比和比例及列方程解应用题

合集下载

小升初比和比例应用题专题练习(应用题)人教版六年级下册数学

 小升初比和比例应用题专题练习(应用题)人教版六年级下册数学

人教版小升初比和比例应用题专题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.希望小学六年级学生中,男生与女生的人数比为7∶5,又转来15名男生,这时男生与女生的人数比为3∶2。

希望小学六年级现在有多少名学生?2.下面是三名同学某次足球练习情况。

姓名射门/次射中/次张晓156李欣105王浩1810(1)张晓的射中次数与射门次数的比是(),比值是()。

(2)李欣的射中次数与射门次数的比是(),比值是()。

(3)王浩的射中次数与射门次数的比是(),比值是()。

(4)马上举行全省小学生足球赛,各个小学推荐一名优秀的足球选手。

如果你是体育老师,你会推荐谁去?为什么?3.甲、乙、丙三人参加长跑比赛,甲和乙速度比是3:4,乙和丙速度的比是2∶5,求甲、乙、两三人速度的比.4.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人,求现在男、女生的人数比?5.某工厂有三个车间,第一车间人数与总数的比是1∶4,第二车间人数是第三车间的78。

第一车间比第三车间少21人,这个工厂一共有多少人?6.园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了76棵,这时剩下的与已栽的棵数的比是3:5.这批树苗一共有多少棵?7.新学期,六(一)班购置图书50本,要分给班上的男生和女生,男生人数和女生人数的比是1∶4,男生和女生各能分到多少本书?8.老师给班里买了90本儿童读物,按4∶5分别借给一组和二组。

这两个组各借书多少本?(用两种方法解答)9.一台播种机第一次工作3时,播种17100m2;第二次工作4时,播种22800m2,分别写出每次播种的面积和工作时间的比,你认为它们能组成比例吗?为什么?10.两个外项的积加上两个内项的积结果是120,其中一个内项是最小的质数,一个外项是最小的合数,请你写出所有符合条件的比例。

11.五一假期,郑磊和爸爸妈妈自驾去外地看外婆。

六年级重点易错专题之 比和比例应用题

六年级重点易错专题之 比和比例应用题

比和比例应用题典型例题例1:幼儿园大班和中班共有32个男生,18个女生。

已知大班男生人数与女生人数的比为5:3,中班男生与女生人数的比为2:1。

那么大班女生有多少人?分析:题目中涉及到两个比例关系,看起来是无从下手。

注意到两个班的男、女总数都已知,于是我们可以设大班女生人数为X,则中班女生人数为(18-X),再利用比例关系表示出两个班男生的人数,列方程即可求出。

解:设大班女生人数为X,则中班女生人数为(18-X),根据题意列方程,得(5/3)X+2(18-X)=32X=12即大班女人有12人。

说明:这是1998年全国小学生奥林匹克数学竞赛预赛试题,属按比例分配类型应用题,利用方程解比和比例应用题是十分有效易懂的方法。

例2:甲、乙两厂人数的比是7:6,从甲厂调360人到乙厂后,甲、乙两厂比为2:3。

甲、乙两厂原有多少人?分析:从甲厂调360人到乙厂,甲、乙两厂人数的总数不变,因此,可将这个不变量看作是单位“1”。

甲厂原有人数占总人数的7/13,甲厂现有人数占总人数的2/5,360人就是总人数的7/13-2/5=9/65,总人数=360/(9/65)=2600人。

又因为甲、乙两厂原有人数之比为7:6,所以甲厂原有2600×7/13=1400人,乙厂原有2600×6/13=1200人。

说明:解这类应用题时,可抓住题目中的不变量,把它看作单位“1”,然后找已知数量的对应分率,逐步推出所求的量。

例3:王师傅原定在若干小时内加工完一批零件,他估算了一下,如果按原速度加工120个零件后工作效率提高25%,可提前40分钟完成;如一开始工作效率就提高20%,就可提前1小时完成。

他原计划每小时加工多少个零件?分析:此题的关键还是在于找出不变量,确定正反比例关系。

由于加工120个零件后,加工余下的零件工作效率提高25%,则提高后的工作效率与原工作效率比为(1+25%):1=5:4,而工作量(即加工120个零件后余下的零件)没有改变(不变量),所以,所需时间与原工作时间的比应与效率成反比例关系,即4:5。

