碳负离子反应110506ppt课件
碳负离子的反应
第14章 碳负离子的反应——β-二羰基化合物§14.1 α-H 的酸性和互变异构14.1.1 α-H 的酸性 1、?-H 的酸性在有机化学中,与官能团直接相连的碳原子均称为?-C ;?-C 上的氢原子均称为?-H 。
?-H 以质子形式解离下来的能力,即为?-H 的活性或?-H 的酸性。
因此烃也可叫做氢碳酸。
表14-1-1 常见化合物?-H 的p K a 值羧酸衍生物中的?-H 的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其?-H 的酸性增强。
酸性大小: 酰氯>醛、酮>酯>酰胺 Cl :吸电子诱导>给电子共轭 O :给电子共轭>吸电子诱导 2、影响?-H 的酸性的因素1)?-C 所连接的官能团及其官能团的吸电子能力。
总的吸电子能力越强,?-H 的酸性就越大; 2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。
负离子上电子的离域范围越大越稳定;3)分子的几何形状、介质的介电常数、溶剂等都有关系。
3、β-二羰基化合物α-H 的活性分析乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。
负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。
烯醇负离子其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基(氢 )的化合物。
β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。
14.1.2 酮式和烯醇式的互变异构可以看作是活泼H 可以在α-C 和羰基O 之间来回移动。
1、酸碱对互变平衡的影响痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。
《碳负离子的反应》课件
防护措施
禁止事项
应急处理
废弃物处理
实验时需佩戴实验服、 护目镜等防护装备。
禁止在实验过程中饮食 、吸烟等行为。
熟悉实验中可能发生的 意外情况及处理方法。
按规定正确处理实验废 弃物。
实验废弃物的处理
分类处理
根据废弃物的性质进行分类, 如有机废弃物、无机废弃物等
。
回收利用
部分废弃物可进行回收利用, 以节约资源。
副产物的生成。
06
碳负离子反应的实验操作 与安全注意事项
实验操作规程
01
02
03
04
实验前的准备
确保实验室环境整洁,检查实 验器材是否齐全、完好。
试剂取用
按照需求适量取用,避免浪费 或不足。
操作步骤
按照规定的顺序进行实验操作 ,不可省略或颠倒。
数据记录
实时记录实验数据,确保准确 无误。
安全注意事项
安全处置
对于无法回收利用的废弃物, 需按照规定进行安全处置。
记录存档
对废弃物的处理过程进行记录 ,并存档备查。
THANKS
感谢观看
自由基反应
总结词
自由基反应是碳负离子与自由基的反 应,通常发生在碳负离子的未共用电 子对被自由基的空轨道接收的过程中 。
详细描述
在自由基反应中,碳负离子与自由基 相互作用,形成新的碳-碳键或碳-自 由基键。这种反应通常在高温或光照 条件下进行,有利于自由基的形成和 反应。
光化学反应
总结词
光化学反应是碳负离子在光的作用下发 生的化学反应,通常需要特定波长的光 照射。
β-羟基酸酯的合成
总结词
β-羟基酸酯是有机合成中的一种特殊结构, 碳负离子可以用于合成β-羟基酸酯。
《碳负离子》PPT课件
碳负离子从广义上可理解是一种强的路易斯碱,
如表所示: 烃类(RH ⇌ R-+H+)的电离常数pKa
10.2 碳负离子的轨道 CH4 Hf=-8.777KCAL/MOL CH3-Hf=57.7237KCAL/M
10.3 碳负离子的构造与稳定性
碳负离子有两种比较符合情理的构造:(1)一个 平面的sp2杂化构型(A),和(2)一个角锥型的sp3杂 化构型(B)。
〔一〕构造 1.〔共振〕平面构型的碳负离子
从烷烃得到的最简单的碳负离子是角锥形的。其构造类 似于氨和胺。与胺相似,简单的负碳离子通过中心碳原子的再 杂化其角锥形可以翻转,导致两个互变异构形式之间的平衡, 如以下图所示。由于这种迅速的相互转变,故不能拆开成对映 体。
例:从由金属-卤素置换制备光学活性2-辛基锂的研 究得到了证明。这个锂化合物和CO2在-70C作用, 给予20%光学活性(亦即60%保持构型不变,40%发 生构型转化),但是在0C给予外消旋混合物。
《碳负离子》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
第十章 碳负离子
10.1 碳负离子的定义
