷答案
一、选择题1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C解析:绝对值表示一个数与0的距离,因此绝对值最小的数是0。
2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 2答案:A解析:根据不等式的性质,两边同时加上或减去同一个数,不等号的方向不变。
3. 已知一元二次方程x^2 - 5x + 6 = 0,则其判别式Δ等于()A. 1B. 4C. 9D. 16答案:B解析:一元二次方程的判别式Δ = b^2 - 4ac,代入a = 1, b = -5, c = 6,得Δ = (-5)^2 - 4×1×6 = 25 - 24 = 1。
4. 在直角坐标系中,点P(2, 3)关于y轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:B解析:关于y轴对称的点,其横坐标互为相反数,纵坐标相同。
5. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = x^3D. y = x^4答案:C解析:奇函数满足f(-x) = -f(x),代入选项中只有y = x^3满足条件。
二、填空题6. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。
答案:37解析:利用平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 2×6 = 25 - 12 = 13。
7. 在等腰三角形ABC中,底边BC = 8,腰AB = AC = 10,则顶角A的度数为______。
答案:60°解析:在等腰三角形中,底边上的高将底边平分,因此顶角A的度数为60°。
8. 若等比数列的前三项分别为2,4,8,则该数列的公比q为______。
九年级数学竞赛题(含答案)
初三数学竞赛题(含答案)(全卷满分120分考试时间90分)姓名_________班级________指导教师_________ 得分_________一 .单项选择题(每题6分,共30分)1.22016-22017=( )A.-22016B.-2C. 22016D.22.若关于x 的多项式x 2-6x+m 2是一个完全平方式,则m=( ) A. 3 B. ±3 C. 9 D. ±93.圆锥的侧面展开是圆心角为90°的扇形,则圆锥的母线与底面半径之比为() A . 6:1 (B ). 4:1 (C ).3:1 (D ).2:14.如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形AB CD 外部的点A 1、D 1处,则阴影部分图形的周长为() A.15 B.20 C.25 D.305.如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF和EG .记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,n = ( )A.3B. 4C.6D.8第4题图第5题图二 .填空题(每题6分,共30分)6.已知2cos 2β+3sin β-3=0,则锐角β=________. 7.化简:324324--+=________8.(1+2+3+…+99)(2+3+4+…+100)-(1+2+3+…+100)(2+3+4+…99)=________. 9.已知关于x 的分式方程111=--++x kx k x 的解为负数,则k 的取值范围是_______. 10.如图,点A 1,A 2依次在的图象上,点B 1,B 2依次在x 轴的正半轴上,若ΔA 1OB 1 ,ΔA 2B 1B 2均 为等边三角形,则点B 2的坐标为 . 三.解答题(每题20分,共60分)11.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?BCAD12. 如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.13.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.数学竞赛答案1.A2.B3.D4. D5. C6.3007.28.1009. k>1/2, 且k≠1 10.(26,0)11. 解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x≥95,解不等式②得,x≤105,所以,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W,则W=(140﹣a)x+80(200﹣x)=(60﹣a)x+16000(95≤x≤105),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=95时,W有最大值,12. 解:(1)∵顶点A的横坐标为x==1,且顶点A在y=x-5上,∴当x=1时,y=1-5=-4,∴A(1,-4).(2)△ABD是直角三角形.