比和比例应用题教师版

比和比例应用题教师版

比和比例应用题【例题精讲】[例题1]两块一样重的合金,一块合金中铜与锌的比是2:5,另一块合金中铜与锌的比是1:3,现将两块合金融合成一块,新合金中铜与锌的比是多少?【解析】假设每块合金重28,那么第一块铜占合金的72,根据一个数乘分数的意义,则铜有87228=×,锌有207528=×;第二块铜占合金的41,根据一个数乘分数的意义,则铜有74128=×,锌有214328=×;则合成一块,铜1578=+,锌412120=+,进而求比即可.[变式训练1]一块铜和锡的合金中,铜与锡的重量比是7:4,已知铜比锡多840克,这块合金有3080克.【解析】铜比锡多840克,相当于7﹣4=3份的质量,然后用除法求出每份的质量,再乘总份数7+4=11份即可.[变式训练2]有两块同样重的合金,一块合金中铜与锌的比是1:5,另一块合金中铜与锌的比是2:3,现将两块合金合成一块,新合金中铜与锌的比是17:43【解析】假设每块合金重30,那么第一块中铜占合金的61,根据一个数乘分数的意义,则铜有30×61=5,锌有30﹣5=25;第二块中铜占合金的52,根据一个数乘分数的意义,则铜有30×52=12,锌有30﹣12=18;则合成一块,铜5+12=17,锌25+18=43,进而求比即可.[变式训练3]甲乙两块合金的质量比是8:7,甲合金中铜与锌的质量比是5:3,乙合金中铜与锌的质量比是9:5现将两块合金熔成一块,新合金中铜与锌的比是19:11【解析】把甲的质量看作单位“1”,则乙的质量为甲的87,那么在甲中,铜就是85,锌就是83;再把乙的质量看作单位“1”,那么在乙中,铜就是甲的质量的87×149,锌就是甲的质量的87×145;两块合在一起之后,每块合金中铜与锌的质量是不会变的,那么铜的质量就是两块中铜的质量相加得到的:(85+87×149),锌是(83+87×145),从而可以求新合金中铜和锌的比.[例题2]一批零件按5∶3分给师徒两人加工,结果师傅加工了1440只,超额完成20%,徒弟只完成了80%,徒弟加工了多少只?请根据题意先判断:师傅超额完成的部分是同属于这一批零件吗?【解析】把分配给师傅的零件数看成是单位“1”,则有关系式:师傅实际加工的个数=分配的个数×()%201+,先求出分配给师傅多少零件:()1200%2011440=+÷个,然后求出分配给徒弟多少零件:720531200=×个,徒弟实际加工的个数:576%80720=×个.[变式训练1]一批零件,原计划按5:3分配给师徒两人加工,结果师傅加工1200个,超过分配任务的20%,而徒弟因病只完成了他原定任务的60%,徒弟实际加工了 360 个.【解析】把加工的零件任务按5:3分配给师徒两人加工,则师傅原来分得了总任务的85355=+,实际加工了1200个,超过原分配任务的20%,则师傅实际加工了全部任务的()43%20185=+×,则加工的总零件数为1600431200=÷个,所以原计划徒弟加工的个数为6003531600=+×个,徒弟实际加工的个数为600×60%=360个.[变式训练2]一批零件,平均分给师徒两人加工.师傅和徒弟每小时加工零件个数的比是7:5.当师傅完成任务时,徒弟还有24个没有完成.这批零件一共有多少个?【解析】把这批零件的个数看作单位“1”,已知师傅和徒弟每小时加工零件个数的比是7:5.当师傅完成任务时,徒弟还有24个没有完成.也就是徒弟已经加工的个数是师傅加工个数的75,那么24个相当于师傅加工个数的75-1,根据已知一个数的几分之几是多少,求这个数,用除法求出师傅加工了多少个,然后乘2即可求出这批零件一共有多少个.[变式训练3]一批零件平均分给师徒两人加工,当师傅完成任务的43时,徒弟完成了任务的54,这时师傅比徒弟少做60个.这批零件共有多少个? 【解析】把这批零件的一半看成单位“1”,60个零件对应的分数是54-43,由此用除法求出零件的一半;然后再乘2即可.[例题3]加工一批零件,单独做,甲要8小时,乙要12小时。

比和比例

比和比例

比和比例(二)例题1、:六年级兴趣小组活动中,美术组与音乐组的人数比是5 :4,音乐组和体育组的人数比是3:4,美术组、音乐组和体育组的人数比是多少?分析:这类题属于求三个量的连比类问题。