碳负离子 (carbanion)是带有负电荷的碳离子。 是有机合成反响中一类重要的活性中间体。碳负离子 极其活泼,除很少数情况外,至今尚未别离成功。然 而大量实验事实已证明了它的存在。碳负离子具有一 对孤对电子,占有sp3杂化轨道,形成四面体构造, 这种构造往往发生迅速的构型转化,如R3C-(R为烃 基):
由于同烯醇化物容易回转为酮式化合物,因而考 虑可能它不只是环丙醇的负离子,而且具有真正的烯 醇的性质。
碳负离子的反应
第14章 碳负离子的反应——β-二羰基化合物§ α-H 的酸性和互变异构α-H 的酸性 1、-H 的酸性在有机化学中,与官能团直接相连的碳原子均称为-C ;-C 上的氢原子均称为-H; -H 以质子形式解离下来的能力,即为-H 的活性或-H 的酸性;因此烃也可叫做氢碳酸;表14-1-1 常见化合物-H 的p K a 值羧酸衍生物中的-H 的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其-H 的酸性增强;酸性大小: 酰氯>醛、酮>酯>酰胺 Cl :吸电子诱导>给电子共轭 O :给电子共轭>吸电子诱导 2、影响-H 的酸性的因素1-C 所连接的官能团及其官能团的吸电子能力;总的吸电子能力越强,-H 的酸性就越大;2取决于氢解离后生成的碳负离子carbanion 结构的稳定性;负离子上电子的离域范围越大越稳定;3分子的几何形状、介质的介电常数、溶剂等都有关系; 3、β-二羰基化合物α-H 的活性分析乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子;负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围;烯醇负离子其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基氢 的化合物;β-二酮 β-羰基酸酯 丙二酸酯 氰乙酸酯 硝基乙酸酯 活泼氢化合物的双重反应性能: 碳负离子 烯醇负离子 氧负离子 一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应;酮式和烯醇式的互变异构可以看作是活泼H 可以在α-C 和羰基O 之间来回移动;1、酸碱对互变平衡的影响痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立; 1酸催化过程在酸催异构化过程中,酸首先与羰基氧原子作用形成盐,其共轭碱——水再夺取-H 形成烯醇; 2碱催化过程碳可以直接和α-H 结合,同时形成一个碳负离子;通过电子对的转移,碳上的负电荷转移到氧上,形成烯醇负离子;2、化合物的结构对互变平衡的影响通常,单羰基化合物中的烯醇式异构体含量很少;两个羰基被一个碳原子隔开的化合物;当同一碳原子上连有两个吸电子基团时,这样的化合物其酸性则明显增强;酮式中碳氧π键比烯醇式中碳碳π键更稳定-二羰基结构的化合物,在平衡状态下其烯醇式的含量较高;通常以平衡混合物的形式存在;例:乙酰乙酸乙酯三乙酮式% 烯醇式%这类化合物的烯醇式异构体具有较大稳定性的原因有二:①通过分子内氢键,形成稳定的六元环状化合物;②羟基氧上的未共用电子对,可以通过p-π共轭发生离域,使分子内能降低;4、异构化对化学性质的影响1与FeCl3的显色反应烯醇式含量多的物质;2与溴的四氯化碳溶液加成;3-H氘代快速确定-H 的个数;4构型变化;如-C是手性中心并且手性碳上有氢原子,会发生外消旋化;如-C不是手性中心则不会发生外消旋化;碳负离子形成及其基本原理1、碳负离子的形成及其稳定性碳负离子是以一个带有负电荷的碳为中心原子的中间体,是有机化学反应中常见的活性中间体;如甲基负离子、烯丙基负离子、苄基负离子、三苯甲基负离子等;碳负离子可以通过金属有机化合物异裂而产生;碳氢键的碳原子上存在吸电子基时易形成碳负离子;如:1内部条件能形成碳负离子的化合物从结构上讲,至少含有一个氢的碳原子的邻位要有一个活化基团,一⇨活化基团的作用:①由于其吸电子作用,使氢碳酸的酸性增加,而容易脱质子化;②使形成的C的负电荷离域而趋于稳定;22652除了要有一个活化基团外,分子中的其它基团的空间效应和电子效应对C—的形成和稳定性也有影响,其中空间阻碍影响最大;2外部条件有了一个带有活化基团的化合物后,还必须加入碱,才能把α-H交换下来,形成碳负离子;选择强度适合的碱,酸性弱的α-H要用强碱,反之用较弱的碱;在选择碱的时候,还要分清哪些碱是强亲质子性的与质子结合的能力,哪些碱是强亲核性的与碳正离子的结合能力,哪些是两种都有的;这是因为在形成C的过程中,碱可能进攻碳原子,也可能进攻质子氢;一般来说,亲核试剂的亲核性能大致与其碱性的强弱次序相对应;对具有相同进攻原子的亲核试剂,碱性愈强者,亲核性愈强;⇨下面列出常用碱的性能:1具有强亲质子和强亲核能力的碱:HO,CH3O,C2H5O,RS,CN等;2具有强亲质子弱亲核能力的碱:H,NH2;3具有强亲质子相当弱亲核性的碱:Et2N,C6H 