福建省厦门市2019年质检数学卷及答案
数学分类汇编(12)三角函数的化简与求值(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。
(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。
【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。
【40套试卷合集】厦门市第六中学2019-2020学年数学高一上期中模拟试卷含答案
2019-2020学年高一上数学期中模拟试卷含答案时量:120分钟 分值:150分 命题:陈斌 审题:陈亮一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合A={-1,0,1},B={x ︱-1≤x <1},则A ∩B= ( ) (A ){0} (B ){0,-1} (C ){0,1} (D ){0,1,-1}2.函数y=1212+-x x 是( )(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既是奇函数又是偶函数3.下列关系中正确的是( )(A )7log 6<1ln2 < 3log π(B )3log π<1ln 2<7log 6 (C )1ln 2<7log 6 < 3log π (D )1ln 2< 3log π<7log 64.设lg 2a =,lg3b =,则5log 12=( ) (A )21a b a ++ (B )21a b a ++ (C )21a ba+- (D )21a ba+- 5.下列哪组中的两个函数是同一函数 ( )A f(x)=x-1,2()1x g x x=-B 24(),()f x x g x == C2(),()f x x g x == D 0()1,()f x g x x ==6.函数()f x =212log (32)xx -+的递减区间为( )A 、3(,)2-∞ B 、 (1,2) C 、3(,)2+∞ D 、(2,)+∞ 7.下列函数中,不能用二分法求零点的是 ( )A 31y x =+B 21y x =- C 2log (1)y x =- D 2(1)y x =- 8.若函数2(22)my m m x =+-为幂函数且在第一象限为增函数,则m 的值为( )A 1B -3C -1D 39.设函数332,0,()1log ,0.2x x f x x x -⎧-≤⎪=⎨〉⎪⎩若f(m )>1,则m 的取值范围是( )A(,1)-∞- B (9,)+∞ C (,1)(9,)-∞-⋃+∞ D (,1)(6,)-∞-⋃+∞10.若函数22()(1)()f x x x ax b =-++的图象关于直线x=-2对称,则a,b 的值分别为( ) A 8,15 B 15,8 C 3,4 D -3,-4 二、填空题(本大题共5小题,每小题5分,共25分) 11.已知函数f(x)是奇函数,且当x >0时,f(x)=21x x+,则f(-1)= 。
2019-2020学年度九年级数学上学期第二次质检试题(含解析) 新人教版
——教学资料参考参考范本——2019-2020学年度九年级数学上学期第二次质检试题(含解析)新人教版______年______月______日____________________部门一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣22.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.666.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.49.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是__________.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是__________.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式__________;自变量的取值范围__________.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为__________.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为__________.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有__________:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?20xx-20xx学年浙江省××市××区高桥中学九年级(上)第二次质检数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣2【考点】二次函数的性质.【分析】由于原点是抛物线y=(m+1)x2的最高点,这要求抛物线必须开口向下,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最高点,∴m+1<0,即m<﹣1.故选A.【点评】此题主要考查了二次函数的性质.2.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.【解答】解:∵抛物线y=﹣2(x+3)2﹣21的顶点是(﹣3,﹣21),∴顶点(﹣3,﹣21)在第三象限,故选C.【点评】此题主要考查了二次函数的性质,二次函数顶点式y=a (x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:①在足球赛中,中国队战胜日本队是随机事件,故①正确;②长为2,3,4的三条线段能围成一个直角三角形,是不可能事件,故②错误;③任意两个正数的乘积为正,是必然事件,故③错误;④抛一枚硬币,硬币落地时正面朝上,是随机事件,故④正确;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定【考点】二次函数图象上点的坐标特征.【分析】由题意二次函数的解析式为:y=(m﹣2)x2+m2﹣m﹣2知m﹣2≠0,∴m≠2,再根据二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,把(0,0)代入二次函数,解出m的值.【解答】解:∵二次函数的解析式为:y=(m﹣2)x2﹣4x+m2+2m ﹣8,∴(m﹣2)≠0,∴m≠2,∵二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,∴m2+2m﹣8=0,∴m=﹣4或2,∵m≠2,∴m=﹣4.故选B.【点评】此题考查二次函数的基本性质,注意二次函数的二次项系数不能为0,这是容易出错的地方.5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.66【考点】二次函数图象与几何变换.【分析】首先在抛物线y=x2确定顶点,进而就可确定顶点平移以后点的坐标,根据待定系数法求函数解析式.【解答】解:抛物线y=x2顶点坐标(0,0)向上平移2个单位,再向左平移3个单位得到(﹣3,2)代入y=(x﹣h)2+k得:y=(x+3)2+2=x2+6x+11,所以m=6,n=11.故mn=66;故选D.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是得到所求抛物线上的顶点,利用平移的规律即可解答.6.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<【考点】抛物线与x轴的交点.【分析】由题意二次函数y=x2+x+m知,函数图象开口向上,当x 取任意实数时,都有y>0,可以推出△<0,从而解出m的范围.【解答】解:已知二次函数的解析式为:y=x2+x+m,∴函数的图象开口向上,又∵当x取任意实数时,都有y>0,∴有△<0,∴△=1﹣4m<0,∴m>,故选B.【点评】此题主要考查二次函数与一元二次方程的关系,当函数图象与x轴无交点时,说明方程无根则△<0,若有交点,说明有根则△≥0,这一类题目比较常见且难度适中.7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有12种等可能的结果数,则m=12,根据判别式的意义可判断a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,然后计算的值.【解答】解:画树状图:共有12种等可能的结果数,则m=12,其中a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,所以==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了根的判别式.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.4【考点】二次函数的最值.【分析】由a+b2=2得出b2=2﹣a,代入a2+6b2得出a2+6b2=a2+6(2﹣a)=a2﹣6a+12,再利用配方法化成a2+6b2=(a﹣3)2+3,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,∴a2+6b2=a2+6(2﹣a)=a2﹣6a+12=(a﹣3)2+3,当a=3时,a2+6b2可取得最小值为3.故选B.【点评】本题考查了二次函数的最值,根据题意得出a2+6b2=(a ﹣3)2+3是关键.9.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣2【考点】二次函数的性质;反比例函数图象上点的坐标特征.【分析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【解答】解:∵A在反比例函数图象上,∴可设A点坐标为(a,),∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣),又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得.故选C.【点评】本题主要考查待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意关于原点对称的两点的坐标的关系的广泛应用.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是.【考点】概率公式;一次函数的性质;反比例函数的性质;二次函数的性质.【分析】先求出函数的图象在第一象限内y随x的增大而增大的函数的个数,再根据概率公式即可得出答案.【解答】解:∵函数y=﹣2x﹣3,y=,y=x2+1中,在第一象限内y随x的增大而增大的只有y=x2+1一个函数,∴所得函数的图象在第一象限内y随x的增大而增大的概率是;故答案为:.【点评】此题考查了概率公式,掌握一次函数、反比例函数和二次函数的性质是本题的关键,用到的知识点是概率=所求情况数与总情况数之比.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.【解答】解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.【点评】考查根据二次函数的图象的变换求抛物线的解析式.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式s=﹣3x2+24x;自变量的取值范围≤x<8.【考点】根据实际问题列二次函数关系式.【分析】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式.【解答】解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.【点评】本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.要注意题中自变量的取值范围不要丢掉.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3.【考点】二次函数的图象;反比例函数的图象;反比例函数图象上点的坐标特征.【专题】探究型.【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.【点评】本题考查的是二次函数的图象与反比例函数图象的交点问题,能把方程的解化为两函数图象的交点问题是解答此题的关键.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为(﹣1,2).【考点】抛物线与x轴的交点;轴对称-最短路线问题.【分析】首先求得A、B以及C的坐标,和函数对称轴的解析式,然后利用待定系数法求得AC的解析式,AC与二次函数的对称轴的交点就是P.【解答】解:连接AC.在y=﹣x2﹣2x+3中,令y=0,则﹣x2﹣2x+3=0,解得:x=﹣3或1.则A的坐标是(﹣3,0),B的坐标是(1,0),则对称轴是x=﹣1.令x=0,解得y=3,则C的坐标是(0,3).设经过A和C的直线的解析式是y=kx+b.根据题意得:,解得:,则AC的解析式是y=x+3,令x=﹣1,则y=2.则P的坐标是(﹣1,2 ).故答案是(﹣1,2).【点评】本题考查了二次函数的坐标轴的交点,以及对称的性质,确定P的位置是本题的关键.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有①②③⑥:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据抛物线的图象,数形结合,逐一解析判断,即可解决问题.【解答】解:∵抛物线的对称轴为x=1,抛物线与x轴有两个交点,∴﹣=1,b=﹣2a,另一个交点为(﹣1,0);∵抛物线开口向上,∴a>0,b<0;由图象知c<0,∴abc>0,故①正确;由图象知抛物线与x轴有两个交点,故②正确;把x=﹣1代入y=ax2+bx+c=a﹣b+c=0,故③正确;由抛物线的对称性及单调性知:x>1时,y随x的增大而增大故④错误;不等式ax2+bx+c>0的解为x>3或x<﹣1,故⑤错误;⑥∵a>0,c<0,∴3a+2c<0,故⑥正确.故答案为:①②③⑥.【点评】该题主要考查了二次函数的图象与系数的关系、抛物线的单调性、对称性及其应用问题;灵活运用有关知识来分析、解答是关键.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.【考点】抛物线与x轴的交点.【分析】(1)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可;(2)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可.【解答】解:(1)∵a=,b=﹣6,c=0,∴b2﹣4ac=36>0,∴二次函数的图象与x轴有两个交点.令y=0,则x2﹣6x=0,解得:x=0或9.则与x轴的交点是(0,0)和(9,0);(2)∵a=2,b=﹣12,c=18,∴b2﹣4ac=(﹣12)2﹣4×2×18=0,∴二次函数与x轴只有一个交点.令y=0,则2x2﹣12x+18=0,解得:x=3,则与x轴的交点是(3,0).【点评】本题考查了二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标;二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的有(1,4),(4,1),∴P(点(x,y)落在反比例函数y=的图象上)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?【考点】二次函数与不等式(组).【分析】(1)根据抛物线的顶点坐标可设出其顶点式,再由抛物线过A(1,0),可得出抛物线的解析式,再把A点坐标代入直线y2=x+m求出m的值即可;(2)在同一坐标系内画出一次函数与二次函数的图象,利用函数图象即可得出结论;(3)根据(2)中函数图象可直接得出结论.【解答】解:(1)∵抛物线y1=ax2+bx+c的顶点坐标为(),∴y1=a(x﹣)2﹣,∵抛物线经过点A(1,0),∴a(1﹣)2﹣=1,解得a=1,∴y1=(x﹣)2﹣.∵直线y2=x+m恰好也经过点A,∴1+m=0,解得m=﹣1,∴y2=x﹣1;(2)如图所示,当1<x<3时,y2>y1;(3)由图可知,当0≤x≤2时y1的最小值为﹣,y2的最小值为﹣1.【点评】本题考查的是二次函数与不等式组,根据题意画出函数图象,利用数形结合求解是解答此题的关键.20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【分析】(1)由题意抛物线y=ax2+bx+c(a≠0)经过(﹣2,4),(﹣1,0),(0,﹣2)三点,把三点代入函数的解析式,根据待定系数法求出函数的解析式;(2)把求得的解析式化为顶点式,从而求出其对称轴和顶点坐标;分别令x=0,y=0,得到方程,解方程从而求出抛物线与坐标轴的交点坐标;(3)把y=3代入解析式求得横坐标,从而求出x的取值范围.【解答】解:(1)∵抛物线经过(﹣2,4),(﹣1,0),(0,﹣2)三点,则,解得∴y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣∴对称轴为直线x=,顶点坐标为(,﹣);∵x=0,y=﹣2,∴抛物线与y轴的交点坐标为(0,﹣2)∵y=0,∴x2﹣x﹣2=0,∴x1=2,x2=﹣1,∴抛物线与x轴的交点坐标为(2,0)、(﹣1,0).画出函数图象如图:(3)把y=3代入得,x2﹣x﹣2=3,解得x=∴<x<﹣1 或 2<x<.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,待定系数法求函数解析式是常用的方法,需熟练掌握并灵活运用,(2)整理成顶点式形式求解更简便.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意,卖出了(60﹣x)(300+20x)元,原进价共40(300+20x)元,则y=(60﹣x)(300+20x)﹣40(300+20x).(2)根据x=﹣时,y有最大值即可求得最大利润.【解答】解:(1)y=(60﹣x)(300+20x)﹣40(300+20x),即y=﹣20x2+100x+6000.因为降价要确保盈利,所以40<60﹣x≤60(或40<60﹣x<60也可).解得0≤x<20(或0<x<20);(2)当x=﹣=2.5时,y有最大值=6125,即当降价2.5元时,利润最大且为6125元.当x=2或3时,y的最大值为6120元.【点评】本题主要考查了二次函数的应用,根据题意正确列出代数式和函数表达式是解决问题的关键.22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)计算A﹣B后结论,从而判断A与B的大小;(2)同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)A﹣B=﹣2a2+4a﹣8=﹣2(a﹣1)2﹣6<0,∴A<B;(2)C﹣A=a2+4a﹣5,当a<﹣5或a>1时,C>A,当a=﹣5或a=1时,C=A,当﹣5<a<1时,C<A.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?【考点】二次函数综合题.【分析】(1)根据函数值相等两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据根据三角形的面积公式,可得P点的横坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)①根据垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标,可得函数解析式,根据顶点坐标是函数的最值,可得答案,②根据面积的和差,可得三角形的面积,根据QM最大时,三角形的面积最大,可得答案.【解答】解:(1)由A、B关于x=﹣1对称,得B(1,0),将A、B点坐标代入函数解析式,得,解得抛物线的解析式为y=x2+2x﹣3;(2)S△BOC=•OB•OC=S△poc=•OC•|Px|=4S△BOC=6,|px|=4,解得x=4或x=﹣4,当x=4时,y=42+2×4﹣3=21,即P1(4,21)当x=﹣4时,y=(﹣4)2+2×(﹣4)﹣3=5,即P2(﹣4,5)综上所述:P1(4,21)P2(﹣4,5).(3)①yAC=﹣x﹣3,设点Q(a,﹣a﹣3),则点D(a,a2+2a﹣3),∴QD=﹣a2﹣3a且﹣3≤a≤0,当a=时,QD的最大值为;②如图,S△ACM的最大值=S△AQM+SCQM=QM•AF+QM•OF=QM•OA=××3=.【点评】本题考查了二次函数综合题,(1)利用了待定系数法求函数解析式,函数值相等的两点关于对称轴对称;(2)利用三角形的面积得出P点的横坐标是解题关键;(3)利用垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标得出函数解析式是解题关键,②利用面积的和差是解题关键.。