会求连比对于解比例分配及其它应用题作用非常大,所以一定要掌握。

应为美术组:音乐组=5:4,,可以将音乐组人数的份数统一,作为桥梁建立连比。

美术组人数:音乐组人数=5:4= 15 : 12音乐组人数:体育组人数= 3 : 4=12 :16所以,美术组人数:音乐组人数:体育组人数=15 : 1 2 : 16同步演练1:有一个长方体,长与宽的比是2 : 1,宽与高的比是3 : 2 ,那么这个长方体的长、宽、高的比是多少?例2:有甲、乙、丙三家超市,已知某天甲店与乙店销售额的比为3 : 4,乙店与丙店销售额的比为2.5 : 3,如果这天一店的销售额比甲、丙店的销售总额少931元,求这天三家超市的销售额各是多少元?分析:这类题属于利用连比按比例分配或用列方程的方法求未知数的和差倍问题。

要先求出甲、乙、丙的比,然后用方程解比较简便。

甲:乙=3 : 4=15:20 乙:丙=2.5 : 3=20 : 24所以,甲:乙:丙=15 : 20 : 24设每份销售额为a,则甲为15a,乙为20a,丙为24a,依题意有:20a=15a+24a-931 解得a=49甲:15a=735(元)乙:20a=980(元),丙:24a=1176(元)答:同步演练:甲、乙、丙三个工程队和修一条长70米的公路,甲、乙两个工程队修路的长度比为2 : 3,乙丙两个工程队修路的长度比是4 : 5,这三个工程队合修了多少千米?例3:甲、乙两辆汽车从相距190千米的A、B两地相向开出,在途中相遇,已知甲、乙两车的速度比是4 : 3,相遇时所用的时间比为5 : 6,求相遇时甲、乙两车各行了多少千米?分析:这类题属于行程问题中复比类问题。

可先求出两汽车所行的速度和时间的复比,进而得出它们所行路程的比,然后按比例分配解出结果。

复杂的比和比例应用题(一题多解)

复杂的比和比例应用题(一题多解)

一架飞机所带的燃料最多可以用 6 小时,飞机去时顺风,每小时可以飞行 1500 千米;飞回时逆风,每小时可以飞行 1200 千米。

这架飞机最多飞出去多少千米就要往回飞?抓住问题特点,用比例知识解答较简明。

飞出和飞回的路程一定,所以飞出和飞回使用时间和其速度成为反比。

飞出时间和飞回时间的比: 1200 :1500=4:54= 4000飞出距离:1500×6× 9 (千米)用工程问题的思路解答。

1 1 1飞出时,每千米用小时,飞回时,每千米用1200小时,返回 1 千米用( 1500 + 1200 ) 小时,返回多少千米用 6 小时?1 16÷( 1500 + 1200 ) =4000 (千米)列比例解。

返回路程一定,速度与时间成反比例。

设:飞出 x 小时后返回。

1500x=1200 ( 6-x)8X= 381500× 3 =4000 (千米):利用时间和为 6 列方程。

设:飞出 x 千米后返回。

x x+=61500 1200X=4000先求出平均速度,再求出飞出距离,假设飞出距离为“ 1”1 1 4000( 1+1 )÷( 1500 + 1200 ) = 3 (千米/小时)40003 ×( 6÷2 ) =4000 (千米)1,一架飞机所带的燃料最多可以用 6 小时,飞机去时逆风,每小时飞行 600 千米;返回时顺风,每小时飞行 750 千米。

这架飞机最多飞出去多少千米就需返航?2,小明上学时每分钟走 75 米,放学时每分钟走 90 米。

这样他上学和放学在路上共用了 22 分钟。

你能求出小明家到学校的路程吗?、3,甲、乙两人各加工 700 个零件,甲比乙晚 1.5 小时开工,结果比乙还提前 0.5小时完成。

已知甲、乙的工作效率比是 7:5 ,求甲每小时加工零件多少个?客车和货车分别从甲、乙两地同时相对开出,经过若干小时后在途中相遇,相遇后又行 5 小时货车到达甲地,这时客车到乙地后又掉头行了甲、乙两地距离的 25% 。

比和比例应用题

比和比例应用题

1比和比例知识点拨:比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例① x a y b = ⇒y b x a =; x y a b=; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ; ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