5N,Me3Si-N;在形成碳负离子的外部因素中,还应指出的是溶剂的影响;假如溶剂的酸性比氢碳酸强的多的话,就不能产生很多的C,因为刚形成的碱性很强的C夺取溶剂的质子,又成为原来的化合物内返作用;一般应采用极性大但酸性弱的溶剂,即非质子溶剂;有以下几种配合:1t-BuOH,溶剂用t-BuOH或DMSO、THF;2NaNH2,溶剂用液氨或醚、苯、甲苯、1,2-二甲氧基烷苯等;3NaH、LiH,溶剂为苯、醚、THF等;4C6H53CNa,溶剂为苯基醚、液氨等;为了满足合成的需要,常常需要形成单一部位的烯醇盐;因此需要从形成碳负离子时的条件上加以控制:①动力学控制,形成碳负离子部位碳氢被碱提取质子的相对速度;一般在较低温度下和体积较大的碱时,易使碳负离子在位阻较小部位的碳氢键处形成;②热力学控制,两种碳负离子能相互转化并达到平衡,一般在较高温度、体积较小的碱条件下,取代基较多部位的碳氢键易于形成碳负离子如:2、碳负离子的反应C形成后虽然是共振稳定的具有很高的能量,可以发生多种亲核加成反应,重要的四类反应用通式表示如下:1与含羰基的化合物2酰基化反应:与羧酸及其衍生物的羰基发生亲核加成接着失去RO或Z形成β-酮酯或β-二酮,这是酯缩合型反应,总的结果是在C上带上一个酰基;3与烷基卤化物的反应4与活泼烯烃的加成反应§缩合反应Ⅰ——羟醛缩合见第11章醛与酮α-H的反应§缩合反应Ⅱ——Mannich反应Mannich反应甲醛与仲胺在弱酸性介质中亲核加成,再脱水形成正碳离子与醛酮、羧酸、酯、硝基化合物、腈的α-C,以及端炔、酚的邻、对位等具有负碳离子性质的位置偶联,称为Mannich反应,又称胺甲基化反应;1、反应通式2、Mannich反应机理3、Mannich反应举例Mannich反应在合成上的应用1、合成β-氨基酮衍生物例1写出合成路线2、制备,-不饱和酮例2甲基乙烯基酮的制备➢通过Mannich碱产生※弱酸性介质的作用:①使醛与胺亲核加成的产物脱水,形成C+;②质子化羰基使α-C 成为负离子;§缩合反应Ⅲ卤代反应——见第11章醛与酮α-H的反应3、卤仿反应酯的缩合反应1、Claisen缩合两个相同酯之间的缩合Claisen缩合举例:➢Claisen缩合机理1交叉酯缩合两个不同酯之间的缩合➢混合酯缩合举例:2、Dieckmann缩合分子内酯缩合二元酸酯若分子中的酯基被四个以上的碳原子隔开时,就发生分子内的酯缩合反应,形成五元环或六元环的酯,这种分子内的环化酯缩合反应称为狄克曼酯缩合;⇨对称二羧酸酯的Dieckmann 缩合⇨例:Dieckmann 缩合的可逆性在合成上的应用如两个酯基间只隔有三个或三个以下的碳原子时,就不能发生分子内的缩合;但这种二酸酯可以发生分子间缩合,或与不含-H的酯缩合,也均能得到环状羰基酯;如丁二酸二乙酯间的缩合:3、酮的酰基化酮酯缩合反应机理⇨不对称酮的酰基化4、β-二羰基化合物的互变异构现象5、酮或酯的酰基化反应在合成上的应用——制备β-二羰基型化合物1, 3-二羰基化合物➢1, 3-二羰基型化合物的反合成分析例 1反合成分析例 2反合成分析例 3反合成分析➢合成路线例2例3⇨1, 3 -二羰基化合物的烷基化反应例4§缩合反应Ⅳ复习1、羰基α位的反应——酰基化Claisen缩合, 交叉酯缩合,Dieckmann缩合和烷基化➢本节重点:羰基α位的酰基化和烷基化在合成上的应用2、酮式水解和酸式水解乙酰乙酸乙酯的制备及在合成中的应用合成等价物丙酮1、乙酰乙酸乙酯的合成乙酰乙酸乙酯−−−−→2、在合成中的应用1制备取代丙酮甲基酮类化合物➢扩展:制备环烷基甲基酮2制备甲基二酮类化合物➢扩展:制备2, 5-己二酮3通过酰基化制备β-二酮类化合物丙二酸二酯的制备及在合成中的应用合成等价物丙酮1、丙二酸二酯的合成丙二酸二酯−−−−→2、在合成中的应用1制备取代乙酸➢扩展:制备环烷基乙酸2制备二元羧酸羰基α位酯基的作用——活化、定位、引导断键例:比较以下两条合成路线,你认为哪种较好,为什么例 1分析并写出合成路线➢合成线路a➢合成线路b例 2分析并写出合成路线§缩合反应ⅤMichael加成碳负离子与,-不饱和羰基化合物发生的1,4-加成反应,叫做Michael反应;这是形成碳碳键的重要方法之一;1、反应通式2、反应机理Micheal加成后,再发生分子内的羟醛缩合或酯酮缩合,形成六元环状α,β不饱和酮或1,3-环己二酮;1、反应通式2、Robinson成环举例Knoevenagel反应在弱碱性催化下,醛酮与具有活泼亚甲基的化合物的缩合反应;常用的碱性催化剂有吡啶、哌啶、胺等;1、反应通式2、反应特点➢类似Aldol缩合;➢双活化基团的羰基化合物为烯醇负离子供体;➢弱碱催化一般为胺类化合物或吡啶;3、反应机理➢由于使用的是弱碱避免了醛酮自身的缩合,扩大了醛酮的使用范围;4、Knoevenagel反应举例Perkin反应类似Aldol缩合碱催化下,芳醛和酸酐反应生成-芳基-,-不饱和羧酸的反应;催化剂常用与酸酐相应的羧酸盐;1、反应通式➢最简单的Perkin 