2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)
2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(本大题共14小题,共28.0分)1.下列哪个图形是由如图平移得到的()A. B. C. D.2.下列命题中,是真命题的是()A. 同位角相等B. 有且只有一条直线与已知直线垂直C. 相等的角是对顶角D. 邻补角一定互补3.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个4.在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A. B. C. D.6.下列各式正确的是()A. B. C. D.7.若方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,则a的值是()A. B. C. 1 D. 28.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.9.下列方程组中,是二元一次方程组的有()①②③④⑤⑥A. ①③⑤B. ①③④C. ①②③D. ③④10.介于()之间.A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间11.如图,a1∥a2,∠1=56°,则∠2的度数是()A.B.C.D.12.如图,把一块直角三角形的直角顶点放在直尺的一边上,如果∠1=67°,那么∠2等于()A.B.C.D.13.如图,AB∥CD,PF⊥CD于F,∠AEP=40°,则∠EPF的度数是()A.B.C.D.14.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 22cmB. 20cmC. 18cmD. 16cm二、填空题(本大题共6小题,共18.0分)15.把命题“邻补角互补”写成如果…那么…的形式为______,它是一个______(填“真”或“假”)命题.16.到原点距离等于的数是______,的相反数是______,它的绝对值是______.17.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为______.18.一个数的平方根是a+4和2a+5,则a=______,这个正数是______.19.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______.20.我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[-0.56]=-1,则按这个规律[-]=______.三、计算题(本大题共2小题,共26.0分)21.计算:(1)(2)(3)4y2-36=0(4)+-()222.化简.(1)=______,=______,=______,=______.(2)=______,=______.=______,=______.(3)根据以上信息,观察a,b所在位置,完成化简.+-四、解答题(本大题共4小题,共28.0分)23.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC?下面是王冠同学的部分推导过程,请你帮他在括号内填上推导依据或内容.解:∵∠1+∠2=180°,(已知)∠1=∠4,(______)∴∠2+______=180°∴EH∥AB.(______)∴∠B=∠EHC.(______)∵∠3=∠B,(已知)∴∠3=∠EHC.(______)∴DE∥BC.(______)24.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.25.在平面直角坐标系中,线段AB的两端点的坐标分别为A(-1,3),B(-3,1),将线段AB向下平移2个单位,再向右平移4个单位得线段CD(A与D对应,B与C对应).(1)画出线段AB与线段CD,并求点C、点D的坐标.(2)求四边形ABCD的面积26.(1)将直角三角形ACB按如图①放置,使得坐标原点与点C重合,已知A(a,3)B(b,-3),且a+b=8,求三角形ACB的面积.(2)将直角三角形ACB按如图②方式放置,使得点O在边AC上,D是y轴上一点,过D作DF‖x轴,交AB于点F,AB交x轴于G点,BC交DF于E点,若∠AOG=50°,求∠BEF的度数.(CM平行于x轴)(3)将直角三角形ACB按照如图③方式放置,使得∠C在x轴与DF之间,N为AC边上一点,且∠NEC+∠CEF=180°,写出∠NEF与∠AOG之间的数量关系,并证明你的结论.答案和解析1.【答案】C【解析】解:A、图形属于旋转得到,故错误;B、图形属于旋转得到,故错误;C、图形的形状和大小没的变化,符合平移性质,故正确;D、图形属于旋转得到,故错误.故选:C.根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.【答案】D【解析】解:A、只有两直线平行同位角才相等,故错误,是假命题;B、过直线外一点有且只有一条直线与已知直线垂直,故错误,是假命题;C、相等的角是对顶角,错误,是假命题;D、邻补角一定互补,正确,是真命题,故选:D.利用平行线的性质、对顶角的性质及邻补角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及邻补角的定义等知识,难度不大.3.【答案】A【解析】解:无理数有,,共2个.故选:A.根据无理数的定义选出即可.本题考查了对无理数的应用,注意:无理数是指无限不循环小数.4.【答案】B【解析】解:因为点P(-1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.【答案】A【解析】解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为-3,∴点P的坐标是(-3,4).故选:A.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.【答案】D【解析】解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.根据平方根、算术平方根、立方根,即可解答.本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.7.【答案】B【解析】解:∵方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,∴a-2≠0且|a|-1=1,解得:a=-2,故选:B.根据二元一次方程的定义得出a-2≠0且|a|-1=1,求出即可.本题考查了二元一次方程的定义,能根据二元一次方程的定义得出a-2≠0且|a|-1=1是解此题的关键.8.【答案】C【解析】解:∠1与∠2是对顶角的是C,故选:C.根据对顶角的定义进行选择即可.本题考查了对顶角,掌握对顶角的定义是解题的关键.9.【答案】D【解析】解:①中有3个未知数x,y,z.不符合二元一次方程组的定义,故错误;②、⑥中未知数项的最高次数是2,不符合二元一次方程组的定义,故错误;③、④符合二元一次方程组的定义,故正确;⑤,此方程组中第二个方程不是整式方程,不符合二元一次方程组的定义,故错误;故选:D.分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.10.【答案】B【解析】解:∵<<,∴3<<4,故选:B.求出的范围即可.本题考查了估算无理数的大小的应用,关键是确定的范围.11.【答案】B【解析】解:∵a1∥a2,∠1=56°,∴∠3=∠1=56°.∴∠2=180°-56°=124°,故选:B.根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,熟记性质是解题的关键.12.【答案】B【解析】解:如图,∵直尺两边平行,∠1=67°,∴∠3=∠1=67°,∴∠2=90°-∠3=90°-67°=23°.故选:B.先根据两直线平行,同位角相等求出∠1的同位角,再根据直角为90°列式进行计算即可得解.本题主要利用了两直线平行,同位角相等的性质,熟记性质是解题的关键.13.【答案】B【解析】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°.∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90°,∴∠EPF=∠EPN+∠NPF=40°+90°=130°.故选:B.如图,过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.本题考查平行线的判定定理以及平行线的性质.注意如果两条直线都和第三条直线平行,那么这两条直线也互相平行的运用.14.【答案】B【解析】解:∵将三角形ABC沿BC方向平移2cm得到三角形DEF,∴AD=CF=2cm,∵三角形ABC的周长为16cm,∴AB+BC+AC=AB+BC+DF=16cm,∴四边形ABFD的周长为:16+2+2=20(cm).故选:B.利用平移的性质得出AD=CF=2cm,AC=DF,进而求出答案.此题主要考查了平移的性质,正确利用平移的性质得出对应线段是解题关键.15.【答案】如果两个角是邻补角,那么这两个角互补;真【解析】解:命题“邻补角互补”写成如果…那么…的形式为:如果两个角是邻补角,那么这两个角互补,它是一个真命题,故答案为:如果两个角是邻补角,那么这两个角互补;真.根据命题的概念、邻补角的概念解答.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.【答案】;-;【解析】解:到原点距离等于的数是,的相反数是-,它的绝对值是,故答案为:,-,.根据绝对值的意义,相反数的意义,可得答案.本题考查了实数的性质,利用绝对值的意义,相反数的意义是解题关键.17.【答案】(4,3)【解析】解:根据题意知,平移后点的坐标为(1+3,1+2),即(4,3),故答案为:(4,3).根据坐标的平移规律:左减右加、下减上加可得.本题主要考查坐标与图形的变化-平移,熟练掌握点的坐标的平移规律:左减右加、下减上加是解题的关键.18.【答案】-3;1【解析】解:∵一个数的平方根是a+4和2a+5,∴a+4+2a+5=0,∴a=-3,∴这个数的平方根是±1,这个数是1,故答案为-3,1.根据平方根的定义构建方程即可解决问题.本题考查平方根的定义、一元一次方程等知识,解题的关键是记住平方根的定义,学会构建方程解决问题.19.【答案】连接直线外一点与直线上所有点的连线中,垂线段最短【解析】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.20.【答案】-4【解析】解:∵2<<3,∴-4<--1<-3,∴[-]=-4.故答案为:-4.直接利用的取值范围得出-4<--1<-3,进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.21.【答案】解:(1)①②,由②,得:y=3x+1 ③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入③,得:y=4,所以方程组的解为;(2)原方程组整理可得:①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为;(3)∵4y2-36=0,∴4y2=36,则y2=9,∴y=±3;(4)原式=-2-=-1.【解析】(1)利用代入消元法求解可得;(2)方程组整理为一般式后,利用加减消元法求解可得;(3)利用平方根的定义求解可得;(4)根据实数的混合运算顺序和运算法则计算可得.此题考查了解二元一次方程组和实数的混合运算,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】2;2;0;|a|;3;-3;0;a【解析】解:(1)=2,=2,=0,=|a|,故答案为:2、2、0、|a|;(2)=3,=-3.=0,=a,故答案为:3、-3、0、a;(3)由图可得,a<0<b,|a|<|b|,∴=b+b-a-(a-b)=b+b-a+b=3b-a.(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a、b的大小与正负,从而可以化简题目中的式子.本题考查立方根、算术平方根、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】对顶角相等∠4 同旁内角互补,两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行【解析】解:∵∠1+∠2=180°,(已知)∠1=∠4,(对顶角相等)∴∠2+∠4=180°,∴EH∥AB,(同旁内角互补,两直线平行)∴∠B=∠EHC,(两直线平行,同位角相等)∵∠3=∠B,(已知)∴∠3=∠EHC,(等量代换)∴DE∥BC,(内错角相等,两直线平行)故答案为:对顶角相等,同旁内角互补,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,有等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.24.【答案】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°【解析】根据平行线的性质与判定即可求出答案本题考查平行线的性质,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.25.【答案】解:(1)如图所示:点C的坐标为(3,1),点D的坐标为(1,-1);(2)四边形ABCD的面积=.【解析】(1)利用平移的性质得出对应点位置进而得出答案.(2)利用面积公式解答即可.此题主要考查了平移变换,正确根据题意得出的对应点位置是解题关键.26.【答案】解:(1)如图①中,过点A作AM⊥y轴于M,过点B作BN⊥y轴于N.∵A(a,3),B(b,-3),∴AM=a,OM=3,BN=b,ON=3,∴MN=3+3=6,△ABC的面积=(a+b)×6-×3a-×3b,=(a+b),∵a+b-8=0,∴a+b=8∴△ABC的面积=×8=12;(2)如图②中,作CM∥OG.∵∠AOG=50°,CM∥OG,∴∠ACM=50°,∵∠ACB=90°∴∠BCM=40°,∵DF∥OG,∴DF∥CM,∴∠BEF=∠BCM=40(3)如图③中,∵∠NEC+∠CEF=180°,∠CEF+∠CED=180°,∴∠NEC=∠CED,∵∠CED+∠NEC+∠NEF=180°,∴∠NEF+2∠CED=180°,∴∠NEF=2(90°-∠CED),∵∠CED=∠COD=90°-∠AOG,∴∠AOG=90°-CED,∴∠NEF=2∠AOG.【解析】(1)过点A作AM⊥y轴于M,过点B作BN⊥y轴于N,根据△ABC的面积等于梯形AMNB的面积减去两个直角三角形的面积列式计算即可得解;(2)如图②中,作CM∥OG.利用平行线的性质即可解决问题;(3))首先证明∠NEC=∠CED,由∠NEF=2(90°-∠CED),∠CED=∠COD=90°-∠AOG,推出∠AOG=90°-CED,即可推出∠NEF=2∠AOG;本题考查三角形综合题、直角三角形的性质、平行线的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线,利用平行线的性质解决问题,属于中考压轴题.。
2019-2020学年福建省厦门市思明区双十中学九年级(上)第一次月考数学试卷试题及答案(Word解析版)
2019-2020学年福建省厦门市思明区双十中学九年级(上)第一次月考数学试卷一、选择题(每题4分,共40分)1.(4分)下列各点在函数21y x =-+图象上的是( ) A .(0,0)B .(1,1)C .(0,1)-D .(1,0)2.(4分)一元二次方程230x x -=的解是( ) A .123x x ==B .123x x ==-C .10x =,23x =D .10x =,23x =-3.(4分)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-4.(4分)用配方法解方程2240x x --=,配方正确的是( ) A .2(1)3x -=B .2(1)4x -=C .2(1)5x -=D .2(1)3x +=5.抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .2(1)3y x =++B .2(1)3y x =+-C .2(1)3y x =--D .2(1)3y x =-+6.(4分)下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++=7.(4分)x =( )A .23510x x ++=B .23510x x -+=C .23510x x --=D .23510x x +-=8.(4分)汽车刹车后行驶的距离s (单位:)m 关于行驶的时间t (单位:)s 的函数解析式是2156s t t =-,汽车刹车后到停下来前进的距离是( ) A .54B .52C .7516D .7589.(4分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别由这些数据,科学家推测出植物每天高度的增长量y 是温度x 的二次函数,那么下列结论: ①该植物在0C ︒时,每天高度的增长量最大;②该植物在6C ︒-时,每天高度的增长量能保持在25mm 左右; ③该植物与大多数植物不同,6C ︒以上的环境下高度几乎不增长. 上述结论中,所有正确结论的序号是( ) A .①②③B .①③C .①②D .②③10.(4分)已知一个二次函数图象经过11(3,)P y -,22(1,)P y -,33(1,)P y ,44(3,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定二、填空题(每题4分,共24分) 11.(4分)方程290x -=的解是 .12.(4分)抛物线2(1)1y x =--的顶点坐标为 .13.(4分)某种植基地2016年蔬菜产量为80吨,2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为 .14.(4分)在一幢高125m 的大楼上掉下一个苹果,苹果离地面的高度()h m 与时间()t s 大致有如下关系:21255h t =-. 秒钟后苹果落到地面.15.若二次函数22y ax ax c =-+的图象经过点(1,0)-,则方程220ax ax c -+=的解为 . 16.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A 在x 轴负半轴上,顶点B 在x 轴正半轴上.若抛物线2108(0)p ax ax a =-+>经过点C 、D ,则点B 的坐标为 .三、解答题(9小题,共86分) 17.(12分)解方程: (1)230x x +-=;(2)2616x x -=;(3)2(3)3(3)x x x -=-.18.(8分)已知二次函数2(1)y x n =-+,当2x =时,2y =.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.19.(8分)关于x 的一元二次方程2(3)220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.20.(8分)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?21.(8分)如图:在ABC ∆中,90ABC ∠=︒,8AB BC cm ==,动点P 从点A 出发,以2/cm s 的速度沿射线AB 运动,同时动点Q 从点C 出发,以2/cm s 的速度沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t 秒,PCQ ∆的面积为2Scm .(1)直接写出AC 的长:AC = cm ;(2)求出S 关于t 的函数关系式,并求出当点P 运动几秒时,PCQ ABC S S ∆∆=.22.(8分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. (1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.23.(10分)我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y (元)与存放天数x (天)之间的部分对应值如下表所示: 存放天数x (天) 2 4 6 8 10 市场价格(元)3234363840但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.(1)请你从所学过的一次函数和二次函数中确定哪种函数能表示y 与x 的变化规律,并直接写出y 与x 之间的函数关系式;若存放x 天后将这批野生茵一次性出售,设这批野生菌的销售总额为P 元,试求出P 与x 之间的函数关系式;(2)该公司将这批野生菌存放多少天后出售可获得最大利润w 元并求出最大利润.24.