解比例典型例题及答案

解比例典型例题及答案

解比例答案典题探究例1.按下面的条件列出比例并解比例.(1)5和8的比等于20和X的比.(2)4和12的比等于8和X的比.(3)等号左端的比是4.5:X,等号右端的比是0.3:4.(4)比的两个外项分别是X和1.5,两个内项分别是2.8和3.考点:解比例.专题:比和比例.分析:(1)根据题意先列出比例式5:8=20:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除5,即可得解;(2)根据题意先列出比例式4:12=8:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除4,即可得解;(3)根据题意先列出比例式4.5:x=0.3:4,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除0.3,即可得解;(4)根据题意先列出比例式x:2.8=3:1.5,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除1.5,即可得解;解答:解:(1)5:8=20:x;5x=20×85x÷5=160÷5x=32;(2)4:12=8:x4x=12×84x÷4=96÷4x=24;(3)4.5:x=0.3:40.3x=4×4.50.3x÷0.3=18÷0.3x=60;(4)x:2.8=3:1.51.5x=3×2.81.5x÷1.5=8.4÷1.5x=5.6.点评:此题考查解比例的方法:根据两内项之积等于两外项之积,把比例式转化为乘积式是解题的关键.例2.求未知数x的值.(1)7:x=0.8:2.4;(2)=;(3)x:=18:.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质可得:0.8x=7×2.4,再利用等式的性质,两边同时除以0.8求解;(2)根据比例的基本性质可得:15x=20×0.8,再利用等式的性质,两边同时除以15求解;(3)根据比例的基本性质可得:x=×18,再利用等式的性质,两边同时除以求解.解答:解:(1)7:x=0.8:2.40.8x=7×2.40.8x÷0.8=16.8÷0.8x=21;(2)=15x=20×0.815x÷15=16÷15x=;(3)x:=18:x=×18x=x=.点评:此题考查了比例的基本性质和等式的性质的计算应用.例3.若自然数A、B满足﹣=,且A:B=4:5.那么A=8,B=10.考点:解比例.专题:简易方程.分析:把﹣=的左边通分成,由A:B=4:5,根据比例的性质,可得5A=4B,推出A=B,把A=B代人=中,即可求得B的数值,进而求得A的数值.解答:解:因为A:B=4:5,所以5A=4B,A=B;﹣=,=,把A=B代人=中,得:=,=,×=,=,B=10;把B=10代入A=B中,A=B=×10=8;故答案为:8,10.点评:用含B的式子表示出A是解答此题的关键,进而代入方程即可得解.例4.只列算式(或方程),不计算.(1)比例的两个内项分别是5和2,两个外项分别是x和3.5.(2考点:解比例;分数除法应用题.专题:压轴题.分析:(1)根据比例的基本性质“两外项之积等于两内项之积”,据此列出方程即可;(2)根据图意,可知把这根绳子的总长看做单位“1”,用去了,还剩下300米;要求单位“1”的量,要先求出还剩下的300米对应的分率是多少列式为:1﹣,进而用具体的数量除以具体的数量对应的分率即可解答.解答:解:(1)x:2=5:3.5;(2)300÷(1﹣).点评:此题考查根据题意或图意,列比例式或算式,解决关键是要分析好题意或图意,灵活的解答即可.演练方阵A档(巩固专练)一.选择题(共7小题)1.在2、3、这三个数中插入第四个数X,使得这四个数能组成比例,那么X最小是()A.B.C.D.考点:解比例;比例的意义和基本性质.专题:比和比例.分析:根据比例的性质:两内项之积等于两外项之积.要使插入的第四个数X最小,即要使两内项之积或两外项之积最小,积最小为:2×,据此解答即可.解答:解:由分析可得:2×=3X,所以X=.故选:C.点评:解答本题的关键是,分析出要使插入的第四个数X最小,即要使两内项之积或两外项之积最小.2.(•静宁县)在比例中,两个外项互为倒数,两个内项()A.成正比例B.成反比例C.不成比例考点:解比例;正比例和反比例的意义.分析:根据倒数的定义结合比例的基本性质,即可得出两个内项的关系.解答:解:因为在比例中,两个外项互为倒数,所以两个内项的积=1,所以两个内项成反比例.故选:B.点评:本题考查了正比例和反比例的意义,得到两个内项的积=1是解题的关键.3.(•厦门)如果a÷=b×(a、b都不等于零),那么()A.a>b B.a=b C.a<b考点:解比例;比与分数、除法的关系.专题:压轴题.分析:可令a÷=b×的值为1,求得a,b,再比较a,b的关系.解答:解:令a÷=b×=1,则a=,b=,则a<b.故选C.点评:考查了比例中的大小比较问题,常用举特例的方法解决这类问题.4.2:x=:,x=()A.40B.4C.0.4D.1考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:x=2×,x=,解得x=1.故选D.点评:本题主要考查了解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.5.