反应2、反应机理⇨当芳环上有吸电子基时加速反应进行,有推电子基时使反应难以进行;脂肪醛不能进行反应;⇨参加反应的酸酐必须具有至少两个-H;3、Perkin反应的应用香豆素一种重要香料Darzen反应强碱醇钠、氨基钠作用下,醛、酮与-卤代酸酯反应生成,-环氧酸酯的反应;1、反应通式2、反应机理3、Darzen反应的应用——合成环氧酸酯,合成比原料醛、酮多一个碳的醛、酮例1由环己酮转化成其他化合物例2由苯甲醛转化成其他化合物Reformatsky反应在惰性溶剂中,α-溴卤代酸酯、锌与醛或酮互相作用,得到β-羟基酸酯的反应称为瑞佛马斯基反应;如能进一步脱水,则生成,-不饱和酸酯;1、反应通式2、Reformatsky反应的特点及用途1该反应的历程与格氏合成类似;2有机锌试剂活性比格氏试剂小它不与酯进行加成;3有机锌试剂在空气中会自燃,因而不单独制备;4该反应可用以合成β—羟基酸酯、α,β—不饱和酸酯以及α,β—不饱和羧酸;⇨α-卤代酸酯的反应活性⇨有机锌试剂:镁、锂、铝试剂∙无水操作;∙反应在有机溶剂中进行,溶剂为惰性溶剂;∙锌粉需活化;3、Reformatsky反应的应用安息香缩合芳香醛在CN—催化下二聚为α-羟基酮的反应;安息香二苯乙醇酮1、反应通式2、反应机理⏹ 安息香的进一步反应——氧化和还原 ⏹ 二苯乙二酮重排 反应机理3、安息香缩合反应的应用§ 缩合反应ⅦWittig 反应及其合成上的应用 1、磷Ylide —Wittig 试剂➢ 不同类型的磷Ylide2、Wittig 反应A 、通式B 、反应机理C 、Wittig 反应举例D 、Wittig 反应的立体化学➢ 生成 E 型和Z 型混合烯烃;➢ 反应的立体选择性尚无规律可预测; Wittig 反应在合成中的应用 1、制备烯烃 ➢ 合成路线2、通过烯基醚引入醛基例: 3、Wittig 反应的改良——Wittig-Horner 反应Wittig 反应遇到的问题:副产物Ph 3P=O 较难除尽;⏹ Wittig-Horner 反应对底物的要求 ——碳负离子上必须连有一个稳定基团; ⏹ 几种类型的Wittig-Horner 试剂⏹ Wittig-Horner 反应与传统 Wittig 反应比较 4、硫内鎓盐硫ylides硫叶立德ylides 可与羰基化合物作用,而生成环氧类,反应性与磷酸或磷类叶立德 ylides 不同产生烯类;之所以会有这样不同的反应活性,在于磷一氧的键能比硫一氧的键能强; 硫及亚砜的叶立德Ylides,其反应活性介于亚砜和砜之间:硫的叶立德 ylides 反应时受动力学控制,从轴向位置进攻,即生成的环氧化合物以氧原子在横键为主:而亚砜的叶立德 ylides 反应时受热力学控制,即生成的环氧化合理以竖立键为主:§ 缩合反应Ⅷ缩合反应中区域选择性问题 1、不对称酮的烯醇负离子化2、通过烯醇锂盐或烯醇硅醚的“定向”羟醛缩合 烯胺的性质和在合成中的应用 1、烯胺和烯胺的制备Ylide Ylene Wittig 试剂邻位两性离子,有亲核性烯醇负离子的氮类似物2、烯胺的性质3、烯胺的反应举例4、烯胺的反应机理⇨解释:烯胺反应的区域选择性5、合成上应用举例➢合成路线1可能存在的问题:•一般条件下有醛的自身醇醛缩合;•需要强碱、低温,产率可能不好;➢合成路线2:通过两次烯胺的Michael 加成⇨烯胺反应特点小结1烯胺可方便制备、分离和纯化;2通过烯胺的反应避免了羰基化合物的自身缩合等副反应;3烯胺的反应与烯醇负离子的类似反应在选择性上有所不同;。
碳负离子反应
穿戴防护装备:实验过程中必须穿戴防护 服、手套、护目镜等防护装备。
实验环境:实验应在通风良好的实验室中 进行避免在密闭空间内进行。
实验材料:实验材料应妥善保管避免接触 皮肤和眼睛。
实验操作:实验过程中应严格按照实验 步骤进行操作避免操作不当导致危险。
实验废弃物:实验结束后应妥善处理实验 废弃物避免环境污染。
碳负离子反应是合 成有机化合物的重 要方法之一广泛应 用于药物合成、材 料科学等领域。
碳负离子反应的机 理包括亲核加成、 亲核取代、亲核消 除等。
碳负离子反应的分类
碳负离子反应可以分为两类:亲核碳负离子反应和亲电碳负离子反应 亲核碳负离子反应是指碳负离子作为亲核试剂与亲电试剂发生反应 亲电碳负离子反应是指碳负离子作为亲电试剂与亲核试剂发生反应 碳负离子反应在合成化学中具有广泛的应用如合成有机化合物、药物合成等
碳负离子反应的特点
碳负离子是一种重要的有机合成中间体 碳负离子反应具有高度选择性和立体选择性 碳负离子反应可以生成多种类型的有机化合物 碳负离子反应在合成化学中具有广泛的应用
碳负离子反应的原理
碳负离子反应的化学键特征
碳负离子反应是一种化学反应其中 碳原子失去电子形成负离子。
碳负离子反应的化学键特征还与反 应条件、反应物浓度等因素有关。