将A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,∴c=-3,∴y=x2-2x-3,∴B(0,-3)当y=0时,x2-2x-3=0,x1=-1,x2=3∴C(-1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x-5交y轴于点A(0,-5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线并交于点C设P(x1,x1-5),则G(1,x1-5)则PC=|1-x1|,AG=|5-x1-4|=|1-x1|PA=BD=3由勾股定理得:(1-x1)2+(1-x1)2=18,x12-2x1-8=0,x1=-2,4∴P(-2,-7),P(4,-1)存在点P(-2,-7)或P(4,-1)使以点A.B.D.P为顶点的四边形是平行四边形.第12题图第13题图S△AEM =.13.(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE =,∴BE=6-=;(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=-+x=-(x-3)2+,∴AM=-5-CM ═(x-3)2+,∴当x=3时,AM 最短为,又∵当BE=x =3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE ==4,此时,EF⊥AC,∴EM ==,。
九年级数学竞赛试题(含答案)-
初三数学竞赛试题(本卷满分:120分,时间:120分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 20082、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。
(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中正确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________. 10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 .A BCG F E D11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。
初中数学竞赛题试卷及答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。
12. 一个圆的半径是r,则该圆的周长是______。
13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。
14. 函数f(x) = 2x - 1的图象是一条______。
浙教版九年级(上)数学基础知识竞赛试卷(含答案)-
温三中九年级数学竞赛试题班级 姓名 考号 得分一、选择题:(共7小题,每小题5分,满分35分) 1、函数y =1x-图象的大致形状是 ( )A B C D2、 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为 ( ) (A )1. (B )31. (C )31-. (D )21. 3、平面直角坐标系中,点A (x -,1y -)在第四象限,则点B (1y -,x )在 ( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 4、设c b a ,,是△ABC 的三边长,二次函数2)2(2ba cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( ) (A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形. 5、已知锐角△ABC 的顶点A 到垂心H (垂心为三条高线的交点)的距离等于它的外接圆的半径,则∠A 的度数是 ( )(A )30°; (B )450; (C )60°; (D )75°. 6、抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶点坐标是( )yxO yx OyxOyxOA .(0,-2)B .19,24⎛⎫-⎪⎝⎭ C .19,24⎛⎫- ⎪⎝⎭ D .19,24⎛⎫-- ⎪⎝⎭7、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心 ,正方形的对角线长为半径画弧,交数轴于点A ,点A 表示数x ,则x 2的平方根是 ( )(A ) 2± (B )2- (C )2 (D )2二、填空题:(共6小题,每题5分,满分30分)1、等腰三角形两个内角的度数之比为1︰2,这个等腰三角形底角的度数为 。
2、设正△ABC 的边长为a ,将△ABC 绕它的中心(正三角形外接圆的圆心)旋转60°得到对应的△A ′B ′C ′,则A ,B ′两点间的距离等于 。
初三数学竞赛试卷带答案
一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. -√2B. 0.5C. 3D. 2/32. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 4B. -4C. 3D. 13. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^34. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 若等差数列{an}的前n项和为Sn,且S5 = 50,S9 = 90,则公差d为()A. 2C. 4D. 5二、填空题(每题5分,共20分)6. 若一个数的平方等于它本身,则这个数是_______。