(10分)已知关于x 的一元二次方程21(2)(2)04a b x a b +-++=有实数根.(1)若2a =,1b =,求方程的根.(2)若225m a b a =++,若0b <,求m 的取值范围.25.(14分)在平面直角坐标系xOy 中,对于点(,)P x y ,若点Q 的坐标为(,||)x x y -,则称点Q 为点P 的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P 在函数1y x =-的图象上,其“关联点” Q 与点P 重合,求点P 的坐标; (3)如果点(,)M m n 的“关联点” N 在函数2y x =的图象上,当02m 时,求线段MN 的最大值.2019-2020学年福建省厦门市思明区双十中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)下列各点在函数21y x =-+图象上的是( ) A .(0,0) B .(1,1)C .(0,1)-D .(1,0)【解答】解:21y x =-+,∴当0x =时,10y =≠,故点(0,0)不在函数图象上,当1x =时,21101y =-+=≠,故点(1,1)不在函数图象上,点(1,0)在函数图象上, 当0x =时,11y =≠-,故点(0,1)-不在函数图象上, 故选:D .2.(4分)一元二次方程230x x -=的解是( ) A .123x x == B .123x x ==-C .10x =,23x =D .10x =,23x =-【解答】解:(3)0x x -=,0x ∴=或30x -=,解得:10x =,23x =, 故选:C .3.(4分)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1B .1-C .2D .2-【解答】解:因为3x =是原方程的根,所以将3x =代入原方程,即23360k --=成立,解得1k =. 故选:A .4.(4分)用配方法解方程2240x x --=,配方正确的是( ) A .2(1)3x -= B .2(1)4x -= C .2(1)5x -= D .2(1)3x +=【解答】解:2240x x --=224x x ∴-= 22141x x ∴-+=+2(1)5x ∴-=故选:C .5.(4分)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .2(1)3y x =++B .2(1)3y x =+-C .2(1)3y x =--D .2(1)3y x =-+【解答】解:由“左加右减”的原则可知,抛物线2y x =向右平移1个单位所得抛物线的解析式为:2(1)y x =-;由“上加下减”的原则可知,抛物线2(1)y x =-向上平移3个单位所得抛物线的解析式为:2(1)3y x =-+.故选:D .6.(4分)下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++=【解答】解:A 、(2)(2)0x x -+=中2x =或2x =-,错误; B 、220x -=中0x =,错误; C 、2(1)0x -=中0x =,错误;D 、2(1)20x ++=即2(1)2x +=-,方程无实数根,正确;故选:D .7.(4分)x =( )A .23510x x ++=B .23510x x -+=C .23510x x --=D .23510x x +-=【解答】解:2.3510A x x ++=中,x =2.3510B x x -+=中,x =,不合题意;2.3510C x x --=中,x =,不合题意; 2.3510D x x +-=中,x =,符合题意; 故选:D .8.(4分)汽车刹车后行驶的距离s (单位:)m 关于行驶的时间t (单位:)s 的函数解析式是2156s t t =-,汽车刹车后到停下来前进的距离是( ) A .54B .52C .7516D .758【解答】解:225751566()48s t t t =-=--+,∴当54t =时,S 取得最大值758, 即汽车刹车后到停下来前进的距离是758m , 故选:D .9.(4分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一段时间后,记录下这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度的增长量y 是温度x 的二次函数,那么下列结论: ①该植物在0C ︒时,每天高度的增长量最大;②该植物在6C ︒-时,每天高度的增长量能保持在25mm 左右; ③该植物与大多数植物不同,6C ︒以上的环境下高度几乎不增长. 上述结论中,所有正确结论的序号是( ) A .①②③B .①③C .①②D .②③【解答】解:从表格可得出以下信息:抛物线开口向下,且对称轴为1x =-, ①函数最大值在1x =-时取得,故①错误; ②由函数对称性知:6x =-时,25y =,故②正确; ③6x =,1y =,故③正确; 故选:D .10.(4分)已知一个二次函数图象经过11(3,)P y -,22(1,)P y -,33(1,)P y ,44(3,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定【解答】解:二次函数图象经过11(3,)P y -,22(1,)P y -,33(1,)P y ,44(3,)P y 四点,且324y y y <<, ∴抛物线开口向上,对称轴在0和1之间,11(3,)P y ∴-离对称轴的距离最大,33(1,)P y 离对称轴距离最小,3y ∴最小,1y 最大,故选:A .二、填空题(每题4分,共24分)11.(4分)方程290x -=的解是 3x =± .【解答】解:290x -=即(3)(3)0x x +-=,所以3x =或3x =-. 故答案为:3x =±.12.(4分)抛物线2(1)1y x =--的顶点坐标为 (1,1)- . 【解答】解:2(1)1y x =--,∴顶点坐标为(1,1)-.故答案为(1,1)-.13.(4分)某种植基地2016年蔬菜产量为80吨,2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为 280(1)100x += . 【解答】解:由题意知,蔬菜产量的年平均增长率为x , 根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1)x +吨 2018年蔬菜产量为80(1)(1)x x ++吨,预计2018年蔬菜产量达到100吨, 即:80(1)(1)100x x ++=或280(1)100x +=. 故答案为:280(1)100x +=.14.(4分)在一幢高125m 的大楼上掉下一个苹果,苹果离地面的高度()h m 与时间()t s 大致有如下关系:21255h t =-. 5 秒钟后苹果落到地面. 【解答】解:把0h =代入函数解析式21255h t =-得, 212550t -=,解得15t =,25t =-(不合题意,舍去); 答:5秒钟后苹果落到地面. 故答案为:5.15.(4分)若二次函数22y ax ax c =-+的图象经过点(1,0)-,则方程220ax ax c -+=的解为 11x =-,23x = .【解答】解:二次函数22y ax ax c =-+的图象经过点(1,0)-, ∴当1x =-时,220ax ax c -+=成立, ∴方程220ax ax c -+=的一个解是11x =-.20a a c ∴++=, 3c a ∴=-,∴原方程可化为2(23)0a x x --=,0a ≠.2230x x ∴--=, 11x ∴=-,23x =.故答案是:11x =-,23x =.16.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A 在x 轴负半轴上,顶点B 在x 轴正半轴上.若抛物线2108(0)p ax ax a =-+>经过点C 、D ,则点B 的坐标为 (4,0) .【解答】解:抛物线22108(5)258p ax ax a x a =-+=--+,∴该抛物线的顶点的横坐标是5x =,当0x =时,8y =,∴点D 的坐标为:(0,8),8OD ∴=,抛物线2108(0)p ax ax a =-+>经过点C 、D ,////CD AB x 轴,5210CD ∴=⨯=,10AD ∴=,90AOD ∠=︒,8OD =,10AD =,6AO ∴=====,10AB =,101064OB AO ∴=-=-=,∴点B 的坐标为(4,0),故答案为:(4,0)三、解答题(9小题,共86分)17.(12分)解方程:(1)230x x +-=;(2)2616x x -=;(3)2(3)3(3)x x x -=-.【解答】解:(1)230x x +-=,1a ∴=,1b =,3c =-,∴△11213=+=,x ∴=; (2)2616x x -=,26925x x ∴-+=,2(3)25x ∴-=,8x ∴=或2x =-;(3)2(3)3(3)x x x -=-,(23)(3)0x x ∴--=,23x ∴=或3x =;18.(8分)已知二次函数2(1)y x n =-+,当2x =时,2y =.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.【解答】解:二次函数2(1)y x n =-+,当2x =时,2y =,22(21)n ∴=-+,解得1n =,∴该二次函数的解析式为2(1)1y x =-+.列表得:如图:19.(8分)关于x 的一元二次方程2(3)220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.【解答】(1)证明:在方程2(3)220x k x k -+++=中,△222[(3)]41(22)21(1)0k k k k k =-+-⨯⨯+=-+=-,∴方程总有两个实数根.(2)解:2(3)22(2)(1)0x k x k x x k -+++=---=,12x ∴=,21x k =+.方程有一根小于1,11k ∴+<,解得:0k <,k ∴的取值范围为0k <.20.(8分)“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?【解答】解:(1)设每轮传染中平均每人传染了x 人,1(1)121x x x +++=,10x =或12x =-(舍去). 答:每轮传染中平均一个人传染了10个人;(2)121121101331+⨯=(人).答:第三轮后将有1331人被传染.21.(8分)如图:在ABC ∆中,90ABC ∠=︒,8AB BC cm ==,动点P 从点A 出发,以2/cm s 的速度沿射线AB 运动,同时动点Q 从点C 出发,以2/cm s 的速度沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t 秒,PCQ ∆的面积为2Scm .(1)直接写出AC 的长:AC = 82 cm ;(2)求出S 关于t 的函数关系式,并求出当点P 运动几秒时,PCQ ABC S S ∆∆=.【解答】解:(1)在Rt ABC ∆中,90ABC ∠=︒,8AB BC cm ==,2282AC AB BC cm ∴=+=.故答案为:82.(2)2AP CQ t ==,8AB =,|82|BP t ∴=-, 1|82|2S CQ BP t t ∴==-, 即2228(04)28(4)t t t S t t t ⎧-+<=⎨->⎩. 当04t <时,2128882t t -+=⨯⨯, 整理,得:24160t t -+=,△2(4)4116480=--⨯⨯=-<,∴该方程无解;当4t >时,2128882t t -=⨯⨯, 整理,得:24160t t --=,解得:1225t =-(不合题意,舍去),2225t =+.∴当点P 运动(225)+秒时,PCQ ABC S S ∆∆=.22.(8分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示. (1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.【解答】解:(1)将二次函数23315y x x =-++化成23519()524y x =--+,(3分), 当52x =时,y 有最大值,194y =最大值,(5分) 因此,演员弹跳离地面的最大高度是4.75米.(6分)(2)能成功表演.理由是:当4x =时,234341 3.45y =-⨯+⨯+=.即点(4,3.4)B 在抛物线23315y x x =-++上, 因此,能表演成功.(12分).23.(10分)我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y (元)与存放天数x (天)之间的部分对应值如下表所示:但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.(1)请你从所学过的一次函数和二次函数中确定哪种函数能表示y 与x 的变化规律,并直接写出y 与x 之间的函数关系式;若存放x 天后将这批野生茵一次性出售,设这批野生菌的销售总额为P 元,试求出P 与x 之间的函数关系式;(2)该公司将这批野生菌存放多少天后出售可获得最大利润w 元并求出最大利润.【解答】解:(1)由题意得:30y x =+,2(10003)(30)(10003)391030000P y x x x x x =-=+-=-++;(2)22231010003039103000031010003036003(100)30000w P x x x x x x x =--⨯=-++--⨯=-+=--+0110x <,∴当100x =时,利润w 最大,最大利润为30000元,∴该公司将这批野生茵存放100天后出售可获得最大利润30000元;24.(10分)已知关于x 的一元二次方程21(2)(2)04a b x a b +-++=有实数根. (1)若2a =,1b =,求方程的根.(2)若225m a b a =++,若0b <,求m 的取值范围.【解答】解:(1)当2a =、1b =时,原方程为22441(21)0x x x -+=-=,解得:12x =. 答:若2a =,1b =,方程的根为12. (2)20ab ,0b <,0a ∴.方程21(2)(2)04a b x a b +-++=有实数根,∴△221(4(2)(2)(2)04a b a b a b =--⨯+⨯+=--, 2a b ∴=,222255105(1)5m a b a b b b ∴=++=+=+-, 0b <,5m ∴-.25.(14分)在平面直角坐标系xOy 中,对于点(,)P x y ,若点Q 的坐标为(,||)x x y -,则称点Q 为点P 的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P 在函数1y x =-的图象上,其“关联点” Q 与点P 重合,求点P 的坐标;(3)如果点(,)M m n 的“关联点” N 在函数2y x =的图象上,当02m 时,求线段MN 的最大值.【解答】解:(1)|22|0-=,∴点(2,2)的“关联点”的坐标为(2,0).(2)点P 在函数1y x =-的图象上,(,1)P x x ∴-,则点Q 的坐标为(,1)x ,点Q 与点P 重合,11x ∴-=,解得:2x =,∴点P 的坐标为(2,1).(3)点(,)M m n ,∴点(,||)N m m n -.点N 在函数2y x =的图象上,2||m n m ∴-=.()i 当m n 时,2m n m -=,2n m m ∴=-+,2(,)M m m m ∴-+,2(,)N m m . 02m ,22|||||21|M N MN y y m m m m m ∴=-=-+-=-. ①当102m时,221122()48MN m m m =-+=--+, ∴当14m =时,MN 取最大值,最大值为18. ②当122m <时,221122()48MN m m m =-=-+, 当2m =时,MN 取最大值,最大值为6. ()ii 当m n <时,2n m m -=,2n m m ∴=+,2(,)M m m m ∴+,2(,)N m m . 02m ,22||||M N MN y y m m m m ∴=-=+-=, 当2m =时,MN 取最大值2. 综上所述:当02m 时,线段MN 的最大值为6.。
2019年福建省中考数学试题及答案
2019年福建省初中学业水平考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.计算22+(-1)0的结果是( )A .5B .4C .3D .22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ) A .72×104 B .7.2×105 C .7.2×106 D .0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .直角三角形 C .平行四边形 D .正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( )A .B .C .D .5.已知正多边形的一个外角是36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳定 7.下列运算正确的是( ).A .a ·a 3=a 3B .(2a )3=6a 3C .a 6÷a 3=a 2D .(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A .x +2x +4x =34 685 B .x +2x +3x =34 685 C .x +2x +2x =34 685 D .x +12x +14x =34 685次数主视图9.如图,P A 、PB 是⊙O 的两条切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( ) A .55° B .70° C .110° D .125°10.若二次函数y =|a |x 2+bx +c 的图象过不同的五点A (m ,n ),B (0,y 1),C (3-m ,n ),D (2,y 2),E (2,y 3),则y 1, y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 二、填空题(每小题4分,共24分) 11.因式分解:x 2-9= .12.如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 . 13.某校征集校运会会徽图案,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100位学生, 其中60位学生喜欢甲图案,若该校共有学生2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生 有 人.14.在平面直角坐标系xOy 中,□OABC 的三个顶点分别为O (0,0),A (3,0),B (4,2),则其第四个顶点C 的坐标 是 .15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交 点,则图中阴影部分的面积为 .(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .第15题图 第16题图三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:⎩⎪⎨⎪⎧x -y =52x +y =4.18.(本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF =CE .A19.(本小题满分8分)先化简,再求值:(x -1)÷(x -2x -1x ),其中x =2+1已知△ABC为和点A',如图,(1)以点A'为一个顶点作△A'B'C',使得△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是△ABC三边AB,BC,CA的中点,D',E',F'分别是你所作的△A'B'C'三边A'B',B'C',A'C'的中点,求证:△DEF∽△D'E'F'.AA'21.(本小题满分8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一个角度α得到△DEC,点A,B的对应点分别为D,E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2)若α=60°,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.图1 图2某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元。
2019年福建省厦门市小升初数学考试真题及答案