碳负离子反应的研究趋势和展望
研究热点:碳负离子反应在材料科学、化学合成等领域的应用 研究方法:理论计算、实验验证相结合的研究方法 研究挑战:如何提高碳负离子反应的效率和选择性 研究展望:未来可能会在能源、环保等领域取得突破性进展
碳负离子反应的研究方法和手段
实验方法:通过实验观察碳负离子反应的过程和结果 理论研究:通过理论推导和计算来研究碳负离子反应的机理和规律 模拟计算:通过计算机模拟来研究碳负离子反应的条件和影响因素 合作研究:与其他研究机构或企业合作共同推进碳负离子反应的研究
碳负离子课件PPT
碳负离子的电子结构
碳负离子的电子结构是稳定的,其价 电子数为6,具有一个空轨道,可以 接受电子。
碳负离子可以通过接受电子而形成稳 定的负离子,这与其电子结构有关。
碳负离子的电子构型为1s²2s²2p⁶, 其最外层电子构型与C原子相同。
碳负离子的光谱性质
01
碳负离子在光谱中表现出特征的 吸收和发射光谱,这些光谱可以 用于研究碳负离子的结构和性质 。
碳负离子的合成方法
碳负离子的合成方法有多种, 如通过醇、醚、胺等的酸式分 解、通过重氮化合物或卡宾的 反应等。
在合成碳负离子时,需要选择 适当的反应条件和试剂,以确 保合成的高效性和产物的纯度。
合成碳负离子时需要注意安全 问题,如避免使用有毒有害的 试剂和避免产生危险的气体等。
03
碳负离子的物理性质
碳负离子对水环境的影响
净化水质
碳负离子具有吸附和还原 作用,能够去除水中的重 金属离子和有害有机物, 提高水质。
促进水生生物生长
碳负离子可以提供水生生 物所需的营养物质,促进 水生生物的生长和繁殖。
调节水体酸碱度
碳负离子可以与水中的氢 离子反应,调节水体的酸 碱度,维持水体的生态平 衡。
碳负离子对土壤环境的影响
提高土壤肥力
碳负离子可以促进土壤中有机物 的分解和转化,提高土壤的肥力。
改善土壤结构
碳负离子可以与土壤中的矿物质 发生反应,形成有益的土壤结构, 提高土壤的保水能力和透气性。
抑制土壤污染
碳负离子可以吸附和固定土壤中 的重金属离子和有害有机物,降
低土壤污染的风险。
05
碳负离子的未来发展
碳负离子在新能源领域的应用
碳负离子的形成
通过共价键的断裂形成
碳负离子的反应_图文
第一节 缩合反应
两个或多个有机化合物通过反映,形成 一个新的较大分子的反应都可称为缩合 反应。
缩合剂—缩合反应通常需要在酸或碱性 试剂催化下进行,此时的催化剂又专称 为缩合剂。
一、羟醛缩合型反应
两分子含有α-氢原子的醛在酸或碱的催化下(
通常使用稀碱),相互结合形成β-羟基醛的反应称为
羟醛缩合反应(aldol condensation),也称为醇
碳负离子带有一个单位负电荷,通常是四面 体构型,其中孤对电子占一个sp3 杂化轨道。 通过比较相应酸的酸性大小,可以大致判断碳 负离子的稳定性大小。一般地,具有能稳定负 电荷的基团的碳负离子具有较高的稳定性。这 些基团可以是苯基、电负性较强的杂原子(如 O,N,基团如-NO2、-C(=O)-、-CO2R、SO2-、-CN和-CONR2等)或末端炔烃(也可 看作电负性的缘故)。
Br(CH2)4Br 分子内的亲核取代
H+
-CO2
稀-OH
Michael(迈克尔) 加成反应
迈克尔加成反应就是一个亲电的共轭体系和一个亲 核的碳负离子进行共轭加成,其反应通式为:
从形式上看是对C=C的加成,而实际上是通过1,4加成反 应后,再通过烯醇式与酮式互变而成的。
反应机理
第一步:
含有α氢原子的酮与酯之间也可以进行缩合 反应主要产物为β-二酮。
例如:
第二节 β-二羰基化合物的烷基化、酰基 化及其在合成中的应用
两个羰基被一个碳原子隔开的化合物称 为β-二羰基化合物。
β-二羰基化合物一般泛指β-二酮、β-酮 酸酯、丙二酸酯等含活泼亚甲基化合物 。
这类化合物主要的反应类型是亚甲基碳 上的烷基化、酰基化反应。
醛缩合反应。例如:乙醛在稀碱作用下缩合生成3-羟
《碳负离子的反应》课件
2 碳负离子反应多种多样,具有重要的应用价值
碳负离子可以发生取代、消除和加成等多种反应,广泛应用于有机合成、制药化工和生 物化学领域。
3 进一步研究碳负离子反应的机理和应用前景具有重要意义
对碳负离子反应的深入研究有助于理解有机化学反应的机制,并且为新型反应的发展提 供了契机。
有机合成
碳负离子反应在有机合成中起 着至关重要的作用,可以用于 合成复杂的有机分子结构。
制药化工
许多药物和化工品的制备都离 不开碳负离子反应,它们成为 了现代化工领域的重要工具。
生物化学
碳负离子反应在生物化学研究 中也有广泛应用,有助于揭示 生命活动中的关键反应过程。
总结
1 碳负离子是有机化学中重要的反应中间体
《碳负离子的反应》PPT 课件
欢迎大家来到本课程的《碳负离子的反应》PPT课件。在本课程中,我们将深 入探讨碳负离子的概念,不同类型的反应以及它们的应用。让我们一起开始 这段知识之旅吧!