7. 二项式定理中,(x + y)^n展开式中,x的系数是_______。
8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = _______。
9. 若x^2 - 5x + 6 = 0,则x^2 - 5x的值为_______。
10. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长为_______。
三、解答题(每题10分,共30分)11. 解方程:3x^2 - 5x + 2 = 0。
12. 已知函数y = 2x - 3,求证:对于任意实数x1,x2,都有y1 + y2 ≥ 2y。
13. 在△ABC中,AB = AC,点D是边BC上的一点,且BD = DC。
若∠ADB = 40°,求∠A的度数。
答案一、选择题1. A2. A3. D4. A5. A二、填空题6. 07. C_n^1 x^(n-1) y9. -510. 28三、解答题11. 解:分解因式得 (3x - 2)(x - 1) = 0,所以 x = 2/3 或 x = 1。
12. 证明:设x1 < x2,则y1 = 2x1 - 3,y2 = 2x2 - 3。
初三数学竟赛试题及答案
初三数学竟赛试题及答案初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √42. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -13. 如果一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 54. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm5. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 任意数6. 一个数的绝对值是它本身,这个数是:A. 0B. 正数C. 负数D. 0或正数7. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-18. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -19. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -110. 一个数的平方是它本身,这个数是:A. 0B. 1C. -1D. 0, 1二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是______。
12. 一个数的绝对值是5,那么这个数是______。
13. 一个数的倒数是1/2,那么这个数是______。
14. 一个数的平方根是3,那么这个数是______。
15. 一个数的立方根是2,那么这个数是______。
三、解答题(每题10分,共50分)16. 计算:(3+2√2)(3-2√2)。
17. 证明:对于任意实数a和b,(a+b)^2 = a^2 + 2ab + b^2。
18. 已知一个等腰三角形的两边长分别为5和8,求第三边的长度。
19. 一个圆的面积是π,求这个圆的半径。
20. 解方程:x^2 - 5x + 6 = 0。
九年级数学竞赛试题及答案
九年数学竞赛试题一、选择题(每小题7分,共42分)1.在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点.设k 为整数,当直线y=x-2与y=kx+k的交点为整点时,k的值可以取( )(A)4个(B)5个(C)6个(D)7个2.如图,AB是⊙O的直径,C为AB上的一个动点(C点不与A、B重合),CD⊥AB,AD、CD分别交⊙O于E、F,则与AB·AC相等的一定是( )(A)AE·AD(B)AE·ED(C)CF·CD(D)CF·FD3.在△ABC与△A′B′C′中,已知AB<A′B′,BC<B′C′,CA<C′A′.下列结论:(1)△ABC的边AB上的高小于△A′B′C′的边A′B′上的高;(2)△ABC的面积小于△A′B′C′的面积;(3)△ABC的外接圆半径小于△A′B′C′的外接圆半径;(4)△ABC的内切圆半径小于△A′B′C′的内切圆半径.其中,正确结论的个数为( )(A)0 (B)1 (C)2 (D) 44.设,那么S与2的大小关系是( )(A)S=2 (B)S<2(C)S>2 (D)S与2之间的大小与x的取值有关5.折叠圆心为O、半径为10cm的圆纸片,使圆周上的某一点A与圆心O重合.对圆周上的每一点,都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线上点的全体为( )(A)以O为圆心、半径为10cm的圆周(B)以O为圆心、半径为5cm的圆周(C)以O为圆心、半径为5cm的圆内部分 (D)以O为圆心,半径为5cm的圆周及圆外部分6.已知x,y,z都是实数,且x2+y2+z2=1,则m=xy+yz+zx( )(A)只有最大值 (B)只有最小值(C)既有最大值又有最小值 (D)既无最大值又无最小值二、填空题(每小题7分,共56分)7.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于______.8.如图3,在△ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N,则AN:AB的值为______.9.如图,取一张长方形纸片,它的长AB=10cm,宽BC=5cm,然后以虚线CE(E点在AD上)为折痕,使D点落在AB边上.