2019年福建省厦门市小升初数学考试真题及答案一、仔细看题,准确计算.(32分)1.直接写出得数.(8分)5÷=×=﹣=0.75+=÷=0.36×=80%×=2.脱式计算.(能简算的要简算)(18分)÷9+×2.5÷×÷[﹣(1﹣)] 3.求未知数x(6分)x+20%x=36﹣2x=12=二、细心审题,恰当填空.(28分)4.=16÷=:2.5=%=(小数)5.某地某一天的最低气温是﹣5℃,最高气温12℃,这一天的最高气温与最低气温相差℃.6.厦门市地铁1号线全长约30.3千米,合米,改写成用“万”作单位的数是万米,精确到十分位约是万米.7.王芳骑自行车,3小时行了75千米,王芳骑自行车的速度是千米/时,她行1千米需小时.8.7只小鸟飞回6个鸟笼,至少有只小鸟要飞回同一个鸟笼.9.一件衣服打九折后售价180元,这件衣服降价元。
10.0.4:1.6的比值是.如果前项加上0.8,要使比值不变,后项应加上.11.把3平方米的纸片平均分成5份,每份占它的,每份的面积是平方米.12.如果3a=4b(a、b≠0),那么a:b=:;如果=27(y≠0),那么x和y成比例.13.在三角形ABC中,∠A:∠B:∠C=1:3:2,∠C=,这个三角形是三角形.14.如图所示,把底面直径6厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的表面积是平方厘米,体积是立方厘米.15.用铁皮做一个底面直径为8分米,高为6分米的圆柱形无盖水桶,至少要用平方分米的铁皮,这个水桶最多能装水升.16.把边长1厘米的正方形纸片,按规律排成长方形(1)4个正方形拼成的长方形周长是厘米.(2)用a个正方形拼成的长方形周长是厘米.17.如图所示,小华骑车到与他家相距5千米的书店买书,这是他离开家的距离与时间的示意图.可以看出:他在书店的时间是小时,他去时的速度是千米/时.三、反复比较,慎重选择(6分)18.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A.160 B.155 C.150 D.14519.某村前年生产粮食500吨,去年粮食丰收,生产粮食600吨,去年粮食增产()A.一成B.四成C.二成D.十成20.一幢教学楼长40m,在平面图上用8cm的线段表示,这幅图的比例尺是()A.1:50 B.50:1 C.1:500 D.500:121.完成同一件工作,甲要用5小时,乙要用4小时,甲和乙工作效率的比是()A.5:4 B.4:5 C.5:9 D.不能确定22.图中正方形的面积()平行四边形的面积.A.大于B.等于C.小于D.无法判断23.最近一次数学测试,甲、乙两个同学的平均成绩为88分,甲、丙两个同学的平均成绩为90分,乙、丙两个同学的平均成绩为92分,他们三人的平均成绩是()分.A.88 B.90 C.92 D.94四、按要求填空,并画图.(6分)24.(1)在下面方格图(每个方格的边长表示1cm)中画一个直角三角形,其中两个锐角的顶点分别确定在(5,7)和(1,3)的位置上,那么直角的顶点位置可以是(,).(2)将这个三角形向右平移5格.(3)将平移后的这个三角形按1:2缩小后画在合适的位置.六、运用所学,解决问题(26分)25.如图所示,在本次体能测试中,成绩优的有90人,则共有多少人参加测试?26.爸爸将5000元存入银行,定期三年,年利率为4.15%,到期时爸爸能拿回多少钱?27.学校图书室购进300本故事书,比科技书的5倍少50本.购进科技书多少本?28.李老师带1000元去商场买篮球,买了15个,还剩40元钱,每个篮球多少元?29.学校要把一批树苗栽到科普基地,如果每行栽10棵,正好是18行,如果每行栽12棵,可以栽多少行?(用比例解)30.一个圆锥形沙堆,底面积28.26平方米,高3米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?31.在比例尺是1:12000000的地图上,量行济南到青岛的距离是4cm.在比例尺是1:8000000的地图上,济南到青岛的距离是多少厘米?32.图中圆的周长是12.56cm,圆的面积正好等于长方形的面积,求阴影部分的面积.参考答案:一、仔细看题,准确计算.(32分)1.【分析】根据整数、小数和分数加减乘除法运算的计算法则进行计算即可求解.【解答】解:5÷=×=﹣=0.75+=1 ÷=0.36×=0.2780%×=1【点评】考查了整数、小数和分数加减乘除法运算,关键是熟练掌握计算法则正确进行计算.2.【分析】(1)根据加法交换律进行简算;(2)根据乘法交换律和结合律进行简算;(3)根据乘法分配律进行简算;(4)根据除法的性质进行简算;(5)按照从左向右的顺序进行计算;(6)先算小括号里面的减法,再算中括号里面的减法,最后算除法.【解答】解:(1)6.28+3.5+3.72=6.28+3.72+3.5=10+3.5=13.5(2)2.5×3.2×125=2.5×(4×0.8)×125=(2.5×4)×(0.8×125)=10×100=1000(3)÷9+×=×+×=(+)×=×=(4)1000÷12.5÷8=1000÷(12.5×8)=1000÷100=10(5)2.5÷×=4×=7(6)÷[﹣(1﹣)]=÷[﹣]=÷=【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.3.【分析】(1)先计算左边,依据等式的性质,方程两边同时除以1.2求解;(2)方程的两边同时加上2x,然后方程的两边同时减去2,再同时除以2求解;(3)根据比例的基本性质,变成 0.2x=0.75×16,然后等式的两边同时除以0.2求解.【解答】解:(1)x+20%x=1.2x=0.41.2x÷1.2=0.4÷1.2x=(2)36﹣2x=1236﹣2x+2x=12+2x12+2x﹣12=36﹣122x÷2=24÷2x=12(3)=0.2x=0.75×160.2x÷0.2=12÷0.2x=60【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.二、细心审题,恰当填空.(28分)4.【分析】根据分数与除法的关系=4÷5,再根据商不变的性质被除数、除数都乘4就是16÷20;根据比与分数的关系=4:5,再根据比的基本性质比的前、后项都乘0.5就是2:2.5;4÷5=0.8;把0.8的小数点向右移动两位添上百分号就是80%.【解答】解:=16÷20=2:2.5=80%=0.8.故答案为:20,2,80,0.8.【点评】解答此题的关键是,根据小数、分数、百分数、除法、比之间的关系及商不变的性质、比的基本性质即可进行转化.5.【分析】这是一道有关温度的正负数的运算题目,最高气温与最低气温二者之差,即求这一天的温差,列式为12﹣(﹣5),计算即可.【解答】解:12﹣(﹣5)=12+5=17(℃)答:这一天最高气温与最低气温相差17℃.故答案为:17.【点评】本题考查零上温度与零下温度之差的题目,列式容易出错.6.【分析】高级单位千米化低级单位米乘进率1000;即30.3千米合30300米;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;精确到十分位即把百分位上的数进行“四舍五入”.【解答】解:30.3千米=30300米30300米=3.03万米3.03万米≈3.0万米即厦门市地铁1号线全长约30.3千米,合30300米,改写成用“万”作单位的数是3.03万米,精确到十分位约是3.0万米.故答案为:30300,3.03,3.0.【点评】此题考查的知识点有:长度的单位换算、整数的改写、求近似数.7.【分析】首先根据路程÷时间=速度,用王芳骑自行车行的路程除以用的时间,求出王芳骑自行车的速度是多少千米/时;然后用时间除以路程,也就是用王芳骑75千米用的时间除以75,求出她行1千米需多少小时即可.【解答】解:75÷3=25(千米/时)3÷75=0.04(小时)答:王芳骑自行车的速度是25千米/时,她行1千米需0.04小时.故答案为:25、0.04.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是弄清楚题中的各个量之间的数量关系.8.【分析】7只小鸟飞进6个笼子,7÷6=1(只)…1(只),即当每个笼子里平均飞进1只时,还有一只在笼外,根据抽屉原理可知,至少有1+1=2只小鸟在同一个笼子里.【解答】解:5÷4=1(只)…1(只)1+1=2(只)答:至少有 2只小鸟要飞回同一个鸟笼.故答案为:2.【点评】把多于mn(m乘n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体.9.【分析】打九折是指现价是原价的90%,把原价看成单位“1”,它的90%对应的数量是180元,由此用除法求出原价,进而求出降低的价格.【解答】解:180÷90%=200(元)200﹣180=20(元)答:这件衣服降价20元.故答案为:20.【点评】本题关键是理解打折的含义:打几折现价就是原价的百分之几十.10.【分析】比的基本性质,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;用比的前项除以后项求出比值,如果前项加上0.8,可知比的前项由0.4变成1.2,相当于前项乘3;根据比的性质,要使比值不变,后项也应该乘3,由1.6变成4.8,相当于后项应加上4.8﹣1.6=3.2;据此进行解答.【解答】解:0.4:1.6=0.4÷1.6=0.25(0.4+0.8)÷0.4×1.6﹣1.6=1.2÷0.4×1.6﹣1.6=4×1.6﹣1.6=4.8﹣1.6=3.2答:0.4:1.6的比值是 0.25.如果前项加上0.8,要使比值不变,后项应加上 3.2.故答案为:0.25,3.2.【点评】此题考查了求比值、比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.11.【分析】把这张纸片的面积看作单位“1”,把它平均分成5份,每份是这张纸片的;求每份的面积,用这张纸片的总面积除以平均分成的份数.【解答】解:1÷3÷5=0.6(平方米)答:每份占它的,每份的面积是0.6平方米.故答案为:,0.6.【点评】解决此题关键是弄清求的是“分率”还是“具体的数量”,求分率:平均分的是单位“1”;求具体的数量:平均分的是具体的数量,要注意:分率不能带单位名称,而具体的数量要带单位名称.12.【分析】(1)根据比例的基本性质解答即可;(2)判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:(1)3a=4b(a、b≠0)a:b=4:3(2)如果=27(y≠0),比值一定,那么x和y成反比例;故答案为:4、3,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.【分析】根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°,列式求出∠C,作出判断即可.【解答】解:设∠A、∠B、∠C分别为k、3k、2k,则k+2k+3k=180°解得k=30°即∠A=30°所以,∠C=2×30°=60°∠b=3×30°=90°这个三角形是直角三角形.故答案为:60°,直角.【点评】本题考查了三角形内角和定理,利用“设k法”用k表示出∠A、∠B、∠C可以使运算更加简便.14.【分析】把圆柱切成若干等分,拼成一个近似的长方体.这个近似长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高,体积不变等于圆柱的体积,然后根据长方体的表面积公式:S=2(ab+ah+bh),体积公式:V=abh,列式解答即可.【解答】解:长方体的长:3.14×6÷2=9.42(厘米);长方体的宽:6÷2=3(厘米);表面积是:(9.42×3+9.42×10+3×10)×2=(28.26+94.2+30)×2=152.46×2=304.92(平方厘米);体积:9.42×3×10=28.26×6=282.6(立方厘米).答:这个长方体的表面积是304.92平方厘米,体积是282.6立方厘米.故答案为:304.92,282.6.【点评】本题重点考查了圆柱体的体积推导公式的过程中的一些知识点:长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高.15.【分析】由题意可知:做这个水桶需要的铁皮面积就等于水桶的表面积减去上盖的面积,即水桶的侧面积加上下底的面积即可,水桶的底面直径和高已知,利用圆柱的侧面积S=πdh和圆的面积S=πr2的计算方法即可求解;再利用圆柱的体积V=Sh,即可求出这个水桶的容积.【解答】解:3.14×8×6+3.14×(8÷2)2=3.14×48+3.14×16=3.14×64=200.96(平方分米)3.14×(8÷2)2×6=3.14×16×6=3.14×96=301.44(立方分米)301.44立方分米=301.44升答:至少要用200.96平方分米的铁皮,这个水桶最多能装水301.44升.故答案为:200.96,301.44.【点评】此题主要考查圆柱的表面积和体积的计算方法在实际生活中的应用.16.【分析】根据题意,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长,即1厘米.再根据长方形的周长公式计算即可.【解答】解:由题意可知,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长.(1)用4个正方形拼成的长方形,长=4×1=4(厘米),宽=1(厘米).周长=(长+宽)×2=(4+1)×2=10(厘米);(2)用a个正方形拼成的长方形,长=a×1=a(厘米),宽=1(厘米)用m个正方形拼成的长方形的周长周长=(长+宽)×2=(a+1)×2=2a+2(厘米).故答案为:10,2a+2.【点评】根据题意,可以求出按规律拼成长方形的长和宽,再根据长方形的周长公式计算即可.17.【分析】观察此图,可知横轴表示时间,单位小时,把1小时平均分成4份,每份是小时;纵轴表示路程;小华的行程分三个阶段,第一个阶段是从家骑车到相距5千米远的书店,用了小时;第二个阶段是在书店买书,用了1小时;第三个阶段是从书店回家,用1小时,根据速度=路程÷时间,求得小华去时速度即可.【解答】解:(1)从图中看出,小华在书店买书是从小时到1小时用去的时间为:1﹣=1(小时),答:他在书店买书用去1小时;(2)5÷=10(千米/小时)答:他去时的速度是 10千米/时.故答案为:1,4.【点评】此题考查了利用折线统计图表示行走时间和行走路程的关系的方法,解决关键是会分析不同的行程状况.三、反复比较,慎重选择18.【分析】净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最多不多于150+5克,最少不少于150﹣5克.【解答】解:净重(150±5克),表示最少不少于:150﹣5=145(克).故选:D.【点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.19.【分析】几成就是十分之几、百分之几十,把前年粮食生产总量看做单位“1”,求出去年比前年粮食增产百分之几,然后把百分数化为成数即可.【解答】解:(600﹣500)÷500,=100÷500,=20%,20%即二成,故选:C.【点评】本题重点要理解成数的意义及成数与分数、百分数之间的互化.20.【分析】图上距离和实际距离已知,依据“图上距离:实际距离=比例尺”即可求得这幅图的比例尺.【解答】解:因为40米=4000厘米则8厘米:4000厘米=1:500答:这幅图的比例尺是1:500.故选:C.【点评】此题主要考查比例尺的意义,解答时要注意单位的换算.21.【分析】把这件工作的工作量看成单位“1”,甲的工作效率是,乙的工作效率是,用甲的工作效率比上乙的工作效率,再化简即可求解.【解答】解::=(×20):(×20)=4:5答:甲和乙工作效率的比是4:5.故选:B.【点评】解决本题也可以根据工作量一定,工作效率和工作时间的反比例关系求解,甲乙的工作时间比是5:4,那么工作效率比就是4:5.22.【分析】因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积,据此解答即可.【解答】解:因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积.故选:B.【点评】此题主要考查正方形和平行四边形的面积的计算方法的灵活应用.23.【分析】根据“平均数×数量=总数”分别求出甲、乙的成绩和,甲、丙的成绩和,乙、丙的成绩和,把三个的数相加,就是三个人总分的2倍;然后再分别除以2和3就是他们三人的平均成绩.【解答】解:(88×2+90×2+92×2)÷2÷3=540÷6=90(分)答:他们三人的平均成绩是90分.故选:B.【点评】解答此题应根据平均数、数量和总数三者之间的关系进行解答.四、按要求填空,并画图.24.【分析】(1)根据数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可确定两个锐角的顶点的位置,根据直角三角形的两条直角边互相垂直的性质,即可求得直角顶点的位置,从而画出这个直角三角形;(2)根据图形平移的方法,先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)根据图形放大与缩小的方法,先数出原来三角形的两条直角边,把它们分别除以2,即可得出缩小后的直角三角形的两条直角边,由此即可画出缩小后的三角形3.【解答】解:(1)根据数对表示位置的方法,可在平面图中标出三角形的两个锐角的顶点如图所示,则直角顶点的位置可以是:(5,3),由此即可画出这个直角三角形1;(2)先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)原直角三角形的两条直角边分别是4厘米,按照1:2缩小后,两条直角边的长度是4÷2=2厘米,由此即可画出这个缩小后的三角形3,如图所示:故答案为:(1)5;3.【点评】此题考查了数对表示位置的方法,图形的平移,放大与缩小的方法的灵活应用.六、运用所学,解决问题(26分)25.【分析】由题意可知:用90除以45%,即可求出参加测试的总人数.【解答】解:90÷45%=200(人)答:有200人参加测试.【点评】本题主要考查扇形统计图的应用,关键根据百分数的意义做题.26.【分析】此题属于存款利息问题,时间是3年,年利率为4.15%,本金是5000元,把以上数据代入关系式“本息=本金+本金×利率×时间”,列式解答即可.【解答】解:5000+5000×4.15%×3=5000+5000×0.0415×3=5000+622.5=5622.5(元)答:到期能取回本息5622.5元.【点评】解答此类问题,关键的是熟练掌握关系式“利息=本金×利率×时间”、“本息=本金+本金×利率×时间”.27.【分析】学校图书室购进300本故事书,比科技书的5倍少50本,也就是购进的300本故事书加上50本就是科技书的5倍,然后再除以5即可.【解答】解:(300+50)÷5=350÷5=70(本)答:购进科技书70本.【点评】本题关键是明确它们之间的倍数关系,然后再列式解答.28.【分析】根据减法的意义可知:15个篮球共花了1000﹣40元,根据除法的意义可知:每个篮球的价格是(1000﹣40)÷15元.【解答】解:(1000﹣40)÷15=960÷15=64(元)答:每个篮球64元.【点评】此题利用基本关系式:总价÷数量=单价解决问题.29.【分析】根据总棵数不变可知,每行栽的棵数和行数乘积一定,即成反比例关系,设需要栽x行,用原来每行的棵数×原来的行数=现在每行的棵数×现在的行数,据此可列方程12x=10×18解答即可.【解答】解:设需要栽x行,12x=10×1812x=180x=15答:可以栽15行.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.30.【分析】要求能铺多少米,首先根据圆锥的体积公式:v=sh,求出沙堆的体积,把这堆沙铺在长方形的路面上就相当于一个长方体,只是形状改变了,但沙的体积没有变,因此,用沙的体积除以长方体的长再除以高就是所铺的长度.由此列式解答.【解答】解:2厘米=0.02米,×28.26×3÷(10×0.02)=28.26÷0.2=141.3(米);答:能铺141.3米.【点评】此题属于圆锥和长方体的体积的实际应用,解答时首先明确沙堆原来的形状是圆锥形,铺在长方形的路面上,体积不变,所以根据圆锥的体积公式求出沙的体积,用体积除以长方体的底面积问题就得到解决.31.【分析】先求两地间的实际距离,根据“图上距离÷比例尺=实际距离”,代入数值,计算出两地间的实际距离,进而根据“实际距离×比例尺=图上距离”解答即可.【解答】解:4÷=48000000(厘米)48000000×=6(厘米)答:在比例尺是1:8000000的地图上,济南到青岛的距离是6厘米.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.32.【分析】由圆的周长为12.56cm,求出圆的半径:12.56÷3.14÷2=2(厘米);阴影的面积=圆的面积﹣圆的面积=圆的面积.据此解答.【解答】解:12.56÷3.14÷2=2(厘米)3.14×2×2﹣3.14×2×2÷4=12.56﹣3.14=9.42(平方厘米)答:阴影部分的面积是9.42平方厘米.【点评】组合图形的面积一般都是将它转化到已知的规则图形中进行计算.本题关键是得到圆的半径,进而算出圆的面积.祝福语祝你考试成功!。
2019-2020厦门市八上数学质检参考答案