碳负离子的概念简介
定义
碳负离子是带有负电荷的碳 离子,作为重要的有机化学 反应中间体存在。
特性
碳负离子具有高度活泼性, 容易发生取代、消除和加成 等多种反应。
形成方式
碳负离子可以通过电子捐赠 基团的取代反应或者临近负 电荷基团的裂解而形成。
碳负离取代反应是碳负离子最常见的反应类型,包括单取代和多取代反应。
2
消除反应
碳负离子也可以发生β-消除反应,生成双键或三键化合物。
3
加成反应
加成反应是碳负离子与亲电性试剂形成新键,包括1,2-加成和1,4-加成。
碳负离子反应的实例
单取代反应的例子
第14章---碳负离子的反应
第14章碳负离子的反应——β-二羰基化合物§14.1 α-H的酸性和互变异构14.1.1 α-H的酸性1、a-H的酸性在有机化学中,与官能团直接相连的碳原子均称为a-C;a-C上的氢原子均称为a-H。
a-H以质子形式解离下来的能力,即为a-H的活性或a-H的酸性。
因此烃也可叫做氢碳酸。
表14-1-1 常见化合物a-H的p K a值羧酸衍生物中的a-H的活性一般比醛酮为弱,但酰氯中由于氯原子与羰基的共轭程度差且吸电子效应强,反而使其a-H的酸性增强。
酸性大小:酰氯>醛、酮>酯>酰胺Cl:吸电子诱导>给电子共轭O:给电子共轭>吸电子诱导2、影响a-H的酸性的因素1)a-C所连接的官能团及其官能团的吸电子能力。
总的吸电子能力越强,a-H的酸性就越大;2)取决于氢解离后生成的碳负离子(carbanion)结构的稳定性。
负离子上电子的离域范围越大越稳定;3)分子的几何形状、介质的介电常数、溶剂等都有关系。
3、β-二羰基化合物α-H的活性分析乙酰乙酸乙酯是一个典型的1,3-二羰基化合物,由于受两个羰基的吸电子作用,亚甲基上的H 特别活泼,和碱作用形成稳定的负离子。
负离子特别稳定是因为负离子可以同时和两个羰基发生共轭作用,具有比较广泛的离域范围。
烯醇负离子其他1,3-二羰基化合物情况相似,其他的吸电子基团如硝基、氰基等与羰基作用相同在含有氢的碳原子上连有两个吸电子基团的化合物都含有一个活泼的亚甲基,它们统称为含活泼亚甲基(氢)的化合物。
β-二酮β-羰基酸酯丙二酸酯氰乙酸酯硝基乙酸酯活泼氢化合物的双重反应性能:碳负离子烯醇负离子氧负离子一般情况下,这些物质在反应时可以看作是碳负离子对其它官能团的亲核加成反应。
14.1.2 酮式和烯醇式的互变异构可以看作是活泼H可以在α-C和羰基O之间来回移动。
1、酸碱对互变平衡的影响痕量的酸、碱甚至是玻璃仪器都能促使平衡的快速建立。
(1)酸催化过程在酸催异构化过程中,酸首先与羰基氧原子作用形成 盐,其共轭碱——水再夺取a-H形成烯醇。
第十三章碳负离子的反应
第二节 -二羰基化合物的烷基化,酰基化及 在合成中的应用
一、乙酰乙酸乙酯
(一)酮式--烯醇式的互变异构现象
OH O
O H O
C H3CC HCO C2 H5
酮式 (93%)
C H3 C C H C O C2 H5
烯醇式 (7%)
(三)乙酰乙酸乙酯的分解反应
1、酮式分解
O
5%NaOOH
CH3CCH2COOC2H5
R 'H ()
R 'H ()
O C 2 H 5 R 'H ()
C O O C 2 H 5
O
C2H5ONa
C6H5-C-CH3+Br-CH2COOC2H5
(1)O -,H 2 H O
(2)3H O+
C6H5CHCHO CH3
O
C6H5-C CHCOOC2H5 CH3
二、酯缩合反应
O
(12H )5O C Na O O
CH2CH3 OO (2) CH3-C-CH2-C-C6H5
(3) CH2COOH
麦克尔加成:
CH2COOH
O
O C2H5ONa
CH2CH2CCH3
CH3COCH2COOC2H5+CH2=CHCCH3
+
O
O C2H5OHCH3COCHCOOC2H5
H2O/H
-CO2
CH3CCH2CH2CH2CCH3
O (3) H3C C CH2COOC2H5
O C 2 H 5 O
CH3C-CH2COOC2H5+C2H5O
OC2H5 O (4)CH3C-CH2COOC2H5+C2H5O-
OCH3C-CHCOOC2H5+C2H5OH
第十三章碳负离子反应
COOC2H5 + 2C2H5OH
COOC2H5
三、交叉酯缩合反应
O
O
R CH C OC2H5 + R' CH C OC2H5
H
H
Base
四种产物,无合成意义
1. 无α-H 的酯与有α-H 的酯缩合
其中一个酯无α-H 的,根据反应物活性选用不同的 碱 常用无α-H 的酯:甲酸酯,苯甲酸酯,碳酸酯,草 酸酯
CH3
O C2H5OC OC2H5 +
1) NaOC2H5
CH2CO2C2H5
2) H+
O C2H5OC CH CO2C2H5
2. 有α-H 的酮与有α-H 的酯缩合
酯与适当的醛或酮特别是甲基酮中的α-H 的发生 交叉缩合反应,得到β-二酮。酮的α-H 的酸性强于酯 的α-H 的。
O CH3C
O
+ OC2H5
O
CO2C2H5
+ CH3CH2COC2H5
NaH THF
H+3O
反应活性低
OO
C CHCOC2H5
CH3
OO
O
C2H5OC
COC2H5 + CH3CH2COC2H5
C2H5ONa C2H5OH
H+3O
反应活性高
OO O
OO
C2H5OC C CHCOC2H5
CO
C2H5OC CHCOC2H5
CH3
CH3
二元酸酯的分子内酯缩合称迪克曼酯缩合反应