则AE=_____cm,∠DCE=______°.10.如图4,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD:DB=2:3,AC=10,sinB的值为_____11.直角三角形ABC中,∠A=90°,AB=5cm,AC=4cm,则∠A的平分线AD的长为______cm.12.如图,⊙C通过原点,并与坐标轴分别交于A,D两点.已知∠OBA=30°,点D的坐标为(0,2),则点A,C的坐标分别为A( , );C( , ).13.若关于x的方程rx2-(2r+7)x+(r+7)=0的根是正整数,则整数r的值可以是______.14.将2,3,4,5,…,n(n为大于4的整数)分成两组,使得每组中任意两数之和都不是完全平方数.那么,整数n可以取得的最大值是______.三、解答题(每题13分,共52分)15.九年(1)班尚剩班费m(m为小于400的整数)元,拟为每位同学买1本相册.某批发兼零售文具店规定:购相册50本起可按批发价出售,少于50本则按零售价出售,批发价比零售价每本便宜2元,班长若为每位同学买1本,刚好用完m元;但若多买12本给任课教师,可按批发价结算,也恰好只要m元.问该班有多少名同学?每本相册的零售价是多少元?16.已知关于x的方程x2+4x+3k-1=0的两个实根的平方和不小于这两个根的积;反比例函数的图像的两个分支在各自的象限内,点的纵坐标y随点的横坐标x的增大而减小.求满足上述条件的k的整数值.17.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.18.如图,在△ABC中,BC=6,AC=4,∠C=45°,P为BC上的动点,过P作PD∥AB交AC于点D,连结AP,△ABP、△APD、△CDP的面积分别记为S1,S2,S3,设BP=x.(1)试用x的代数式分别表示S1,S2,S3;(2)当P点位于BC上某处使得△APD的面积最大时,你能得出S1、S2、S3之间或S1、S2、S3两两之间的哪些数量关系(要求写出不少于3条)?九年数学竞赛试题答案一、选择题1.A2.A3.A4.D5.D6.C二、填空题7.377 8.1:39.,30 10.11.12.(,0),(,1) 13.0,1或7 14.2815.设该班共有x名同学,相册零售价每本y元.由题设,得xy=(x+12)(y-2),①且整数x满足38<x<50.②由①得12y-2x-24=0,y=+2,xy=+2x.③由③及xy=m为整数,知整数x必为6的倍数,再由②,x只可能为42或48.此时相应的y为9或10.但m<400,∴x=42,y=9.答:(略).16.由题意,方程x2+4x+3k-1=0①有实数根,故△=42-4(3k-1)≥0,解之,得k≤.②设x1,x2为①的根,由根与系数关系知x1+x2=-4,x1·x2=3k-1,因≥x1x2,故(x1+x2)2-3x1x2≥0,即(-4)2-3(3k-1)≥0,∴k≤.③又由当x>0或x<0时,分别随x值增大而减小,知1+5k>0,即k>-.④综合②③④,得-<k≤.∴满足题中条件的k可取整数值为0, 1.17.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529.②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5.③由①,②,③得:④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186.得54<y<.由于y是整数,得y=55,从而得x=76.答:略.18.(1)由题意知:BP=x,0<x<6,且有,故AD=·BP=x=x.过P作PM⊥AC交AC于M点,过A作AN⊥BC交BC于N点,则PM=PC·sinC=(BC-PB)sin45°=(6-x),S2=S△APD=AD·PM=·x·(6-x)=2x-x2;又AN=AC·sinC=4·sin45°=4,故S1=S△ABP=BP·AN=2x;S3=S△CDP=CD·PM=(AC-AD)·PM=(4-x)·(6-x)=(6-x)2.(2)因为S2=2x-x2=3-(x-3)2,所以当x=3时,S2取最大值S2=3,此时S1=6,S3=3,因此,S1,S2,S3之间的数量关系有S1=S2+S3,S2=S3,S1=2S2,S1=2S3.(以上4个关系只要写出3个即可)。
数学竞赛试卷初三答案
一、选择题(每题5分,共20分)1. 下列各数中,不是有理数的是()A. -√2B. 1/2C. √9D. 0.25答案:A2. 下列方程中,解集为全体实数的是()A. x^2 + 1 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 1 = 0答案:D3. 若a,b,c成等差数列,且a + b + c = 0,则b的值是()A. 0B. 1C. -1D. 不存在答案:C4. 已知正方形的对角线长为√2,则它的面积是()A. 1B. 2C. √2D. 2√2答案:B5. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^4答案:C二、填空题(每题5分,共25分)6. 若a,b,c成等差数列,且a + b + c = 12,则b的值是______。
答案:47. 已知等差数列{an}的首项为a1,公差为d,若a1 + a2 + a3 = 9,则a4 + a5 + a6 =______。