在=中,a的值是()A.2B.4C.6D.8考点:解比例.分析:利用比例的基本性质“两内项之积等于两外项之积”由此可求得a,进而选择正确答案.解答:解:根据比例的基本性质可解得:a=4,故选:B.点评:紧扣比例的基本性质即可解决此类问题.6.当:4=x:5时,x的值是()A.B.C.D.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.解答:解::4=x:5,4x=×5,4x=3,x=.故选:B.点评:此题考查比例性质的运用即解比例.7.已知,则x=()A.40B.4C.0.4D.1考点:解比例.分析:解比例的方法:根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,再解简易方程即可.解答:解:,x=2×,x=,x=,x=1.故选:D.点评:此题考查根据比例的性质解比例:把比例式先转化成两外项积等于两内项积的形式,再解方程即可.二.填空题(共10小题)8.(1)如果:5=16%:7,那么=;(2)若(0.5+÷)=,则=.考点:解比例;整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;简易方程.分析:(1)把五角星未知数看作x,根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以7求解,(2)把正方形看作未知数x,依据等式的性质,方程两边同时除以,再同时减0.5,然后同时乘x,最后同时除以求解.解答:解:(1)把原题中五角星未知数看作x,原题化为:x:5=16%:7,7x=5×16%,7x=0.8,7x÷7=0.8÷7,x=,即=,故应填:;(2)把原题中的正方形看作未知数x,原题化为:(0.5+÷x)=,(0.5+÷x)=,0.5+÷x﹣0.5=﹣0.5,x×x=x,x,x=,即=,故应填:.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.9.在X:1=3:4中,X=.考点:解比例.分析:本题按照比例的基本性质两内项之积等于两外项之积来求解.解答:解:X:1=3:4解:4X=×34X=X=;故答案为:.点评:解比例使用比例的基本性质来求解.10.0.8:4=8:x中,x=0.4,×.(判断对错)考点:解比例.专题:比和比例.分析:0.8:4=8:x,根据比例的基本性质得:0.8x=4×8,两边同时除以0.8解出x即可.解答:解:0.8:4=8:x0.8x=4×80.8x=32x=32÷0.8x=40x=40而不是0.4,故这句话是错误的.故答案为:×.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.11.9:6=15:10.考点:解比例.专题:比和比例.分析:根据比的基本性质“两内项之积等于两外项之积”,先求出两內项之积,进而用积除以已知的外项,即可得出未知的外项.解答:解:6×15÷9=90÷9=10;故答案为:10.点评:解决此题也可以根据比的意义,先求出前一个比的比值,进而用后一个比的内项除以比值求解.12.6:1.5=8:2.填上合适的数.4:3=36:2724:80=1.8:6考点:解比例.专题:比和比例.分析:每一道题都设要求的数为x,进而写出比例:(1)根据比例的基本性质,先把比例式转化成等式4x=3×36,再根据等式的性质,在方程两边同时除以4得解;(2)根据比例的基本性质,先把比例式转化成等式1.8x=24×6,再根据等式的性质,在方程两边同时除以1.8得解;(3)根据比例的基本性质,先把比例式转化成等式1.5x=6×2,再根据等式的性质,在方程两边同时除以1.5得解.解答:解:每一道题都设要求的数为x:(1)4:3=36:x,4x=3×36,4x÷4=108÷4,x=27;(2)24:x=1.8:6,1.8x=24×6,1.8x÷1.8=144÷1.8,x=80;(3)6:1.5=x:2,1.5x=6×2,1.5x÷1.5=12÷1.5,x=8.故答案为:27,80,8.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.13.解比例::=X:24X:=:0.6.考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:(1)x=24×,x=9,解得x=10;(2)0.6x=×,0.6x=,解得x=;(3)4x=5.2×6.5,4x=33.8,解得x=8.45;(4)0.6x=1.2×4,0.6x=4.8,解得x=8.点评:本题主要考查解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.14.(•金寨县模拟)甲数比乙数少,甲数和乙数的比是2:9.考点:解比例.分析:甲数=(1﹣)×乙数,依此可求甲数与乙数的比.解答:解:甲数和乙数的比=(1﹣):1=2:9.故答案为:2:9.点评:考查了求比的问题,解题的关键是将乙数看作单位1,依此得到甲数.15.如果x:=0.15:2.5,那么x=0.048.考点:解比例.专题:比和比例.分析:根据比例的基本性质变为:2.5x=×0.15,然后化简,再在方程的两边同时除以2.5求解.