2019—2020学年(上)厦门市初二年质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(1)8a 3;(2)15a 3+6ab 2. 12. 4x . 13. 40°. (未写单位不扣分)14.36. 15.∠MPN =2∠BCP . 16. 2a +b .三、解答题(本大题有9小题,共86分)17.(本题满分12分) (1)(本小题满分6分)解:(y +2)(y —2)+(2y —4)(y +3)=y 2—4+2y 2+6y —4y —12 ………………………4分 =3y 2+2y —16. ……………………6分 (2)(本小题满分6分) 解:2a 2x 2+4a 2xy +2a 2y 2=2a 2(x 2+2xy +y 2) ………………………4分 =2a 2(x +y ) 2. ………………………6分18.(本题满分7分)证明:∵ AB ∥DE ,∴ ∠B =∠DEF . ………………2分 ∵ AB =DE ,∠A =∠D ,∴ △ABC ≌△DEF . ………………5分∴ BC =EF . ………………6分 ∴ BC -CE =EF -CE .∴ BE =CF . ………………7分19. (本题满分7分)解:1m 2-49÷1m 2-7m+1=1 (m +7)(m —7) ÷1m (m -7)+1 ……………………………2分=1(m +7)(m —7)·m (m -7)+1 ……………………………3分AB DCE F=mm +7 +1 ……………………………5分=m +m +7 m +7=2m +7 m +7 . ……………………………6分当m =2时,原式=2×2+7 2+7 =119. ……………………………7分20. (本题满分8分) 解:(1)(本小题满分6分)如图即为所求. …………………6分 (2)(本小题满分2分)对称点P ′在△ABC 外. …………………8分21. (本题满分8分)(1)(本小题满分5分) 证明:解法一∵ BD ⊥AC ,D 是边AC 的中点, ∴ BD 是边AC 的垂直平分线.∴ BA= BC . ………………………3分 ∵ AB =AC , ∴ AB =AC= BC .∴ △ABC 是等边三角形. ………………………5分解法二∵ BD ⊥AC ,D 是边AC 的中点, ∴ ∠BDA =∠BDC =90°,AD =CD . 又∵ BD =BD , ∴ △BAD ≌△BCD .∴ BA= BC . ………………………3分 ∵ AB =AC ,∴ AB =AC= BC .∴ △ABC 是等边三角形. ……………………5分 (2)(本小题满分3分)如图点E 即为所求. ………………………8分AB CDEAB CDAB C · · ·22.(本题满分9分) 解:(1)(本小题满分4分)设甲厂2017年日均生产该产品x 件(x >0),则甲厂2018年日均生产该产品(2x +2)件,由题意得99x =2002x +2.………………2分 解得x =99. ………………3分经检验,x =99是原方程的解,且符合题意.答:甲厂2017年日均生产该产品99件. ………………4分 (2)(本小题满分5分)设甲厂2017年日均生产该产品x 件(x >0),则甲厂2018年日均生产该产品(2x +2)件, 乙厂日均生产该产品(3x +4)件.由m :n =14:25可设m =14k ,n =25k (k >0).所以甲厂生产m 件产品所用时间t 甲=14k 2x +2,t 乙=25k3x +4. (5)t 甲-t 乙=14k 2x +2-25k3x +4………………7分=(3-4x )k ( x +1)(3x +4). 因为2017年的年产量过万件, 所以x >10000365.所以3-4x <0. 所以t 甲-t 乙<0.即t 甲<t 乙.答:甲厂先完成任务. ………………9分23.(本题满分10分)解:(1)(本小题满分1分) 算式:62×11,34×11,54×11.共同特征:三个算式均是一个两位数与11相乘. ………………1分 (2)(本小题满分4分)62×11=682,34×11=374,54×11=594.规律:一个两位数与11相乘,将这个两位数的十位和个位分别作为积的百位和个位,将这个两位数的数位上数字之和作为积的十位. ……………5分 (3)(本小题满分3分)规律:(10a +b )×11=100a +10(a +b )+b . (其中1≤a ≤9,0≤b ≤9,且a +b ≤9,a ,b 为整数)证明:(10a +b )×11=(10a +b )×10+(10a +b ) =100a +10b +10a +b=100a +10(a +b )+b . ………………8分 (4)(本小题满分2分)18×22,15×55. ………………10分24.(本题满分11分)解:(1)(本小题满分5分) ∵ △ABC 是等边三角形,∴ ∠A =∠B =∠C =60°. ……………1分设∠A =12∠B +α.可得α=30°,不符合定义. ……………2分 所以∠A 不是∠B 的差角.同理可知,△ABC 中任意一个角都不是其他角的差角. ……………3分 所以△ABC 不是“差角三角形”. ……………4分 (2)(本小题满分6分) ∵ 在△ABC 中,∠C =90°, ∴ ∠A =90°-∠B . ①设∠C =12∠A +α.即90°=12(90°-∠B )+α,所以α=12∠B +45°.因为50°≤∠B ≤70°,可得α>25°.不符合定义,所以∠C 不是∠A 的差角. ②设∠C =12∠B +α.即90°=12∠B +α,所以α=90°-12∠B .因为50°≤∠B ≤70°,可得α>25°.不符合定义,所以∠C 不是∠B 的差角. ③设∠A =12∠B +α.即90°-∠B =12∠B +α,所以α=90°-32∠B .因为50°≤∠B ≤70°,可得-15°≤α≤15°.由0°<α≤15°,可得50°≤∠B <60°. 即当50°≤∠B <60°时,△ABC 是差角三角形,且∠A 是∠B 的差角. ④设∠A =12∠C +α.即90°-∠B =45°+α,所以α=45°-∠B . 因为50°≤∠B ≤70°,可得α<0°.不符合定义,所以∠A 不是∠C 的差角. ⑤设∠B =12∠A +α.即∠B =12(90°-∠B )+α,所以α=32∠B -45°.因为50°≤∠B ≤70°,可得α>30°.不符合定义,所以∠B 不是∠A 的差角.⑥设∠B =12∠C +α.即∠B =45°+α,所以α=∠B -45°. 因为50°≤∠B ≤70°,可得5°≤α≤25°.符合定义,所以△ABC 是差角三角形,且∠B 是∠C 的差角. 综上,△ABC 是差角三角形.∠B 是∠C 的差角;当50°≤∠B <60°时,∠A 是∠B 的差角.(本小题的评分要求见评分量表)25. (本题满分14分)(1)(本小题满分3分)证明:∵ ∠ABC =∠CDA =90°, ∵ BC =CD ,AC=AC ,∴ Rt △ABC ≌Rt △ADC . ………………………2分 ∴ AB =AD . ………………………3分(2)(本小题满分4分) 证明:∵ AE =BE +DE , 又∵ AE =AD +DE ,∴ AD =BE . ……………………………4分 ∵ AB =AD ,∴ AB =BE . ……………………………5分 ∴ ∠BAD =∠BEA . ∵ ∠ABC =90°,∴ ∠BAD =180°—∠BAC2 =45°. ……………………………6分∵ 由(1)得△ABC ≌△ADC , ∴ ∠BAC =∠DAC .∴ ∠BAC =45°2 =22.5°. ……………………………7分(3)(本小题满分7分)解法一:解:当MO +PO 的值最小时,点O 与点E 可以重合,理由如下: ∵ ME ∥AB ,∴ ∠ABC =∠MEC =90°,∠2=∠3. ∵ MP ⊥DC , ∴ ∠MPC =90°.∴ ∠MPC =∠ADC =90°. ∴ PM ∥AD . ∴ ∠1=∠4.由(1)得,Rt △ABC ≌Rt △ADC , ∴ ∠1=∠2 ,∴ ∠3=∠4.即MC 平分∠PME .BE D CA654321QPACDEBM又∵MP⊥CP,ME⊥CE,∴PC=EC.连接PB,连接PE,延长ME交PD的延长线于点Q.设∠1=α,则∠2=α.在Rt△ABE中,∠5=90°—2α.在Rt△CDE中,∠ECD=90°—∠5=2α.∵PC=EC,……………………8分∴∠6=∠EPC=12 ∠ECD=α.∴∠PED=∠5+∠6=90°—α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE.∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°—α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合. ……………11分此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD.∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线. ……………………13分当∠ABD=60°时,在△PEA中,∠P AE=∠PEA=60°.∴∠EP A=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠1=∠3=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.……………………14分。
福建省厦门市质检数学卷含含
2019 年厦门市初中毕业班教学质量检测数学试题一、选择题 (本大题有 10 小题,每小题 4 分,共 40 分)A1.计算(-1)3,结果正确的是A.-3B.-1BC2.如图,在△ ABC 中,∠C=90°,则等于ABC BA. sinAB. sinBC. tanAD. tanB3.在平面直角坐标系中,若点 A 在第一象限,则点 A 关于原点的中心对称点在A.第一象限B.第二象限C.第三象限D.第四象限4.若n 是有理数,则 n 的值可以是A.-1AFE5.如图, AD、CE 是△ABC 的高,过点 A 作 AF∥BC,则下列线段的长可表示图中两条平行线之间的距离的是A. ABB. ADC. CED. AC B CD6.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切 . 符合该命题的图形是A B C D7.若方程 (x-m)( x-a )=0( m≠0的) 根是 x1=x2=m,则下列结论正确的是A. a=m 且 a 是该方程的根B. a=0 且 a 是该方程的根C.a=m 但 a 不是该方程的根D.a=0 但 a 不是该方程的根8.一个不透明盒子里装有 a 只白球 b 只黑球、 c 只红球,这些球仅颜色不同 .从中随机摸出一1只球,若 P(摸出白球 )= ,则下列结论正确的是31A. a=1B. a=3C. a= b =cD. a= (b+c )29.已知菱形 ABCD 与线段 AE,且 AE 与 AB 重合. 现将线段 AE 绕点 A 逆时针旋转 180°,在旋转过程中,若不考虑点 E 与点 B 重合的情形,点 E 还有三次落在菱形 ABCD 的边上,设∠B= ,则下列结论正确的是° < <60° B. =60°° < <90°° < <180°厦门市质检(一)数学卷第1页共5页10.已知二次函数 y=-3x2+2 x+1 的图象经过点 A( ,y1),B(b,y2),C(c,y3),其中 a、b、 c1均大于 0. 记点 A、B、C 到该二次函数的对称轴的距离分别为 d A、d B、d C. 若 d A< < d B < d C,2则下列结论正确的是A.当 a≤x≤b 时,y 随着 x 的增大而增大B.当 a≤x≤c 时,y 随着 x 的增大而增大C.当 b≤x≤c 时,y 随着 x 的增大而减小D.当 a≤x≤c 时,y 随着 x 的增大而减小二、填空题 (本大题有 6 小题,每小题 4 分,共 24 分)yAD11.计算:-a+3 a=________.12.不等式 2x-3≥0的解集是 ________.O x 13.如图,在平面直角坐标系中,若□ABCD 的顶点 A、B、C 的坐BC标分别是 (2,3),(1,-1),(7,-1),则点 D 的坐标是 ________.14.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金. 该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为 22、15、18(单位:万元 ). 若想让一半左右的营业员都能达到月销售目标,则月销售额定为 ________万元较为合适 .k15.在平面直角坐标系 xOy 中,直线 y=x 与双曲线 y= (k>0,x>0)交于点 A. 过点 A 作 AC⊥xx轴于点 C,过该双曲线上另一点 B 作 BD⊥x 轴于点 D,作 BE⊥AC 于点 E,连接 AB. 若OD=3OC,则 tan∠ABE=________.DA16.如图,在矩形 ABCD 中,AB >BC,以点 B 为圆心, AB 的长为M半径的圆分别交 CD 边于点 M,交 BC 边的延长线于点 E. 若DM=CE ,AE 的长为 2 ,则 CE 的长为 ________.三、解答题 (本大题有 9 小题,共 86 分)B CE 17.(本题满分 8 分)解方程组xx y2 y4118. (本题满分 8 分)已知点 B、C、D、E 在一条直线上, AB∥FC,AB=FC ,BC=DE . 求证: AD∥FE.A FB DEC厦门市质检(一)数学卷第2页共5页19.(本题满分 8 分)22 4 2 22a 2a a化简并求值: ( -1)÷,其中 a=2 2a a20.(本题满分 8 分)在正方形 ABCD 中,E 是 CD 边上的点,过点 E 作 EF⊥BD 于 F.(1)尺规作图:在图中求作点 E,使得 EF=EC ;A D(保留作图痕迹,不写作法 )(2)在(1)的条件下连接 FC,求∠ BCF 的度数 .B C21.(本题满分 8 分)某路段上有 A、B 两处相距近 200m 且未设红绿灯的斑马线 . 为使交通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移动红绿灯 .图 1,图 2 分别是交通高峰期来往车辆在 A、B 斑马线前停留时间的抽样统计图 .停停停停停停1312 12 12101087321O 2 4 6 8 10 12 O 2 4 6 8 10停停停停/s 停停停停/s停1 停2根据统计图解决下列问题:(1)若某日交通高峰期共有 350 辆车经过 A 斑马线,请估计其中停留时间为 10s~12s 的车辆数,以及这些停留时间为 10s~12s 的车辆的平均停留时间; (直接写出答案 )(2)移动红绿灯放置在哪一处斑马线上较为合适 ?请说明理由 .厦门市质检(一)数学卷第3页共5页22.(本题满分 10 分)如图,已知△ ABC 及其外接圆,∠ C=90°,AC=10.(1)若该圆的半径为 5 2 ,求∠ A 的度数;(2)点 M 在 AB 边上且 AM>BM,连接 CM 并延长交该圆于点 D,连接 DB,过点 C 作 CE 垂直 DB 的延长线于 E. 若 BE=3,CE=4,试判断 AB 与 CD 是否互相垂直,并说明理由 .CA B23.(本题满分 10 分)在四边形 ABCD 中,AB∥CD,∠ABC =60°,AB=BC =4,CD =3.(1)如图 1,连接 BD,求△BCD 的面积;(2)如图 2,M 是 CD 边上一点,将线段 BM 绕点 B 逆时针旋转 60°,可得线段 BN,过点 N 作NQ⊥BC,垂足为 Q,设 NQ=n,BQ=m,求 n 关于 m 的函数解析式 (自变量 m 的取值范围只需直接写出 )NA AD DMB BC Q C停2停1厦门市质检(一)数学卷第4页共5页24.(本题满分 12 分)某村启动“贫攻坚”项目,根据当地的地理条件,要在一座高为 1000m 的山上种植一种经济作物. 农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:①这座山的山脚下温度约为 22℃,山高 h(单位: m)每增加 100m,温度 T(单位:℃ )下降约℃;②该作物的种成活率 P 受温度 T 影响,且在 19℃时达到最大 . 大致如表一:温度 T(℃) 21 20 19 18种植成活率 p 90% 92% 94% 96% 98% 96% 94% 92%③该作物在这座山上的种植量 w 受山高 h 影响,大致如图停停停w/停AB16001400CD1000E548F200GO 200 300 500 800 900停停h/m(1)求 T 关于 h 的函数解析式,并求 T 的最小值;(2)若要求该作物种植成活率 p 不低于 92%,根据上述统计结果,山高 h 为多少米时该作物的成活量最大 ?请说明理由 .厦门市质检(一)数学卷第5页共5页25.(本题满分 14 分)在平面直角坐标系 xOy 中,已知点 A. 若对点 A 作如下变换;第一步:作点 A 关于 x 轴的对称点 A1;第二步:以 O 为位似中心,作线段 OA1 的位似图形OA2OA2,且相似比 =q,则称 A2 是点 A 的对称位似点 .OA1(1)若 A(2,3),q=2,直接写出点 A 的对称位似点的坐标;1 m(m k)(2)知直线 l:y =kx-2,抛物线 C: y =- x2+m x-2(m>0),点 N( ,2k-2)22 k在直线 l 上 .1①当 k= 时,判断 E(1,-1)是否为点 N 的对称位似点请说明理由;2②若直线 l 与抛物线 C 交于点 M (x1,y1)(x1≠0,) 且点 M 不是抛物线的顶点,则点 M 的对称位似点是否可能仍在抛物线 C 上?请说明理由 .厦门市质检(一)数学卷第6页共5页参考答案一、BACDB CADCC二、3 1≥ 13.(8,3) 15. 16. 4-22 3三、217.xy 3 118.略a 219. ,1-a 20. 2A D在正方形 ABCD 中,∠BCD =90°,BC=CDE ∠DBC =∠CDB =45°,∵EF=ECB CA D∴∠EFC=∠ECF又 EF⊥BDF∴∠BFC=∠BCF1∴∠BCF= (180°-45°=) °2 BEC21.(1)7 辆,11s.1(2)A: (1×10+3×12+5×10+7×8+9×7+11×1)=501B: (1×3+3×2+5×10+7×13+1×12)=40∵,故选 B.22.(1)当∠ C=90°时,AB 为外接圆的直径,∵AC =10, AB =10 2C ∴△ABC 为等 Rt△∴∠A=45°(2)记圆心为点 O,连接 OC、OD.∠E 90 BE 3 CE 4 BC 5 =°,=,=,则=A BOE∠CDE A =∠D厦门市质检(一)数学卷第7页共5页∴tan∠CDE = tan∠A=12CE 4 1∴ = = ,DE=8,BD=5DE DE 2∴BC=BD∴∠BOC=∠BOD∴AB ⊥CD23.(1)3 3(2)连接 AN ,易证:△ ABN ≌△CBMN则∠BAN =∠BCM =120°A连接 AC,则△ ABC 为正△∴N、A、C 三点共线D ∵NQ=n,BQ=m,∴CQ=4-m,B在 Rt△NQC 中,NQ=CQ·tan∠NCQQ CM1n=3 (4-m)=-3 m+4 3 ( ≤ m≤2)224.h 1(1)T=22-×=- h+22(0≤ h≤1000)100 200T 随 h 增大而减小,∴当 H=1000 时,T=17(2)由表中数据分析可知,当 19≤ T≤21 时,p 与 T 大致符合一次函数关系;不妨取(21,0.9)、(20,0.94),则 k= =- 20 211 251 1 87∴p1=- (T-=- T+ (19≤ T≤21)25 25 50当≤ T<19 时,p 与 T 大致符合一次函数关系;0. 94 不妨取(19 0.98) (18 0.94) k= ,、,,则=18 191 1 11∴p2= (T-= T+ (≤ T<19)25 25 50 1 25从坐标中观察可知,除点 E 外,其余点基本上在同一直线上,1600 1000不妨取 (200,1600)、(500,1000),则 k= =-2200 500w=-2(h-500)+1000=-2 h+2000 (0≤ h≤1000)因成活率需不低于 92%,故(≤ T≤)由(1)知,当温度 T 取:、19、时,相应的 h 的值分别是: 900、600、300厦门市质检(一)数学卷第8页共5页1 1 87 1当 300≤ h≤600 时, p1=- (- h+22)+ = h+25 200 50 5000 43 501 43 1 35成活量 y=w·p1=(-2 h+2000)( h+ ) =- h2- h+17205000 50 2500 25 1- <0,开口向下,对称轴在 y 轴的左侧2500∴当 300≤ h≤600 时,图象下降,成活量 y 随 h 增大而减小 .∴当 h =300 时,成活量 y 有最大值,此时成活率= 92%,种植量为 1400,成活量 y 最大值= 1400×92%=1288(株)1 1 11 1当 600< h≤900 时,p2= (- h+22)+ =- h+25 200 50 5000 11 101 11 1 13成活量 y=w·p2=(-2 h+2000)( - h+ )= h2- h+22005000 10 2500 512500>0,开口向上,对称轴 h=3250>900,图象下降,成活量 y 随 h 增大而减小1 87∴当 h=600 时,使用 p1=- T+ ,在这里成活率最小 .25 50 综上所述:当 h =300 时,成活量最大 .25.(1)(4,-6)、(-4, 6)(2)1 1①当 k= 时,2k-2=2×-2=-1,将 y=-1 代入 y=kx -2 得:x=22 2∴ N 的坐标为( 2,-1),其关于 x 轴对称点坐标是( 2,1)对于 E(1,-1),1 1∵≠,所构成的 Rt△直角边不成比例,1 2∴E(1,-1)不是 N(2,-1)的对称位似点②m(m k)直线 l:y= kx-2 过点 N( ,2k-2)2km(m k)2k-2=k -2,整理得: m2-mk-2k=02k(m-2k)( m+k)=0∴m=2k 或 m=-k1直线与抛物线相交于点 M,- x2+m x-2=kx-221kx=- x2+m x21∵x≠0,∴k=- x+m ,x=2(m -k)2厦门市质检(一)数学卷第9页共5页抛物线对称轴: x=m,且点 M 不是抛物线的顶点∴2(m-k) ≠m,m≠2k∴只有 m=-k 成立. 此时, x=2(m-k)=-4k,M 的坐标:(- 4k,-4k2-2)于是, M 关于 x 轴的对称点 M 1(-4k, 4k2+2)24k 2直线 OM1 的解析式: y= x4k24k 2 1若直线 OM 1 与抛物线有相交,x =- x2+k x- 24k 2整理得: k x2- x+4k=01 OM2当△= 1-16k2≥0,k2≤时,交点存在,不妨设为 M2,=q,16 OM1则 M 2 是点 M 的对称位似点∵m>0,且 m=-k,∴k<0,1∴-≤k<0.4厦门市质检(一)数学卷第10页共5页。