答案:278. 若a,b,c成等比数列,且a + b + c = 12,ab + bc + ca = 36,则b的值是______。
答案:49. 已知正方形的对角线长为√10,则它的面积是______。
答案:2510. 若函数f(x) = ax^2 + bx + c在x = 1时取得最小值,则a的值是______。
答案:-1三、解答题(每题10分,共30分)11. 已知等差数列{an}的首项为a1,公差为d,若a1 + a2 + a3 = 9,求a4 + a5 + a6的值。
解:由等差数列的性质可知,a2 = a1 + d,a3 = a1 + 2d。
将a1 + a2 + a3 = 9代入,得a1 + (a1 + d) + (a1 + 2d) = 9,即3a1 + 3d = 9。
化简得a1 + d = 3。
初三数学竞赛试题(含答案)
初三数学竞赛试题(含答案) 初三数学竞赛试题一、选择题(共8小题,每小题5分,共40分)1.要使方程组 $3x+2y=a$,$2x+3y=2$ 的解是一对异号的数,则 $a$ 的取值范围是()。
A) $4\sqrt{3}<a<3$B) $a<4\sqrt{3}$C) $a>3$D) $a>3$ 或 $a<4\sqrt{3}$2.一块含有 $30^\circ$ 角的直角三角形(如图),它的斜边 $AB=8$ cm,里面空心 $\triangle DEF$ 的各边与 $\triangle ABC$ 的对应边平行,且各对应边的距离都是 $1$ cm,那么$\triangle DEF$ 的周长是()。
A) $5$ cmB) $6$ cmC) $(6-3)$ cmD) $(3+3)$ cm3.将长为 $15$ cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()。
A) $5$ 种B) $6$ 种C) $7$ 种D) $8$ 种4.作抛物线 $A$ 关于 $x$ 轴对称的抛物线 $B$,再将抛物线 $B$ 向左平移 $2$ 个单位,向上平移 $1$ 个单位,得到的抛物线 $C$ 的函数解析式是 $y=2(x+1)^2-1$,则抛物线$A$ 所对应的函数表达式是()。
A) $y=-2(x+3)^2-2$B) $y=-2(x+3)^2+2$C) $y=-2(x-1)^2-2$D) $y=-2(x+3)^2+2$5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是()。
A) $\frac{2}{11}$B) $\frac{3}{32}$C) $\frac{3}{26}$D) $\frac{3}{26}$6.如图,一枚棋子放在七边形 $ABCDEFG$ 的顶点处,现顺时针方向移动这枚棋子 $10$ 次,移动规则是:第 $k$ 次依次移动 $k$ 个顶点。
2024年全国初中数学知识竞赛试题及答案
第9页
(a d )(b c) ≤0 ?请说明理由. (2 )若圆周上从小到大按顺时针方向依次放着2003 个正整数1 ,
2 ,…,2 0 0 3 ,问:是否能经过有限次操作后,对圆周上任意依次相连 的 4 个数a ,b ,c ,d ,都有(a d )(b c) ≤0 ?请说明理由.
1 0 .已知二次函数y ax2 bx c (其 中 a 是正整数)的图象经 过点 A ( - 1 ,4 ) 与点 B ( 2 ,1 ),并且与x 轴有两个不同的交点,则 b+c 的 最大值为 . 三、解答题(共 4 题,每小题 15 分,满分 60 分)
第3页
1 1 .如图所示,已知AB 是⊙O 的直径,B C 是⊙O 的切线,O C 平行于
第7页
注:1 3 B 和14B 相对于下面的13A 和14A 是较容易的题. 13B 和14B 与 前面的12 个题组成考试卷.后面两页13A 和14A 两题可留作考试后的研究题 。
1 3 A .如图所示,⊙O 的直径的长是关于 x 的二次方程 x2 2(k 2) x k 0
(k是整数)的最大整数根. P 是⊙O 外一点,过点 P 作⊙O 的切线 PA
和割线 P B C ,其中 A 为切点,点 B ,C 是直线 PBC 与⊙O 的交点.若
PA ,P B ,P C 的长都是正整数,且 PB 的长不是合数,求 PA2 PB2 PC2 的 值.
A O
解:
P
B
C
第8页
(第 13A 题图)
1 4 A .沿着圆周放着一些数,如果有依次相连的 4 个数 a,b,c,d 满 足不等式(a d )(b c) >0,那么就可以交换 b,c 的位置,这称为一次操 作.
九年级数学竞赛试题(含答案)
初三数学竞赛试题(本卷满分:120分,时间:120分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 20082、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。
(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。
其中正确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________. 10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 .A BCG F E D11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。
初中数学竞赛试题及答案pdf
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