解答:解:x:=0.15:2.52.5x=×0.152.5x=0.122.5x÷2.5=0.12÷2.5x=0.048故答案为:0.048.点评:本题考查了利用比例的基本性质解比例.16.能与:组成比例的比是B、CA.2:3B.9:6C.:D.:.考点:解比例.分析:先化简:,再分别计算各选项,与:进行比较,比值相等的即为所求.解答:解::=3:2.A、因为2:3≠3:2,所以不能组成比例,故选项错误;B、因为9:6=3:2,所以能组成比例,故选项正确;C、因为:=3:2,所以能组成比例,故选项正确;D、因为:=2:3≠3:2,所以不能组成比例,故选项错误.故选:B和C.点评:本题考查了比例线段的定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.17.在横线里填上适当的数.5:4=30:241.5:0.18=150:188:15=24:4536:12=9:30.9:0.5=9:5.考点:解比例.专题:比和比例.分析:设未知数为x,列出比例,根据比例的基本性质,两外项之积等于两内项之积,求出未知数即可.解答:解:(1)5:4=x:244x=5×244x÷4=5×24÷4x=30;(2)1.5:0.18=x:180.18x=1.5×180.18x÷0.18=1.5×18÷0.18x=150;(3)8:15=24:x8x=15×248x÷8=15×24÷8x=45;(4)36:12=9:x36x=12×936x÷36=12×9÷36x=3;(5)x:0.5=9:55x=0.5×95x÷5=0.5×9÷5x=0.9.故答案为:30,150,45,3,0.9.点评:此题主要是考查解比例,解比例与解方程类似,要注意书写格式.解比例的依据是比例的基本性质及等式的性质.三.解答题(共11小题)18.计算:4:5=(χ+5):10.考点:解比例.专题:简易方程.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:4:5=(x+5):104×10=5×(x+5)40=5x+255x=40﹣25x=15÷5x=3.点评:掌握比例的基本性质是解题的关键.19.解比例.(1)6:15=x:20(2):x=3:8(3):=:x(4)=(5)x:15=1:2.4(6)8:x=3:1.考点:解比例.专题:比和比例.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:(1)6:15=x:2015x=6×2015x÷15=120÷15x=8(2):x=3:83x=3x÷3=6÷3x=2(3)x=(4)0.75x=0.5×60.75x÷0.75=3÷0.75x=4(5)x:15=1:2.42.4x=1×152.4x÷2.4=15÷2.4x=6.25(6)8:x=3=8×x=3点评:掌握比例的基本性质是解题的关键.20.求未知数x的值.:0.05=1:x x﹣1=x+x+x+x+x.考点:解比例;方程的解和解方程.专题:用字母表示数.分析:(1)根据比例的基本性质转化为x=×,再根据等式的基本性质,方程的两边同除以即可;(2)先计算x+x+x+x+x=x,再根据等式的基本性质,方程的两边同x,再加上1即可.解答:解::0.05=1:x,x=×,x÷=×÷,x=;(2)x﹣1=x+x+x+x+x,x﹣1=x,x﹣1﹣x=x﹣x,x﹣1=0,x﹣1+1=0+1,x=1,x=32.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.21.解方程.X:1.2=3:4=30%X﹣X=.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例的基本性质:两内项之积等于两外项之积可得4x=1.2×3,再利用等式的性质两边同时除以4即可解答;(2)可以写成x:4=3:10,根据比例的基本性质:两内项之积等于两外项之积可,10x=4×3,再利用等式的性质两边同时除以10即可解答;(3)先把左边计算出来得:x=,再利用等式的性质,两边同时乘,即可解答.解答:解:(1)x:1.2=3:4,4x=1.2×3,4x÷4=3.6÷4,x=0.9,(2)=30%,x:4=3:10,10x=4×3,10x÷10=12÷10,x=1.2,(3)x﹣x=,x=,x×=×,x=2.点评:此题考查了利用比例的基本性质解比例和利用等式的性质解方程的方法.22.一个数和的比等于8和1.6的比,求这个数.考点:解比例.分析:根据题意可以设这个数为x,组成比例,解比例即可.解答:解:设这个数为x.x:=8:1.61.6x=×8x=×8÷1.6x=4答:这个数是4.点评:此题主要考查解比例的方法.23.(•河池)求未知数x的值.(1):x=:8(2)1.7x﹣0.4x=3.9.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例基本性质,两内项之积等于两外项之积化简方程,再依据等式的性质,方程两边同时除以求解,(2先化简方程,再依据等式的性质,方程两边同时除以1.3求解.解答:解:(1):x=:8,x=×8,x=,x=4;(2)1.7x﹣0.4x=3.9,1.3x=3.9,1.3x÷1.3=3.9÷1.3,x=3.