2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。
【详解】,解得,所以,故选D。
【点睛】本道题考查了等差数列的性质,难度中等。
(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。
2019年普通高中学业水平合格性考试(会考)数学试卷三(含答案)
2019年普通高中学业水平合格性考试数学试卷(考试时间:90分钟满分:100分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至6页。
考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上。
考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色字迹签字笔在答题卡上作答。
在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷和答题卡一并收回。
第Ⅰ卷(选择题45分)一、选择题(本大题有15小题,每小题3分,共45分。
每小题只有一个选项符合题目要求)1.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩C uA=9)A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}2.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,...1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。
若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生3.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.44.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.135.幂函数y=f(x)的图象经过点(8,22),则f(x)的图象是()6.经过点A(8,-2),斜率为.−12的直线方程为()A.x+2y-4=0B.x-2y-12=0C.2x+y-14=0D.x+2y+4=07.设f(x)为奇函数,且当x≥0时,f(x)=e-X-1.则当x<0时,f(x)=()A.e-X-1B.e-X+1C.-e-X-1D.-e-X+18.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB =(1,-2),AD =(2,1),则AB ·AD =()A.5B.4C.3D.29.函数f(x)=1X—x3的图像关于()A.x轴对称B.y轴对称C.直线y=x对称D.坐标原点对称10.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.111.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的是()A.若m⊥n,n//α,则m⊥αB.若m//β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α12.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或一12C.-2或-12D.2或1213.在区间[o,2]上随机地取一个数x,则事件“-1≤log1(x+12)≤1发生的概率为()2A.34B.23C.13D.1414.为了得到函数y=sin2x的图象,只要把函数y=sin x的图象上所有点()A.横坐标缩短到原来的12,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的12,横坐标不变D.纵坐标伸长到原来的2倍,横坐标不变15.已知{a n}是首项为1的等比数列,s n是{a n}的前n项和,且9S3=S6,则数列{1a n}的前5项和为()A.158或5B.3116或5C.3116D.158第Ⅱ卷(非选择题55分)二、填空题(本大题共5小题,每小题3分,共15分)16.函数y=7+6x−x2的定义域是。
六年级下册数学试题-厦门市集美区2019年质量监测试卷(无答案)人教版
厦门市集美区2019年小学数学六年级质量监测试卷(测试时间:85分钟总分:100分)题序一二三四总分得分一、选择题。
(每题3分,共42分)1.一个八位数,最高位上是8,十万位上是7,千位上是6,其他数位都是0。
以下说法错误的是()。
A.这个数写作80706000B.这个数改写成以“万”作单位的数是8070C.这个数只读1个零D.这个数省略“万”后面的尾数约是8071万2.一年有四个季度,一季度有三个月,第()两个季度的天数一定相同。
A.一和二 B.二和三C.三和四D.二和四3.把改写成数值比例尺是()。
A.1∶30B.1∶900000C.1∶300000D.300000014.如右图,若∠1=20°,AO⊥CO,点B、O、D 在同一条直线上,则∠2是()。
A.70°B.110°C.120°D.160°5.用1和8两张数字卡片组成的两位数,一定是()。
A.奇数B.偶数C.质数D.合数6.给右图中的1个白色小方格涂上颜色,使涂色部分成为一个轴对称图形,有()种涂法。
A.3B.4C.5D.67.一根绳子,用去了52,还剩51米,用去的和剩下的比,哪段比较长?()。
A.用去的B.剩下的C.一样长D.无法判断8.观察左下图的几何体,从正面看到的图形是()。
306090千米9.小华上午8:00骑车从家去相距4千米的图书馆借书,去图书馆路上停了一会儿,到图书馆借完书后就返回,上午10:00回到家中。
下列四个折线图正确反映小华行程的是()。
A B C D 10.我们可以用很多种方式表达个数或数量,下面表达错误的是()。
11.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算出瓶中水的体积占瓶子容积的()。
A.74B.75 C.32 D.14912.下列说法错误的是()。
A.如果甲在乙的东南方向,那么乙就一定在甲的西北方向B.零上2摄氏度与零下5摄氏度相差3摄氏度C.一个三角形三个内角的比是11:13:25,这个三角形一定是钝角三角形D.抛十次硬币,抛的每一次正面朝上的可能性都是50%3.王老师需要买50本笔记本,三家商店单价都是9元,甲商店打“八五折”销售,乙商店“买四送一”,丙商店“每满100元减20元”。
【精品真题】2019年福建省厦门市小升初数学试卷(人教版,含解析)
2019年福建省厦门市小升初数学试卷一、仔细看题,准确计算.(32分)1.直接写出得数.(8分)182﹣47=5÷= 2.4×0.5= 1.27﹣0.7=8.1÷0.03=×=﹣=0.77+0.33=0.75+=÷=1÷0.25=0.36×=13÷26=8.9a﹣a=80%×= 3.14×23=2.脱式计算.(能简算的要简算)(18分)6.28+3.5+3.72 2.5×3.2×125÷9+×1000÷12.5÷8 2.5÷×÷[﹣(1﹣)] 3.求未知数x(6分)x+20%x=36﹣2x=12=二、细心审题,恰当填空.(28分)4.=16÷=:2.5=%=(小数)5.某地某一天的最低气温是﹣5℃,最高气温12℃,这一天的最高气温与最低气温相差℃.6.厦门市地铁1号线全长约30.3千米,合米,改写成用“万”作单位的数是万米,精确到十分位约是万米.7.王芳骑自行车,3小时行了75千米,王芳骑自行车的速度是千米/时,她行1千米需小时.8.7只小鸟飞回6个鸟笼,至少有只小鸟要飞回同一个鸟笼.9.一件衣服打九折后售价180元,这件衣服降价元。
10.0.4:1.6的比值是.如果前项加上0.8,要使比值不变,后项应加上.11.把3平方米的纸片平均分成5份,每份占它的,每份的面积是平方米.12.如果3a=4b(a、b≠0),那么a:b=:;如果=27(y≠0),那么x和y成比例.13.在三角形ABC中,∠A:∠B:∠C=1:3:2,∠C=,这个三角形是三角形.14.如图所示,把底面直径6厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的表面积是平方厘米,体积是立方厘米.15.用铁皮做一个底面直径为8分米,高为6分米的圆柱形无盖水桶,至少要用平方分米的铁皮,这个水桶最多能装水升.16.把边长1厘米的正方形纸片,按规律排成长方形(1)4个正方形拼成的长方形周长是厘米.(2)用a个正方形拼成的长方形周长是厘米.17.如图所示,小华骑车到与他家相距5千米的书店买书,这是他离开家的距离与时间的示意图.可以看出:他在书店的时间是小时,他去时的速度是千米/时.三、反复比较,慎重选择(6分)18.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A.160 B.155 C.150 D.14519.某村前年生产粮食500吨,去年粮食丰收,生产粮食600吨,去年粮食增产()A.一成B.四成C.二成D.十成20.一幢教学楼长40m,在平面图上用8cm的线段表示,这幅图的比例尺是()A.1:50 B.50:1 C.1:500 D.500:121.完成同一件工作,甲要用5小时,乙要用4小时,甲和乙工作效率的比是()A.5:4 B.4:5 C.5:9 D.不能确定22.图中正方形的面积()平行四边形的面积.A.大于B.等于C.小于D.无法判断23.最近一次数学测试,甲、乙两个同学的平均成绩为88分,甲、丙两个同学的平均成绩为90分,乙、丙两个同学的平均成绩为92分,他们三人的平均成绩是()分.A.88 B.90 C.92 D.94四、按要求填空,并画图.(6分)24.(1)在下面方格图(每个方格的边长表示1cm)中画一个直角三角形,其中两个锐角的顶点分别确定在(5,7)和(1,3)的位置上,那么直角的顶点位置可以是(,).(2)将这个三角形向右平移5格.(3)将平移后的这个三角形按1:2缩小后画在合适的位置.六、运用所学,解决问题(26分)25.如图所示,在本次体能测试中,成绩优的有90人,则共有多少人参加测试?26.爸爸将5000元存入银行,定期三年,年利率为4.15%,到期时爸爸能拿回多少钱?27.学校图书室购进300本故事书,比科技书的5倍少50本.购进科技书多少本?28.李老师带1000元去商场买篮球,买了15个,还剩40元钱,每个篮球多少元?29.学校要把一批树苗栽到科普基地,如果每行栽10棵,正好是18行,如果每行栽12棵,可以栽多少行?(用比例解)30.一个圆锥形沙堆,底面积28.26平方米,高3米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?31.在比例尺是1:12000000的地图上,量行济南到青岛的距离是4cm.在比例尺是1:8000000的地图上,济南到青岛的距离是多少厘米?32.图中圆的周长是12.56cm,圆的面积正好等于长方形的面积,求阴影部分的面积.参考答案与试题解析一、仔细看题,准确计算.(32分)1.【分析】根据整数、小数和分数加减乘除法运算的计算法则进行计算即可求解.【解答】解:182﹣47=1355÷= 2.4×0.5=1.2 1.27﹣0.7=0.578.1÷0.03=270×=﹣=0.77+0.33=1.10.75+=1÷=1÷0.25=40.36×=0.2713÷26=0.58.9a﹣a=7.9a80%×=1 3.14×23=25.12【点评】考查了整数、小数和分数加减乘除法运算,关键是熟练掌握计算法则正确进行计算.2.【分析】(1)根据加法交换律进行简算;(2)根据乘法交换律和结合律进行简算;(3)根据乘法分配律进行简算;(4)根据除法的性质进行简算;(5)按照从左向右的顺序进行计算;(6)先算小括号里面的减法,再算中括号里面的减法,最后算除法.【解答】解:(1)6.28+3.5+3.72=6.28+3.72+3.5=10+3.5=13.5(2)2.5×3.2×125=2.5×(4×0.8)×125=(2.5×4)×(0.8×125)=10×100=1000(3)÷9+×=×+×=(+)×=×=(4)1000÷12.5÷8=1000÷(12.5×8)=1000÷100=10(5)2.5÷×=4×=7(6)÷[﹣(1﹣)]=÷[﹣]=÷=【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.3.【分析】(1)先计算左边,依据等式的性质,方程两边同时除以1.2求解;(2)方程的两边同时加上2x,然后方程的两边同时减去2,再同时除以2求解;(3)根据比例的基本性质,变成0.2x=0.75×16,然后等式的两边同时除以0.2求解.【解答】解:(1)x+20%x=1.2x=0.41.2x÷1.2=0.4÷1.2x=(2)36﹣2x=1236﹣2x+2x=12+2x12+2x﹣12=36﹣122x÷2=24÷2x=12(3)=0.2x=0.75×160.2x÷0.2=12÷0.2x=60【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.二、细心审题,恰当填空.(28分)4.【分析】根据分数与除法的关系=4÷5,再根据商不变的性质被除数、除数都乘4就是16÷20;根据比与分数的关系=4:5,再根据比的基本性质比的前、后项都乘0.5就是2:2.5;4÷5=0.8;把0.8的小数点向右移动两位添上百分号就是80%.【解答】解:=16÷20=2:2.5=80%=0.8.故答案为:20,2,80,0.8.【点评】解答此题的关键是,根据小数、分数、百分数、除法、比之间的关系及商不变的性质、比的基本性质即可进行转化.5.【分析】这是一道有关温度的正负数的运算题目,最高气温与最低气温二者之差,即求这一天的温差,列式为12﹣(﹣5),计算即可.【解答】解:12﹣(﹣5)=12+5=17(℃)答:这一天最高气温与最低气温相差17℃.故答案为:17.【点评】本题考查零上温度与零下温度之差的题目,列式容易出错.6.【分析】高级单位千米化低级单位米乘进率1000;即30.3千米合30300米;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;精确到十分位即把百分位上的数进行“四舍五入”.【解答】解:30.3千米=30300米30300米=3.03万米3.03万米≈3.0万米即厦门市地铁1号线全长约30.3千米,合30300米,改写成用“万”作单位的数是3.03万米,精确到十分位约是3.0万米.故答案为:30300,3.03,3.0.【点评】此题考查的知识点有:长度的单位换算、整数的改写、求近似数.7.【分析】首先根据路程÷时间=速度,用王芳骑自行车行的路程除以用的时间,求出王芳骑自行车的速度是多少千米/时;然后用时间除以路程,也就是用王芳骑75千米用的时间除以75,求出她行1千米需多少小时即可.【解答】解:75÷3=25(千米/时)3÷75=0.04(小时)答:王芳骑自行车的速度是25千米/时,她行1千米需0.04小时.故答案为:25、0.04.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是弄清楚题中的各个量之间的数量关系.8.【分析】7只小鸟飞进6个笼子,7÷6=1(只)…1(只),即当每个笼子里平均飞进1只时,还有一只在笼外,根据抽屉原理可知,至少有1+1=2只小鸟在同一个笼子里.【解答】解:5÷4=1(只)…1(只)1+1=2(只)答:至少有2只小鸟要飞回同一个鸟笼.故答案为:2.【点评】把多于mn(m乘n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体.9.【分析】打九折是指现价是原价的90%,把原价看成单位“1”,它的90%对应的数量是180元,由此用除法求出原价,进而求出降低的价格.【解答】解:180÷90%=200(元)200﹣180=20(元)答:这件衣服降价20元.故答案为:20.【点评】本题关键是理解打折的含义:打几折现价就是原价的百分之几十.10.【分析】比的基本性质,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;用比的前项除以后项求出比值,如果前项加上0.8,可知比的前项由0.4变成1.2,相当于前项乘3;根据比的性质,要使比值不变,后项也应该乘3,由1.6变成4.8,相当于后项应加上4.8﹣1.6=3.2;据此进行解答.【解答】解:0.4:1.6=0.4÷1.6=0.25(0.4+0.8)÷0.4×1.6﹣1.6=1.2÷0.4×1.6﹣1.6=4×1.6﹣1.6=4.8﹣1.6=3.2答:0.4:1.6的比值是0.25.如果前项加上0.8,要使比值不变,后项应加上3.2.故答案为:0.25,3.2.【点评】此题考查了求比值、比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.11.【分析】把这张纸片的面积看作单位“1”,把它平均分成5份,每份是这张纸片的;求每份的面积,用这张纸片的总面积除以平均分成的份数.【解答】解:1÷3÷5=0.6(平方米)答:每份占它的,每份的面积是0.6平方米.故答案为:,0.6.【点评】解决此题关键是弄清求的是“分率”还是“具体的数量”,求分率:平均分的是单位“1”;求具体的数量:平均分的是具体的数量,要注意:分率不能带单位名称,而具体的数量要带单位名称.12.【分析】(1)根据比例的基本性质解答即可;(2)判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:(1)3a=4b(a、b≠0)a:b=4:3(2)如果=27(y≠0),比值一定,那么x和y成反比例;故答案为:4、3,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.【分析】根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°,列式求出∠C,作出判断即可.【解答】解:设∠A、∠B、∠C分别为k、3k、2k,则k+2k+3k=180°解得k=30°即∠A=30°所以,∠C=2×30°=60°∠b=3×30°=90°这个三角形是直角三角形.故答案为:60°,直角.【点评】本题考查了三角形内角和定理,利用“设k法”用k表示出∠A、∠B、∠C可以使运算更加简便.14.【分析】把圆柱切成若干等分,拼成一个近似的长方体.这个近似长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高,体积不变等于圆柱的体积,然后根据长方体的表面积公式:S=2(ab+ah+bh),体积公式:V=abh,列式解答即可.【解答】解:长方体的长:3.14×6÷2=9.42(厘米);长方体的宽:6÷2=3(厘米);表面积是:(9.42×3+9.42×10+3×10)×2=(28.26+94.2+30)×2=152.46×2=304.92(平方厘米);体积:9.42×3×10=28.26×6=282.6(立方厘米).答:这个长方体的表面积是304.92平方厘米,体积是282.6立方厘米.故答案为:304.92,282.6.【点评】本题重点考查了圆柱体的体积推导公式的过程中的一些知识点:长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高.15.【分析】由题意可知:做这个水桶需要的铁皮面积就等于水桶的表面积减去上盖的面积,即水桶的侧面积加上下底的面积即可,水桶的底面直径和高已知,利用圆柱的侧面积S=πdh和圆的面积S=πr2的计算方法即可求解;再利用圆柱的体积V=Sh,即可求出这个水桶的容积.