(Dieckmann) ,用于制备五,六元环化合物。
O
O
H5C2OCCH2CH2CH2CH2CH2COC2H5
碳负离子反应
CH3COONH4
CH3C CHCOOH CH3
Dazen 反应
在强碱(醇钠、氨基钠等)作用下,醛、酮 与α-卤代酸酯反应,生成α,β-环氧酸酯
R O C CHCOOC2H5 (H)R'
R C O + ClCH2COOC2H5 (H)R'
C2H5ONa
O C2H5O + H CH COC2H5 Cl
缩合反应机理:
R CH2 CHO + HO-
O R CH2 C H
O
R
CH CHO + H2O
O
+ R
CH CHO
R CH2
C CH CHO H R
H2O
R CH2 C CH CHO H R
R CH 2
OH C CH H R CHO
+ OH-
2 羟醛缩合反应的衍生类型
(1) Peking 反应
(2)Knoevennagel 反应 (3)Dazen 反应
O
OC2H5
O O C OC2H5
交叉酯缩合反应
不同的具α -H 的酯进行酯缩合时,可能有四种 产物,在合成上无意义
CH3COOC2H5 和 CH3CH2COOC2H5
不具有α-氢的酯可以提供羰基,与具有α-氢的酯 进行酯缩合反应时,可得到较纯的产物。这种缩合 称为交叉酯缩合(crossed ester condensation)。
R-X R CH
COOC2H5 COOC2H5
H2 R C COOH
1. H2 2. H3+O,heat
O,OH-
1.EtONa EtOH 2.R’-X
O R CHC R' OH
第一章 碳负离子反应ppt
碳负离子:是以一个带有负电荷的三价碳为中心原
子的中间体,是有机化学反应中常见的活性中间
体。如甲基负离子
、烯丙基负离子
苄基负离子
、三苯甲基负离子
制备:金属有机化合物 异裂
RLi,RMgX,RC CNa
精选版课件ppt
2
碳负离子是有机分子中的碳氢键失去质子后 所形成的共轭碱 :
OH CC
H NCC
H NO2 C
CN
精选版课件ppt
27
1.4 碳负离子的烃基化反应
碳负离子置换卤代烷中卤素,形成碳-碳键, 相对于O、S、N等烃化,接触较多的是C-烃化。
C- +
CX
C C + X-
羰基活化的碳负离子的烃化反应:
作为烃化剂,除了卤代烷外,还有对甲苯磺酸酯、 硫酸二甲酯和重氮甲烷等 ;各种活化基团的α-碳 的烃化
CH2
B-
HC HC
CH
HC
CH (CH3)2CO HC
CH CH
HC CH
HC
BH+ HC CH -H2O HC
CH CH
C
C- H
CH O- C(CH3)2
CH HO C(CH3)2
C H3C CH3
二甲基富烯
精选版课件ppt
20
Cl
1.3 碳负离子与羧酸衍生物缩合
碳负离子和酯、酰卤、酸酐中羰基发生缩合
COOEt
O CH3 C CH2COOEt + Br(CH2)3Br
O CH3 C
CH2COOEt EtO
O CH3 C
CHCOOEt CH2CH2CH2Br Br
CH3 EtO
O
COOEt
第一章碳负离子反应
2
CO2Et CO2Et
CO2Et CO2Et
N aOE a
CH2 H2C
64%~68% HC
CH2
EtO2C CO
EtO-EtO-
O
E t2O O
CO2Et H2O 180℃
O
O 81-89%
α,ω-二腈在碱催化下,缩合得到环状β- 酮腈
CN CN
CH2 CH2
B:
CH2 CH2
NH
O
CN H2O
O
OH
R
O
OH
+ R
O OH R
OM 烯醇负离子
O
O
B
常用碱的性能:
强亲质子和亲核能力的碱:HO- , CH3O-, C2H5O-, RS-, CN-等。
强亲质子弱亲核能力的碱:H- , NH2-。 具有强亲质子和相当弱亲核性的碱:Et2N- ,C6H5N- ,
Me3Si-N-。
例 醛、酯的α-H烷基化时,不能用OH-去脱 质子。如用OH-时则:醛发生醇醛缩合:
CH2COOEt EtO
O CH3 C
CHCOOEt CH2CH2CH2Br Br
CH3 EtO
O
COOEt
CH
H3C C
CH2 EtO
O H2C
CH2
Br
COOEt
CH
H3C C
CH2
O H2C
CH2
Br
COOEt H3C
O
1.2.3酯碳负离子反应
酯的α-亚甲基不能与酮发生醇醛缩合,但在醇钠的催
-O
O
CH3C CH2 C OEt
H+
O CH3CCH2CO2Et + EtOH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
慢
O H C CH2CHO
H+
H
OH
C CH2CHO
CH3
CH3
酮自身缩合:
O CH3C CH3 + OH
O CH2 C CH3 + H2O
O C H 3 CC H 3+C H 2 C O C H 3
O -
O
(C H 3 )2CC H 2 C C H 3
CH3 CH3CHCH2
CH3 CH3C
CH3
异丁基 叔丁基
英文名
n-butyl
缩写
n-Bu
sec-butyl (secodary)
s-Bu
isobutyl
tert-butyl (tertiary)
i-Bu t-Bu
2
R (烷基)
中文名
CH3(CH2)3CH2
CH3 CH3CHCH2CH2
CH3 CH3CH2C
1.2.1 醇醛和醇酸缩合