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解答时注意对齐等号.24.(•东莞市模拟)求x的值.6x﹣0.5×5=9.5:x=:0.75考点:解比例;方程的解和解方程.专题:简易方程.分析:①根据比例的性质变成x=×,再根据等式的性质,方程的两边同时除以即可;②6x﹣0.5×5=9.5,先计算0.5×5=2.5,再根据等式的性质,方程的两边同时加上2.5,再除以6即可;解答:解:①:x=:0.75,x=×,x=,x÷=÷,x=;②6x﹣0.5×5=9.5,6x﹣2.5=9.5,6x﹣2.5+2.5=9.5+2.5,6x=12,6x÷6=12÷6,x=2.点评:此题考查根据等式的性质和比例的性质解比例和解方程的能力,注意等号对齐.25.解比例:8:20=7.6:x.考点:解比例.专题:比和比例.分析:根据比例的基本性质,先把比例式转化成等式8x=20×7.6,再根据等式的性质,在方程两边同时除以2.5得解.解答:解:8:20=7.6:x8x=20×7.68x=1528x÷8=152÷8x=19.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.26.解方程.(1)4.2:x=25(2)3.6x:=3.5(3)x:=(4)x:0.25=4.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质,两内项之积等于两外项之积,方程可化为25x=4.2,再依据等式的性质,两边同除以25即可求解;(2)根据比例的基本性质,两内项之积等于两外项之积,方程可化为3.6x= 3.5,再依据等式的性质,两边同除以3.6即可求解;(3)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=×,化简计算即可;(4)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=0.25×4,化简计算即可;解答:解:(1)4.2:x=2525x=4.225x÷25=4.2÷25x=0.168(2)3.6x:=3.53.6x= 3.53.6x÷3.6=1.75÷3.6x=0.486(3)x:=x=×x=(4)x:0.25=4x=0.25×4x=1点评:本题主要考查运用等式的性质以及比例的基本性质解方程的能力,注意等号对齐.27.解方程或解比例:8x÷(1.8÷3)=1.5.:=:(4﹣x)考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)先化简方程的左边,变成8x÷0.6=1.5,然后方程的两边同时乘上0.6,再同时除以8即可;(2)根据比例的基本性质,把方程变成×(4﹣x)=×,然后方程的两边同时除以,再同加上x,最后同时减去即可.解答:解:(1)8x÷(1.8÷3)=1.58x÷0.6=1.58x÷0.6×0.6=1.5×0.68x=0.98x÷8=0.9÷8x=0.1125;(2):=:(4﹣x)×(4﹣x)=××(4﹣x)÷=÷4﹣x=4﹣x+x=+xx+﹣=4﹣x=3.点评:本题考查了根据比例的基本性质以及等式的性质解方程的方法,计算时要细心,注意把等号对齐.28.求未知数x(1)6.5:x=314:4(2)8(x﹣2)=2(x+7)考点:解比例;方程的解和解方程.专题:简易方程;比和比例.分析:(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以314即可;(2)先化简方程,再根据等式的性质,在方程两边同时减2x,加16,再同时除以6求解.解答:解:(1)6.5:x=314:4314x=6.5×4314x÷314=26÷314x=;(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16+16﹣2x=2x+14﹣2x+166x=306x÷6=30÷6x=5.点评:此题考查了根据等式的性质解方程,即等式两边同时加、减、乘同一个数或除以同一个不为0的数,等式的左右两边仍相等;注意等号上下要对齐.B档(提升精练)一.选择题(共14小题)1.当x=()时,的比值恰好是最小的质数.A.B.C.考点:解比例.专题:比和比例.分析:最小的质数是2,所以可得的一个等式:=2,根据比与除法的关系即比的前项相当于除法的被除数,比的后项相当于除法的除数,比值相当于除法的商,然后再进行计算得到答案.解答:解;=2x=÷2,x=,答:当x=时,的比值恰好是最小的质数.故选:C.点评:解答此题的关键是确定比与除法之间的关系,然后再进行计算即可.2.解比例是根据()A.比的基本性质B.比例的基本性质C.比例的意义.考点:解比例.专题:比和比例.分析:解比例是求比例的解的过程,即先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以根据的是比例的基本性质.据此即可判断.解答:解:解比例是先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以解比例是根据比例的基本性质.故选:B.点评:本题考查了解比例的依据,明确解比例的定义是关键.3.如果3:5=x:2,那么x应该是()A.B.C.D.考点:解比例.专题:比和比例.