【解答】解:3.14×8×6+3.14×(8÷2)2=3.14×48+3.14×16=3.14×64=200.96(平方分米)3.14×(8÷2)2×6=3.14×16×6=3.14×96=301.44(立方分米)301.44立方分米=301.44升答:至少要用200.96平方分米的铁皮,这个水桶最多能装水301.44升.故答案为:200.96,301.44.【点评】此题主要考查圆柱的表面积和体积的计算方法在实际生活中的应用.16.【分析】根据题意,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长,即1厘米.再根据长方形的周长公式计算即可.【解答】解:由题意可知,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长.(1)用4个正方形拼成的长方形,长=4×1=4(厘米),宽=1(厘米).周长=(长+宽)×2=(4+1)×2=10(厘米);(2)用a个正方形拼成的长方形,长=a×1=a(厘米),宽=1(厘米)用m个正方形拼成的长方形的周长周长=(长+宽)×2=(a+1)×2=2a+2(厘米).故答案为:10,2a+2.【点评】根据题意,可以求出按规律拼成长方形的长和宽,再根据长方形的周长公式计算即可.17.【分析】观察此图,可知横轴表示时间,单位小时,把1小时平均分成4份,每份是小时;纵轴表示路程;小华的行程分三个阶段,第一个阶段是从家骑车到相距5千米远的书店,用了小时;第二个阶段是在书店买书,用了1小时;第三个阶段是从书店回家,用1小时,根据速度=路程÷时间,求得小华去时速度即可.【解答】解:(1)从图中看出,小华在书店买书是从小时到1小时用去的时间为:1﹣=1(小时),答:他在书店买书用去1小时;(2)5÷=10(千米/小时)答:他去时的速度是10千米/时.故答案为:1,4.【点评】此题考查了利用折线统计图表示行走时间和行走路程的关系的方法,解决关键是会分析不同的行程状况.三、反复比较,慎重选择18.【分析】净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最多不多于150+5克,最少不少于150﹣5克.【解答】解:净重(150±5克),表示最少不少于:150﹣5=145(克).故选:D.【点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.19.【分析】几成就是十分之几、百分之几十,把前年粮食生产总量看做单位“1”,求出去年比前年粮食增产百分之几,然后把百分数化为成数即可.【解答】解:(600﹣500)÷500,=100÷500,=20%,20%即二成,故选:C.【点评】本题重点要理解成数的意义及成数与分数、百分数之间的互化.20.【分析】图上距离和实际距离已知,依据“图上距离:实际距离=比例尺”即可求得这幅图的比例尺.【解答】解:因为40米=4000厘米则8厘米:4000厘米=1:500答:这幅图的比例尺是1:500.故选:C.【点评】此题主要考查比例尺的意义,解答时要注意单位的换算.21.【分析】把这件工作的工作量看成单位“1”,甲的工作效率是,乙的工作效率是,用甲的工作效率比上乙的工作效率,再化简即可求解.【解答】解::=(×20):(×20)=4:5答:甲和乙工作效率的比是4:5.故选:B.【点评】解决本题也可以根据工作量一定,工作效率和工作时间的反比例关系求解,甲乙的工作时间比是5:4,那么工作效率比就是4:5.22.【分析】因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积,据此解答即可.【解答】解:因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积.故选:B.【点评】此题主要考查正方形和平行四边形的面积的计算方法的灵活应用.23.【分析】根据“平均数×数量=总数”分别求出甲、乙的成绩和,甲、丙的成绩和,乙、丙的成绩和,把三个的数相加,就是三个人总分的2倍;然后再分别除以2和3就是他们三人的平均成绩.【解答】解:(88×2+90×2+92×2)÷2÷3=540÷6=90(分)答:他们三人的平均成绩是90分.故选:B.【点评】解答此题应根据平均数、数量和总数三者之间的关系进行解答.四、按要求填空,并画图.24.【分析】(1)根据数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可确定两个锐角的顶点的位置,根据直角三角形的两条直角边互相垂直的性质,即可求得直角顶点的位置,从而画出这个直角三角形;(2)根据图形平移的方法,先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)根据图形放大与缩小的方法,先数出原来三角形的两条直角边,把它们分别除以2,即可得出缩小后的直角三角形的两条直角边,由此即可画出缩小后的三角形3.【解答】解:(1)根据数对表示位置的方法,可在平面图中标出三角形的两个锐角的顶点如图所示,则直角顶点的位置可以是:(5,3),由此即可画出这个直角三角形1;(2)先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)原直角三角形的两条直角边分别是4厘米,按照1:2缩小后,两条直角边的长度是4÷2=2厘米,由此即可画出这个缩小后的三角形3,如图所示:故答案为:(1)5;3.【点评】此题考查了数对表示位置的方法,图形的平移,放大与缩小的方法的灵活应用.六、运用所学,解决问题(26分)25.【分析】由题意可知:用90除以45%,即可求出参加测试的总人数.【解答】解:90÷45%=200(人)答:有200人参加测试.【点评】本题主要考查扇形统计图的应用,关键根据百分数的意义做题.26.【分析】此题属于存款利息问题,时间是3年,年利率为4.15%,本金是5000元,把以上数据代入关系式“本息=本金+本金×利率×时间”,列式解答即可.【解答】解:5000+5000×4.15%×3=5000+5000×0.0415×3=5000+622.5=5622.5(元)答:到期能取回本息5622.5元.【点评】解答此类问题,关键的是熟练掌握关系式“利息=本金×利率×时间”、“本息=本金+本金×利率×时间”.27.【分析】学校图书室购进300本故事书,比科技书的5倍少50本,也就是购进的300本故事书加上50本就是科技书的5倍,然后再除以5即可.【解答】解:(300+50)÷5=350÷5=70(本)答:购进科技书70本.【点评】本题关键是明确它们之间的倍数关系,然后再列式解答.28.【分析】根据减法的意义可知:15个篮球共花了1000﹣40元,根据除法的意义可知:每个篮球的价格是(1000﹣40)÷15元.【解答】解:(1000﹣40)÷15=960÷15=64(元)答:每个篮球64元.【点评】此题利用基本关系式:总价÷数量=单价解决问题.29.【分析】根据总棵数不变可知,每行栽的棵数和行数乘积一定,即成反比例关系,设需要栽x行,用原来每行的棵数×原来的行数=现在每行的棵数×现在的行数,据此可列方程12x=10×18解答即可.【解答】解:设需要栽x行,12x=10×1812x=180x=15答:可以栽15行.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.30.【分析】要求能铺多少米,首先根据圆锥的体积公式:v=sh,求出沙堆的体积,把这堆沙铺在长方形的路面上就相当于一个长方体,只是形状改变了,但沙的体积没有变,因此,用沙的体积除以长方体的长再除以高就是所铺的长度.由此列式解答.【解答】解:2厘米=0.02米,×28.26×3÷(10×0.02)=28.26÷0.2=141.3(米);答:能铺141.3米.【点评】此题属于圆锥和长方体的体积的实际应用,解答时首先明确沙堆原来的形状是圆锥形,铺在长方形的路面上,体积不变,所以根据圆锥的体积公式求出沙的体积,用体积除以长方体的底面积问题就得到解决.31.【分析】先求两地间的实际距离,根据“图上距离÷比例尺=实际距离”,代入数值,计算出两地间的实际距离,进而根据“实际距离×比例尺=图上距离”解答即可.【解答】解:4÷=48000000(厘米)48000000×=6(厘米)答:在比例尺是1:8000000的地图上,济南到青岛的距离是6厘米.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.32.【分析】由圆的周长为12.56cm,求出圆的半径:12.56÷3.14÷2=2(厘米);阴影的面积=圆的面积﹣圆的面积=圆的面积.据此解答.【解答】解:12.56÷3.14÷2=2(厘米)3.14×2×2﹣3.14×2×2÷4=12.56﹣3.14=9.42(平方厘米)答:阴影部分的面积是9.42平方厘米.【点评】组合图形的面积一般都是将它转化到已知的规则图形中进行计算.本题关键是得到圆的半径,进而算出圆的面积.。
2020年厦门市高二上期末市质检数学模拟试题及参考答案【解析】3
2019-2020学年度厦门市第一学期高二年级质量检测数学试题满分为150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.全部答案答在答题卡上,答在本试卷上无效。
一、选择题:本大题共8个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0∈R,2<或x02>x0”的否定是()A.∃x0∈R,2≥或x02≤x0B.∀x∈R,2x≥或x2≤xC.∀x∈R,2x≥且x2≤xD.∃x0∈R,2≥且x02≤x02.如图,M是三棱锥P﹣ABC的底面△ABC的重心,若(x、y、x∈R),则x+y+z的值为()A.B.C.D.13.有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以19世纪德国工程师勒洛的名字命名的勒洛三角形.这种三角形常出现在制造业中(例如图1中的扫地机器人).三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图2所示.现从图2中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为()A.B.C.D.4.某一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,摄氏温度﹣504712151923273136/℃热饮杯数15615013212813011610489937654(如图所示),请根据结果预测,若某天的气温是3℃,大约能卖出的热饮杯数为()(单词提示:Linear 线性)A.143B.141C.138D.1345.如图,在三棱柱ABC﹣A1B1C1中,点P在平面A1B1C1内运动,使得二面角P﹣AB﹣C的平面角与二面角P﹣BC﹣A的平面角互余,则点P的轨迹是()A.一段圆弧B.椭圆的一部分C.抛物线D.双曲线的一支6.命题p:关于x的方程x|x|﹣2x+m=0(m∈R)有三个实数根;命题q:0<m<1;则命题p成立是命题q成立的()A..充分而不必要条件B..必要而不充分条件C..充要条件D.既不充分又不必要的条件7.设F1,F2是双曲线C:=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2的一条直线与双曲线C和y轴分别交于A、B两点.若|OA|=|OF2|,|OB|=|OA|,则双曲线C的离心率为()A. B. C. D.8.《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”.设F是椭圆=1(a>b>0)的左焦点,直线y=x交椭圆于A、B两点,若|AF|,|BF|恰好是Rt△ABF的”勾”“股”,则此椭圆的离心率为()A. B. C. D.二、多选题:本大题共2个小题,每小题5分,共10分。
福建省厦门市2018-2019学年第一学期九年级(上)期末数学测试卷(含答案)
2018-2019学年九(上)厦门市期末教学质量检测数学卷(满分150分;考试时间120分钟)一、选择题(本大题有10小题,每小题4分,共40分) 1.计算-5+6,结果正确的是( ).A.1B.-1C.11D.-112.如图1,在△ABC 中,∠C =90°,则下列结论正确的是( ).A. AB=AC +BCB.AB=AC·BCC. AB 2=AC 2+ BC 2D. AC 2=AB 2+BC 2 3.抛物线y=2(x -1)2-6的对称轴是( ).A.x =-6B.x =-1C. x =21D. x =14.要使分式11x 有意义,x 的取值范围是( ).A.x ≠0B. x ≠1C. x >-1D. x >1 5.下列事件是随机事件的是( ). A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.射击运动员射击一次,命中靶心D.在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生产 零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是( ).A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离要s 与时间t 的函 数关系如图4中的部分抛物线所示(其中P 是该抛物线的顶点) 则下列说法正确的是( ). A.小球滑行6秒停止 B.小球滑行12秒停止 C.小球滑行6秒回到起点 D.小球滑行12秒回到起点(图1)(图2)(图4)m m 生产的零件数(图3)8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转,旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则α为( ). A. 30° B.45° C.60° D.90°9.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是( ).A. CD <AD - BDB. AB >2BDC. BD >ADD. BC >AD10.已知二次函数y=ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1、x 2 (0< x 1<x 2 <4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范国是( ).A. 0<m <1B.1<m ≤2C.2<m <4D.0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体酸子,投掷一次,朝上一面的点数为奇数的概率是______.12.已知x =2是方程x 2+ax -2=0的根,则a =______.13.如图5,已知AB 是⊙O 的直径,AB =2,C 、D 是圆周上的点,且 ∠CDB =30°,则BC 的长为______.14.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A : “完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :____________________;并写出一个例子(该例子能判断命题B 是错误的) 15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA 、OP ,将△OPA 绕点O 旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为______. 16.若抛物线y=x 2+bx (b >2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围 是______.三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=018.(本题满分8分) 化简并求值:(1-12+x )÷2212+-x x ,其中x =2-1(图5)已知二次函数y=(x -1)2+n ,当x =2时,y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20. (本题满分8分)如图,已知四边形ABCD 是矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB=EC . (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC于点D . AD 的长为34,求证:BC 是⊙O 的切线.已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD 、AB 的距离分别为m 、n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图①所示,当点P 在对角线AC 上,且m =41时,求点P 的坐标;(2)如图②,当m 、n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的观律,①若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ②考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.(图②)已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图10,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图11,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.(图①) (图②)在平面直角坐标系xO y中,点A(0,2),B(p,q)在直线上, 抛物线m经过点B、C(p+4,q),且它的顶点N在直线l上.(1)若B(-2,1),①请在图12的平面直角坐标系中画出直线l与抛物线m的示意图;②设抛物线m上的点Q的模坐标为e(-2≤e≤0)过点Q作x轴的垂线,与直线l交于点H . 若QH=d,当d随e的增大面增大时,求e的取值范围(2)抛物线m与y轴交于点F,当抛物线m与x轴有唯一交点时,判断△NOF的形状并说明理由. yx –4–3–2–11234–4–3–2–11234O。
2019-2020学年(上)厦门市初二数学质量检测卷及答案