醛或酮的自身缩合。有α-H的醛、酮在碱的作用下发 生自身缩合,得到链状或环状化合物,常用的碱有 KOH、Ba(OH)2、NaOEt、(t-BuO)3Al等。
反应机理: 醛自身缩和:
O CH3C H + OH
O : CH2C
H
O CH2 C H
O CH3C H +
O : CH2C H
(3)与烷基卤化物的反应:
C + CX
CC
+X
(4)与活泼烯烃的加成反应:
C + CCZ
CC C Z H
1.2 碳负离子与醛酮缩合 醛、酮、酯、卤代羧酸酯、硝基化合物、氰基化合物
等可生成碳负离子和醛、酮发生羰基缩合反应,产 物为α,β-不饱和醛、酮、羧酸、羧酸酯、硝基化合 物和氰基化合物,反应使碳链可以增长1-3个碳原 子。
CH2 Br
O CH3 Br
O
O C
CH3
1.1.2 碳负离子反应 CΘ形成后(虽然是共振稳定的)具有很高的
能量,可以发生多种亲核加成反应,重要 的四类反应用通式表示如下:
(1)与含羰基的化合物
C+CO
CCO
(2)与羧酸及其衍生物的羰基发生亲核加成 接着失去ROΘ或ZΘ形成ß-酮酯或ß-二酮, 这是酯缩合型反应,总的结果是在CΘ上带 上一个酰基,也叫酰基化反应。
O
CC H 亲质子
亲核 B
一般来说,亲核试剂的亲核性能大致与其碱 性的强弱次序相对应。对具有相同进攻原子 的亲核试剂,碱性愈强者,亲核性愈强。
下面列出常用碱的性能: 具有强亲质子和强亲核能力的碱:
HOΘ ,CH3OΘ,C2H5OΘ,RSΘ,CNΘ等。 具有强亲质子弱亲核能力的碱:
HΘ , NH2Θ。 具有强亲质子相当弱亲核性的碱: Et2NΘ ,C6H5NΘ , Me3Si-NΘ。
如:
O H3C
O H3C
O H3C
动 力 学 控 制 热 力 学 控 制
1
99( LDA/二 甲 基 氧 基 乙 烷 )
78
22( Et3N/DMF)
LDA
Li N
O
H
H
CH2
LDA/THF -72 ℃
Br
OCH(CH3)2 O
H CH3
(CH3)3COK (CH3)3COH, 25℃
Br
O H
CH3 CH3 CH3CCH2 CH3
(正)戊基 异戊基 叔戊基
新戊基
英文名
缩写
n-pentyl n-amyl
isopentypentyl
3
第一章 碳负离子的反应
1.1 基本原理 1.2 碳负离子与醛酮缩合反应 1.3 碳负离子与羧酸衍生物的缩合 1.4 碳负离子的烃基化反应 1.5碳负离子对活泼烯烃的加成反应 1.6 烯胺反应 1.7 乙炔碳负离子反应 1.8氰基(CNΘ)负离子反应 1.9 Wittig反应-羰基烯化反应
1.1 基本原理
1.1.1碳负离子的形成及其稳定性 碳负离子是以一个带有负电荷的碳为中心 原子的中间体,是有机化学反应中常见的 活性中间体。如甲基负离子、烯丙基负离 子、苄基负离子、三苯甲基负离子等。
碳负离子可以通过金属有机化合物异裂而 产生。碳氢键的碳原子上存在吸电子基时 易形成碳负离子。
如:
例1 .醛、酯的α-H烷基化时,不能用OHΘ去 脱质子。如用OHΘ时, 则醛发生醇醛缩合:
O
O
OH
CH3CH2CH + CH3CH2CH
酯会发生水解:
CH3CH2
OH CH CHCHO
CH3
O CH3C OCH2CH3 + OH
CH3COOH + OCH2CH3
CH3COO-+HOCH2CH3
在形成碳负离子的外部因素中,还应指出的 是溶剂的影响。假如溶剂的酸性比氢碳酸 强的多的话,就不能产生很多的CΘ,因为 刚形成的碱性很强的CΘ夺取溶剂的质子, 又成为原来的化合物(内返作用)。
一些常见的烷基
R (烷基) 中文名
CH3 CH3CH2
甲基 乙基
CH3CH2CH2
CH3 CH3CH
(正)丙基 异丙基
英文名
methyl ethyl
缩写
Me Et
n-propyl
n-Pr
isopropyl
i-Pr
1
R (烷基)
中文名
CH3CH2CH2CH2
CH3 CH3CH2CH
(正)丁基 仲丁基
为了满足合成的需要,常常需要形成单一部位的烯 醇盐。因此需要从形成碳负离子时的条件上加以 控制:
①动力学控制,形成碳负离子部位碳氢被碱提取质 子的相对速度。一般在较低温度下和体积较大的 碱时,易使碳负离子在位阻较小部位的碳氢键处 形成;
②热力学控制,两种碳负离子能相互转化并达到平 衡,一般在较高温度、体积较小的碱条件下,取 代基较多部位的碳氢键易于形成碳负离子
OH CC
H NCC
H NO2 C
强碱
O CC
强碱 NCC
强碱
NO2 C
O CC
NCC O NC O
形成碳负离子的外部条件
有了一个带有活化基团的化合物后,还必须加入碱, 才能把α-H交换下来,形成碳负离子。
选择强度适合的碱,酸性弱的α-H要用强碱,反之用 较弱的碱。
在选择碱的时候,还要分清哪些碱是强亲质子性的 (与质子结合的能力),哪些碱是强亲核性的(与 碳正离子的结合能力),哪些是两种都有的。这是 因为在形成CΘ的过程中,碱可能进攻碳原子,也 可能进攻质子氢。
离解 RH + M+B 内返
R M+ + BH
R + M+ + BH
一般应采用极性大但酸性弱的溶剂,即非质 子溶剂。有以下几种配合:
(1)t-BuOH,溶剂用t-BuOH或DMSO、 THF。
(2)NaNH2,溶剂用液氨或醚、苯、甲苯、 1,2-二甲氧基烷苯等。
(3)NaH、LiH,溶剂为苯、醚、THF等。 (4)(C6H5)3CNa,溶剂为苯基醚、液氨等。