年初三数学竞赛试题及答案
年初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1003. 一个数的60%加上它的40%等于这个数的:A. 100%B. 80%C. 60%D. 40%4. 下列哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 9/105. 一个数除以3的商是15,这个数是多少?A. 45B. 54C. 60D. 406. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 167. 一个班级有21个男生和9个女生,男生人数占全班的百分比是多少?A. 70%B. 75%C. 80%D. 85%8. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28B. 30C. 35D. 429. 一个数的1/3加上它的1/4等于7/12,这个数是多少?A. 12B. 3C. 4D. 910. 一个长方体的长是15cm,宽是10cm,如果高增加5cm,体积将增加多少立方厘米?A. 750B. 500C. 375D. 250二、填空题(每题4分,共20分)11. 一个数的1/2与它的1/3的和是5/6,这个数是_________。
12. 一本书的原价是x元,打7折后售价为0.7x元,如果售价是21元,那么原价是_________元。
13. 一个长方形的长是14cm,宽是长的1/2,这个长方形的面积是_________平方厘米。
14. 一个数的3倍加上这个数的2倍等于36,这个数是_________。
15. 一个数的75%是45,那么这个数的50%是_________。
三、解答题(共两题,每题25分)16. 一个长方体的长、宽、高分别是12cm、10cm和8cm,求这个长方体的表面积和体积。
初三数学竞赛试题(含答案)
初三数学竞赛试题(含答案)8个时,即第4个数)称为()。
A)中位数(B)平均数(C)众数(D)极差11.如图,在正方形ABCD中,E、F分别是AB、CD的中点,连接AE、BF,交于点G,则△ABG的面积是()。
A)1/4(ABCD)(B)1/6(ABCD)(C)1/8(ABCD)(D)1/12(ABCD)12.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=1/2在区间(0,1)内至少有()个实根。
A)0(B)1(C)2(D)313.如图,在三角形ABC中,D、E分别是AB、AC的中点,F是BC上一点,且AF平分△ABC的周长,则△ABC的面积是()。
A)4S△ADE(B)2S△ADE(C)S△ADE(D)S△ABC14.如图,正方形ABCD中,点E、F分别在AB、BC上,且AE=CF,则△DEF的面积是()。
A)1/4AB2(B)1/6AB2(C)1/8AB2(D)1/12AB2三、解答题:(共有3个小题,每小题20分,满分60分)15.已知函数f(x)=x3-3x2+2x+1,g(x)=f(x)-2x+3,h(x)=g(x)-2x+3,求h(x)的最高项系数。
16.如图,ABCD是一个正方形,O是BD上一点,且OD=2BD,连接AC、CO,交于点E,求△ABE的面积。
17.如图,在长方形ABCD中,点E、F分别在AB、BC 上,且AE=CF,连接EF,交AC于点G,求证:△ADG与△CDF的面积相等。
解:根据题意,可以得到以下方程组:begin{cases}frac{6-2a}{5}=y \\3a-4<x<6-2aend{cases}$要使方程组的解是一对异号的数,只需 $y3$ 或 $a3$ 时,$x$ 的取值范围为 $3a-40$,即 $0<x<6-2a$。
因此,答案为$\boxed{\frac{3}{2}<a<3}$。
竞赛初中数学试题及答案
竞赛初中数学试题及答案一、选择题(每题2分,共10分)1. 已知一个等腰三角形的两边长分别为3cm和5cm,那么这个三角形的周长是()。
A. 11cmB. 13cmC. 16cmD. 无法确定2. 下列哪个数是无理数()。
A. 0.5B. √2C. 22/7D. 03. 一个数的相反数是-3,那么这个数是()。
A. 3B. -3C. 0D. 64. 若a、b、c是等差数列,且a+c=10,b=5,则a、b、c的值分别是()。
A. 2, 5, 8B. 3, 5, 7C. 4, 5, 6D. 5, 5, 55. 一个圆的半径为2cm,那么这个圆的面积是()。
A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²二、填空题(每题2分,共10分)6. 一个数的平方是25,那么这个数是______或______。
7. 一个数增加20%后是120,那么这个数原来是______。
8. 已知一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边长是______cm。
9. 一个数的绝对值是5,那么这个数是______或______。
10. 一个数除以-2的商是-3,那么这个数是______。
三、解答题(每题5分,共20分)11. 已知一个二次函数y=ax²+bx+c,其中a=1,b=-3,c=2,求当x=1时,y的值。
12. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,面积不变,求原长方形的长和宽。
13. 一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和,求数列的第8项。