2019-2020学年(上)厦门市初二质量检测数学注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算1-2的结果是A.0B.21C.1D.22.下列长度的三条线段能组成三角形的是A.3,4,7B.3,4,8C.3,3,5D.3,3,73.分式2-x x 有意义,则x 满足的条件是A.2≠x B.0=x C.2=x D.2>x 4.如图1,在△ABC 中,AD 交边BC 于点D.设△ABC 的重心为M ,若点M 在线段AD 上,则下列结论正确的是A.∠BAD=∠CADB.AM=DMB. C.△ABD 的周长等于△ACD 的周长 D.△ABD 的面积等于△ACD 的面积5.已知正方形ABCD 边长为x ,长方形EFGH 的一边长为2,另一边的长为x ,则正方形ABCD 与长方形EFGH 的面积之和等于A.边长为1+x 的正方形的面积B.一边长为2,另一边的长为x +1的长方形面积C.一边长为x ,另一边的长为x +1的长方形面积D.一边长为x ,另一边的长为x +2的长方形面积6.从甲地到乙地有两条路:一条是全长750km 的普通公路,另一条是全长600km 高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h ,则下列等式正确的是A.x x 27505600=+ B.x x 27505600=-C.x x 75052600=+ D.x x 75052600=-7.在△ABC 中,D,E 分别是边AB ,AC 上的点,且AD=CE ,∠DEC=∠C=70°,∠ADE=30°,则下列结论正确的是A.DE=CEB.BC=CEC.DB=DED.AE=DB8.在平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0)(m <6),若POA 是等腰三角形,则m 可取的值最多有A.2个B.3个C.4个D.5个9.下列四个多项式,可能是322-+mx x (m 是整数)的因式的是A.x -2B.2x +3C.x +4D.122-x 10.如图2,点D 在线段BC 上,若BC=DE ,AC=DC ,AB=EC ,且∠ACE=180°-∠ABC-x 2,则下列角中,大小为x °的角是A.∠EFCB.∠ABCC.∠FDCD.∠DFC二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1)()=32a ;(2)()=+22253b a a12.计算:=⋅32334x y y x 13.如图3,在△ABC 中,∠ACB=90°,AD 平分∠CAB ,交边BC 于点D ,过点D 作DE ⊥AB ,垂足为E.若∠CAD=20°,则∠EDB 的度数是.14.如图4,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是.15.已知锐角∠MPN ,依照下列步骤进行尺规作图:(1)在射线PN 上截取线段PA(2)分别以P ,A 为圆心,大于21PA 的长为半径作弧,两弧相交于E 、F 两点;(3)作直线EF ,交射线PM 于点B ;(4)在射线AN 上截取AC=PB ;(5)连接BC则∠BCP 与∠MPN 之间的数量关系是.16.在△ABC 中,∠C=90°,D 是边BC 上一点,连接AD ,若∠BAD+3∠CAD=90°,DC=a ,BD=b ,则AB=.(用含a ,b 的式子表示)三、解答题(本大题有9小题,共86分)17.(本题满分12分)(1)计算:()()()()34222+-+-+y y y y ;(2)分解因式:22222242y a xy a x a ++.18.(本题满分7分)如图5,点B ,E ,C ,F 在一条直线上,AB=DE ,∠A=∠D ,AB ∥DE.求证:BE=CF.先化简,再求值:17149122+-÷-mm m ,其中m =2.20.(本题满分8分)已知点A (1,1),B (-1,1),C (0,4).(1)在平面直角坐标系中描出A 、B 、C 三点;(2)在同一平面内,点与三角形的位置关系有三种:点在三角形内、点在三角形边上、点在三角形外.若点P 在△ABC 外,请判断点P 关于y 轴的对称点P’与△ABC 的位置关系,直接写出判断结果.21.(本题满分8分)如图6,在△ABC 中,AB=AC,过点B 作BD ⊥AC ,垂足为D ,,若D 是边AC 的中点,(1)求证:△ABC 是等边三角形;(2)在线段BD 上求作点E ,使得CE=2DE.(要求:尺规作图,不写画法,保留作图痕迹)22.(本题满分9分)某企业在甲地有一工厂(简称甲厂)生产某产品,2017年的年产量过万件,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产99件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客欢迎,2019年该企业在乙地建立新厂(简称乙厂)生产该产品.乙厂的日均生产的该产品数是甲厂2017年的3倍还多4件.同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n=14:25,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11.利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、直接地写出积的规律吗?请用文字描述这个规律;(3)证明你发现的规律;(4)在已知算式中,找出可以应用(或经过转化可以应用)上述规律的所有算式,并将它们写在横线上:.24.(本题满分11分)在△PQN 中,若α+∠=∠Q 21p (0°<α≤25°),则称△PQN 为“差角三角形”,且p ∠是Q ∠的“差角”.(1)已知△ABC 是等边三角形,判断△ABC 是否为“差角三角形”,并说明理由;(2)在△ABC 中,∠C=90°,50°≤∠B ≤70°,判断△ABC 是否为“差角三角形”,若是,请写出所有的“差角”并说明理由;若不是,也请说明理由.25.(本题满分14分)如图7,在四边形ABCD 中,AC 是对角线,∠ABC=∠CDA=90°,BC=CD ,延长BC 交AD 的延长线于点E.(1)求证:AB=AD(2)若AE=BE+DE ,求∠BAC 的值;(3)过点E 作ME ∥AB ,交AC 的延长线于点M ,过点M 作MP ⊥DC ,交DC 的延长线于点P ,连接PB.设PB=a ,点O 是直线AE 上的动点,当MO+PO 的值最小时,点O 与点E 是否可能重合?若可能,请说明理由并求此时MO+PO 的值(用含a 的式子表示);若不可能,请说明理由.松鼠AI智适应—厦门金湖校区。
2019年福建省普通高中学生学业会考数学试题及答案
姓名 考生号(在此卷上答题无效)机密★2019年6月17日 启用前2 0 1 9 年 福 建 省 普 通 高 中 学 生 学 业 基 础 会 考数 学 试 题(考试时间:90分钟;满分:100分)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至3页,第Ⅱ卷4至6页. 考生注意:1. 答题前,考生务必将自己的考生号、姓名填写在试题卷、答题卡上.考生要认真核对答题 卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致.2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色字迹签字笔在答题卡上作答.在 试题卷上作答,答案无效.3. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:样本数据x,32,…,×。
的标准差其中S 为底面面积,h 为高其中玉为样本平均数球的表面积公式S =4rR ²,柱体体积公式V= Sh,其中S 为底面面积,h 为高 球的体积公式台体体积公式其中R 为球的半径其中S',S 分别为上、下底面面积,h 为高第 I 卷 (选择题 45分)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意) 1. 若 集 合A = { 0 , 1 1 , B = { 1 , 2 | ,则A U B =A.|0,1,2}B.{0,1}C.{1,2}D.{1} 2. 若角α=-50°,则角α是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角数学试题 第 1 页 ( 共 6 页 )锥体体积公式 ,β222 1 13.右图是一个底面边长为2的正三棱柱,当侧面水平放置时,它的俯视图是(第3题)A B C D4 . 若三个数1,2,m 成等比数列,则实数m =A. 8B. 4C. 3D. 2 5 . 一 组数据3,4,5,6,7的中位数是A.7B. 6C. 5D. 4 6.函数y = 2sinx 的最小值是A.-2B.-1C. 1D. 2 7.直径为2的球的表面积是A.2πB. 4πC. 8πD.16m 8.从a,b,c,d 四个字母中,随机抽取一个字母,则抽到字母a 的概率是A.B. C. D.19 . 已 知 向 量 a = ( 1 , 2 ) , b = ( - 2 , 1 ) , 则 a - b = A. (-1,3) B.(-3,-1)C. (1,3)D. (3,1)10. 已知直线1的斜率是1,且在y 轴上的截距是- 1,则直线1的方程是A.y=-x-1B.y=-z+1C.y=x-1D.y=x+1 11 . 不等式x² - 2x>0的解集是A. {x1x<0B. {xlx>2}C. {xIO<x<2} D . x I x < 0 , 或 x > 2 }数 学 试 题 第 2 页 ( 共 6 页 )数学试题第3页(共6页)12.下列图象表示的函数中,在R 上是增函数的是A B CD13.不等式组表示的平面区域的面积是A.4B.2C. 1D.14.某公司市场营销部员工的个人月收入与月销售量成一次函数关系,其对应关系如图所示由图示信息可知,月销售量为3百件时员工的月收入是 A.2100元B. 2400元C.2700元D. 3000元15.函的零点个数是A. 1月收入(元)2400 1800O 1 2 3 月销售量(百件(第14题)D. 4C. 3B. 2X第Ⅱ卷(请考生在答题卡上作答)二 、填空题(本大题有5小题,每小题3分,共15分) 16. 若幂函数f(x)= x*的图象过点(3,(3),则这个函数的解析式f(x)=17. 执行右边的程序框图,当输人m 的值为3时,则输出的 m 值 是 18. 函数的最小值是19. 已 知 向 量a = ( 1 , 1 ) , b = ( x , 1 ) ,且a I b ,则x =20. 设△ABC 的三个内角A,B,C 所对的边分别为a,b,c,若a = √ 3 , c = 1 ,, 则 b =三 、解答题(本大题有5小题,共40分.解答应写出文字说明、证明过程或演算步骤)21. (本小题满分6分)已知,α是第一象限角.( 1 )求c o s a 的 值 ; ( Ⅱ ) 求的值.22 . (本小题满分8分)甲、乙两人玩投掷骰子游戏,规定每人每次投掷6枚骰子,将掷得的点数和记为该次成 绩.进行6轮投掷后,两人的成绩用茎叶图表示,如图. (1)求乙成绩的平均数;(Ⅱ)规定成绩在27点以上(含27点)为高分,根据两人的成绩,估计掷得高分的概率.(第22题)数学试题 第 4 页 ( 共 6 页 )开始输 入 mm<4? 是 m=m+1 否 输出m结束乙 8 559 38甲 7 43 9 6 1 0 1 2 3(第17题)(非选择题 55分】23. (本小题满分8分)一辆汽车在某段路程中的行驶速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年厦门市初中毕业班教学质量检测数学试题2019.5.6.18.06一、选择题(本大题有10小题,每小题4分,共40分) 1.计算(-1)3,结果正确的是A.-3B.-1C.1D.3 2.如图,在△ABC 中,∠C =90°,则ABBC等于 A. sinA B. sinB C. tanA D. tanB3.在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若n 是有理数,则n 的值可以是A.-1B. 2.5C.8D.95.如图,AD 、CE 是△ABC 的高,过点A 作AF ∥BC ,则下列线段 的长可表示图中两条平行线之间的距离的是A.ABB. ADC. CED. AC6.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切. 符合该命题的图形是7.若方程(x -m )(x -a )=0(m ≠0)的根是x 1=x 2=m ,则下列结论正确的是 A.a=m 且a 是该方程的根 B.a =0且a 是该方程的根 C.a=m 但a 不是该方程的根 D.a=0但a 不是该方程的根8.一个不透明盒子里装有a 只白球b 只黑球、c 只红球,这些球仅颜色不同.从中随机摸出一 只球,若P (摸出白球)=31,则下列结论正确的是 A. a =1 B. a =3 C. a = b =c D. a =21(b+c ) 9.已知菱形ABCD 与线段AE ,且AE 与AB 重合. 现将线段AE 绕点A 逆时针旋转180°,在 旋转过程中,若不考虑点E 与点B 重合的情形,点E 还有三次落在菱形ABCD 的边上,设 ∠B =α,则下列结论正确的是A.0°<α<60°B. α=60°C.60°<α<90°D.90°<α<180°10.已知二次函数y =-3x 2+2x +1的图象经过点A (α,y 1),B (b ,y 2),C (c ,y 3),其中a 、b 、c 均大于0. 记点A 、B 、C 到该二次函数的对称轴的距离分别为d A 、d B 、d C . 若d A <21< d B < d C , 则下列结论正确的是A.当a ≤x ≤b 时,y 随着x 的增大而增大B.当a ≤x ≤c 时,y 随着x 的增大而增大C.当b ≤x ≤c 时,y 随着x 的增大而减小D.当a ≤x ≤c 时,y 随着x 的增大而减小 二、填空题(本大题有6小题,每小题4分,共24分)11.计算:-a +3a =________.12.不等式2x -3≥0的解集是________.13.如图,在平面直角坐标系中,若□ABCD 的顶点A 、B 、C 的坐 标分别是(2,3),(1,-1),(7,-1),则点D 的坐标是________.14.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金. 该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22、15、18(单位:万元). 若想让一半左右的营业员都能达到月销售目标,则月销售额定为________万元较为合适.15.在平面直角坐标系xOy 中,直线y=x 与双曲线y =xk(k >0,x >0)交于点A . 过点A 作AC ⊥x 轴于点C ,过该双曲线上另一点B 作BD ⊥x 轴于点D ,作BE ⊥AC 于点E ,连接AB . 若OD =3OC , 则tan ∠ABE =________.16.如图,在矩形ABCD 中,AB >BC ,以点B 为圆心,AB 的长为 半径的圆分别交CD 边于点M ,交BC 边的延长线于点E . 若 DM=CE ,AE 的长为2π,则CE 的长为________. 三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解方程组⎩⎨⎧=-=+124y x y x18. (本题满分8分)已知点B 、C 、D 、E 在一条直线上,AB ∥FC,AB=FC ,BC=DE . 求证:AD ∥FE .化简并求值:(2242a a --1)÷2222a a a +,其中a =220.(本题满分8分)在正方形ABCD 中,E 是CD 边上的点,过点E 作EF ⊥BD 于F . (1)尺规作图:在图中求作点E ,使得EF=EC ; (保留作图痕迹,不写作法)(2)在(1)的条件下连接FC ,求∠BCF 的度数.21.(本题满分8分)某路段上有A 、B 两处相距近200m 且未设红绿灯的斑马线. 为使交通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移动红绿灯. 图1,图2分别是交通高峰期来往车辆在A 、B 斑马线前停留时间的抽样统计图.根据统计图解决下列问题:(1)若某日交通高峰期共有350辆车经过A 斑马线,请估计其中停留时间为10s ~12s 的车辆数,以及这些停留时间为10s ~12s 的车辆的平均停留时间;(直接写出答案) (2)移动红绿灯放置在哪一处斑马线上较为合适?请说明理由.如图,已知△ABC 及其外接圆,∠C =90°,AC =10. (1)若该圆的半径为52,求∠A 的度数;(2)点M 在AB 边上且AM >BM ,连接CM 并延长交该圆于点D ,连接DB ,过点C 作CE 垂 直DB 的延长线于E. 若BE =3,CE =4,试判断AB 与CD 是否互相垂直,并说明理由.23.(本题满分10分)在四边形ABCD 中,AB ∥CD ,∠ABC =60°,AB=BC =4,CD =3. (1)如图1,连接BD ,求△BCD 的面积;(2)如图2,M 是CD 边上一点,将线段BM 绕点B 逆时针旋转60°,可得线段BN ,过点N 作NQ ⊥BC ,垂足为Q ,设NQ =n ,BQ =m ,求n 关于m 的函数解析式(自变量m 的取值范围只需直接写出)A图2图1某村启动“贫攻坚”项目,根据当地的地理条件,要在一座高为1000m的山上种植一种经济作物. 农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:①这座山的山脚下温度约为22℃,山高h(单位:m)每增加100m,温度T(单位:℃)下降约0.5℃;③该作物在这座山上的种植量w受山高h影响,大致如图A(1)求T关于h的函数解析式,并求T的最小值;(2)若要求该作物种植成活率p不低于92%,根据上述统计结果,山高h为多少米时该作物的成活量最大?请说明理由.在平面直角坐标系xOy 中,已知点A . 若对点A 作如下变换;第一步:作点A 关于x 轴的对称点A 1;第二步:以O 为位似中心,作线段OA 1的位似图形 OA 2,且相似比12OA OA =q ,则称A 2是点A 的对称位似点. (1)若A (2,3),q =2,直接写出点A 的对称位似点的坐标; (2)知直线l :y =kx -2,抛物线C : y =-21x 2+m x -2(m >0),点N (2)(k k m m ,2k -2) 在直线l 上. ①当k =21时,判断E (1,-1)是否为点N 的对称位似点请说明理由; ②若直线l 与抛物线C 交于点M (x 1,y 1)(x 1≠0),且点M 不是抛物线的顶点,则点M 的对称位似点是否可能仍在抛物线C 上?请说明理由.参考答案一、BACDB CADCC 二、11.2a 12.x ≥23 13.(8,3) 14.18 15. 3116. 4-22 三、 17. ⎩⎨⎧==13y x 18.略 19.aa 2-,1-2 20.在正方形ABCD 中, ∠BCD =90°,BC =CD ∠DBC =∠CDB =45°, ∵EF =EC∴∠EFC =∠ECF 又EF ⊥BD∴∠BFC =∠BCF∴∠BCF =21(180°-45°)=67.5°21.(1)7辆,11s. (2)A :501(1×10+3×12+5×10+7×8+9×7+11×1)=4.72 B :401(1×3+3×2+5×10+7×13+1×12)=6.45 ∵4.72<6.45,故选B. 22.(1)当∠C =90°时,AB 为外接圆的直径, ∵AC =10, AB =102∴△ABC 为等Rt △ ∴∠A =45°(2)记圆心为点O ,连接OC 、OD. ∠E =90°,BE =3,CE =4,则BC =5 ∠CDE =∠A ∴tan ∠CDE = tan ∠A=21BEAE∴DE CE =DE 4=21,DE =8,BD =5 ∴BC =BD∴∠BOC =∠BOD ∴AB ⊥CD 23. (1)33(2)连接AN ,易证:△ABN ≌△CBM 则∠BAN =∠BCM =120° 连接AC ,则△ABC 为正△ ∴N 、A 、C 三点共线 ∵NQ =n ,BQ =m , ∴CQ =4-m ,在Rt △NQC 中,NQ =CQ ·tan ∠NCQ n =3(4-m)=-3m+43(21≤ m ≤2) 24.(1)T =22-100h ×0.5=-2001h+22(0≤ h ≤1000) T 随h 增大而减小,∴当H =1000时,T =17 (2)由表中数据分析可知,当19≤ T ≤21时,p 与T 大致符合一次函数关系;不妨取(21,0.9)、(20,0.94),则k=21209.094.0--=-251∴p 1=-251(T -21)+0.9=-251T+5087(19≤ T ≤21)当17.5≤ T<19时,p 与T 大致符合一次函数关系; 不妨取(19,0.98)、(18,0.94),则k=191898.094.0--=251∴p 2=251(T -18)+0.94=251T+5011(17.5≤ T<19) 从坐标中观察可知,除点E 外,其余点基本上在同一直线上, 不妨取(200,1600)、(500,1000),则k=50020010001600--=-2w =-2(h -500)+1000=-2 h+2000 (0≤ h ≤1000) 因成活率需不低于92%,故(17.5≤ T ≤20.5) 由(1)知,当温度T 取:17.5、19、20.5时, 相应的h 的值分别是:900、600、300 当300≤ h ≤600时, p 1=-251(-2001h+22)+5087=50001h+5043 QC成活量y =w ·p 1=(-2 h+2000)( 50001h+5043) =-25001h 2-2535 h+1720 -25001<0,开口向下,对称轴在y 轴的左侧 ∴当300≤ h ≤600时,图象下降,成活量y 随h 增大而减小.∴当h =300时,成活量y 有最大值,此时成活率=92%,种植量为1400, 成活量y 最大值=1400×92%=1288(株)当600< h ≤900时,p 2=251(-2001h+22)+5011=-50001h+1011 成活量y =w ·p 2=(-2 h+2000)( -50001h+1011)= 25001h 2-513h+220025001>0,开口向上,对称轴h=3250>900,图象下降,成活量y 随h 增大而减小 ∴当h =600时,使用p 1=-251T+5087,在这里成活率最小.综上所述:当h =300时,成活量最大.25.(1)(4,-6)、(-4, 6) (2) ①当k=21时,2k -2=2×21-2=-1,将y =-1代入y=kx -2得:x=2 ∴ N 的坐标为(2,-1),其关于x 轴对称点坐标是(2,1)对于E (1,-1), ∵11-≠21,所构成的Rt △直角边不成比例, ∴E (1,-1)不是N (2,-1)的对称位似点 ②直线l :y =kx -2过点N (2)(kk m m -,2k -2) 2k -2=k2)(kk m m --2,整理得:m 2-mk -2k =0 (m -2k)( m+k)=0 ∴m=2k 或m=-k直线与抛物线相交于点M ,-21x 2+m x -2=kx -2 kx =-21x 2+m x ∵x ≠0,∴k =-21x +m ,x=2(m -k) 抛物线对称轴:x=m ,且点M 不是抛物线的顶点 ∴2(m -k) ≠m ,m ≠2k∴只有m=-k 成立. 此时,x=2(m -k)=-4k ,M 的坐标:(-4k ,-4k 2-2) 于是,M 关于x 轴的对称点M 1(-4k , 4k 2+2)直线OM 1的解析式: y=x kk 4242+-若直线OM 1与抛物线有相交,x k k 4242+-=-21x 2+k x -2 整理得:k x 2- x +4k =0 当△=1-16k 2≥0,k 2≤161时,交点存在,不妨设为M 2,12OM OM =q ,则M 2是点M 的对称位似点∵m>0,且m=-k , ∴k<0, ∴-41≤k<0.。