14. 一个圆的直径是10cm,求这个圆的周长和面积。
答案:一、选择题1. B2. B3. A4. A5. B二、填空题6. ±57. 1008. 59. ±510. 6三、解答题11. 当x=1时,y=1-3+2=0。
九年数学竞赛试题及答案
九年数学竞赛试题及答案试题:九年数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是8,这个数是多少?A. 16B. 64C. -64D. 正负84. 下列哪个分数是最接近0.75的?A. 3/4B. 7/9C. 4/5D. 5/65. 如果x=2,y=3,那么x+y的值是多少?A. 4B. 5C. 6D. 7二、填空题(每题2分,共10分)6. 一个数的立方是-27,这个数是______。
7. 一个圆的半径是5厘米,那么它的面积是______平方厘米。
8. 如果一个数的绝对值是5,那么这个数可以是______或______。
9. 一个数的倒数是1/4,这个数是______。
10. 一个数的平方是25,这个数可以是______或______。
三、解答题(每题5分,共20分)11. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的体积。
12. 一个班级有40名学生,其中男生占60%,求这个班级有多少名男生。
13. 一个数列的前三项是2,4,6,求这个数列的第10项。
14. 一个等差数列的首项是3,公差是2,求这个数列的前10项的和。
四、应用题(每题10分,共20分)15. 某工厂生产一批零件,每个零件的成本是5元,如果生产1000个零件,总成本是多少?16. 一个农场有一块长方形的土地,长是200米,宽是150米。
如果每公顷土地的年租金是2000元,那么这块土地一年的租金是多少?答案:1. B2. A3. B4. A5. C6. -37. 78.58. 5, -59. 410. 5, -511. 60立方厘米12. 24名男生13. 2214. 16515. 5000元16. 60000元结束语:本次九年数学竞赛试题涵盖了基础数学知识,包括算术、几何、代数和应用题,旨在考察学生的数学基础和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( C )
试卷
20.已知二直线y x =-+3
5
6和y x =-2,则它们与y 轴围成的三角形的面积为( C )
A .6
B .10
C .20
D .12
二、填空题(4’×17=68’)
1.如图,图中是y=a 1x+b 1 和y=a 2x+b 2的图像,根据图像填空。
的解集是
-3<x<1
的解集是 x<-3
的解集是 空集
2.在平面直角坐标系中,点(2,3)p - 关于
x 轴对称的点1p 的坐标是(-2
,-3)。
3.分解因式:269ax
ax a ++= a(x+3)2 。
4.某班同学进行数学测试,将所得成绩(得分取整数)进行整理后分成五组,并绘制成频数分布直
方图(如图4)。
请结合直方图提供得信息,写出这次成绩中得中位数应落在 70.5~80.5这一分数
5.如图7,矩形ABCD 中,BC =2,DC =4,以AB 为直径的半圆O 与DC 相切于E ,则阴影部分地面积为. 8-2∏ .(结果用精确值表示)。
6.若m<5,则不等式mx>6x+3的解集是 x=-3
7. 函数y=x 3、 y=-x 2、 y=x 1 (x 〈0)、 y=2x 2-8x+7 (x<2)、 y=-x-1 (x 〉0)中,y 随x 的增大
而减小的有 3 个
8. 如果某个数的平方根是2a+3和a-18,那么这个数是 169 9.已知,一次函数y=kx+b,当x 增加3时,y 减少2,则k 的值是 -3
2
10.已知二次函数324
12
---
=x x y ,则它的顶点坐标为 (-4,1) 11.抛物线的顶点坐标为(-2,3),且与x 轴交于()()x x 1200,,,,且x x 126-=,则此二次函数
的解析式为 y=-3
1 (x+2)2
+3
12. 已知函数x
k y 1
=
与y k =2x 的图象交点是(-2,5)是,则它们的另一个交点是( 2,-5) 13. 若函数()y m x m
m =+++12
31
是反比例函数,则m 值为 -2
14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 0.3 .
15.已知⊙O1和⊙O2的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于. 2 c m .
三、解答题
1. (12’)如图13,已知等边三角形ABC,以边BC 为直径的半圆与边AB 、AC 分别交于点D 、点E ,
过点E 作EF ⊥AB ,垂足为点F 。
(1)判断EF 与⊙O 的位置关系,并证明你的结论;
(2)过点F 作FH ⊥BC ,垂足为点H ,若等边△ABC 的边长为8,求FH 的长。
(结果保留根号)
3.(12’)如图,设⊙O 的半径为8,过圆外一点P 引切线P A ,切点为A ,P A =6,C 为圆周
上一动点,PC 交圆于另一点B ,设PC =x ,PB =y ,且x >y 。
(1)试求:y 关于x 的函数解析式 ,并求出自变量x 的取值范围; (2)若cos ∠=opc 45
时,求x 的值
{0a 01122>+>+b x b x a {0a 01122<+>+b x b x a {
a 0
1122<+<+b x b x a 图4。