分析:根据比例的性质,可得5x=3×2,再利用等式的性质两边同时除以5,即可得出x=,据此即可选择.解答:解:3:5=x:2,5x=3×2,5x÷5=6÷5,x=.故选:A.点评:熟练运用比例的基本性质,掌握比例式和等式的转化.4.解比例:=2:1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.解答:解:=2:1x:3=2:1x=6.故选:A.点评:此题考查了比例的基本性质和等式的性质的应用.5.解比例的根据是()A.比的基本性质B.比例的基本性质C.分数的基本性质考点:解比例.分析:首先要知道什么是解比例,然后分析每个选项,看哪一个最适合用来作为解比例的根据.解答:解:因为求比例的解的过程,叫做解比例.所以选项A:比的基本性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变.”不能作为解比例的根据.选项B:比例的基本性质“两外项之积等于两内项之积”可以作为解比例的根据.选项C:分数的基本性质“分子和分母同时扩大或缩小相同的倍数,分数值不变.”也不能作为解比例的根据.故选B.点评:做这道题的关键是分清比、分数和比例的基本性质.6.(X﹣0.1):0.4=0.6:1.2 则X=()A.X=0.3B.X=0.9C.X=0.8考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质求解.解答:解:(X﹣0.1):0.4=0.6:1.2,(X﹣0.1)×1.2=0.6×0.4,(X﹣0.1)×1.2÷1.2=0.24÷1.2,X﹣0.1=0.2,X﹣0.1+0.1=0.2+0.1,X=0.3.故选:A.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号.7.x=是比例()的解.A.2.6:x=1:8B.3:6=x:8C.:x=考点:解比例.专题:比和比例.分析:根据比例的基本性质,把x=代入各选项即可判断.解答:解:A、把x=代入2.6:x=2.6:=52:25,52:25≠1:8,所以把x=不是2.6:x=1:8的解;B、把x=代入x:8=:8=5:32,3:6≠5:32,所以把x=不是3:6=x:8的解;C、把x=代入:x=:=2:1,:=2:1,所以把x=是:x=:的解.故选:C.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力.8.(•荔波县模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A.成反比例B.成正比例C.不成比例考点:解比例.专题:压轴题.分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解答:解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.9.已知:x=0.2:0.3,则x的值为()A.B.C.3考点:解比例.专题:比和比例.分析:先根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.2求解.解答:解::x=0.2:0.3,0.2x=0.3×,0.2x=0.15,0.2x÷0.2=0.15÷0.2,x=,故选:A.点评:解答本题的关键是依据比例基本性质求解.解答时注意对齐等号.10.用4,0.8,5和x组成比例,并解比例,x有()种不同的解.A.1B.2C.3D.4考点:解比例.专题:比和比例.分析:根据比例的基本性质,4,0.8,5和x,组成比例的情况有12种,两内项之积等于两外项之积,这四个数可写成三个等式.据此解答.解答:解:根据分析知,4,0.8,5和x组成比例的情况有12种:(1)5:0.8=x:4,0.8:5=4:x,0.8:5=4:x,4:0.8=x:5,它们变形后都能写成0.8x=5×4,解相同.同理也有四个比例式变形后写成5x=4×0.8,和4x=5×0.8.故选:C.点评:本题考查了学生根据比例的基本性质解答问题的能力.11.解比例30:x=2:0.1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以2求解.解答:解:30:x=2:0.1,2x=30×0.1,2x÷2=3÷2,x=1.5,故应选:B.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.12.x=1.25是哪个比例的解?()A.2.6:x=6:3B.3:6=x:8C.:x=:考点:解比例.专题:简易方程.分析:把三个选项中的比例式,依据等式的性质,以及比例的基本性质,求出方程的解,再与x=1.25比较即可解答.解答:解:在选项A中:2.6:x=6:36x=2.6×36x÷6=7.8÷6x=1.3;在选项B中:3:6=x:86x=3×86x÷6=24÷6x=4;在选项C中::x=:x=x=x=1.25故选:C.点评:依据等式的性质,以及比例的基本性质,求出选项中各方程的解,是解答本题的关键.13.若已知2:3=(5﹣x):x,那么x等于()A.2B.3C.4D.6考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时加3x,最后同时除以5求解.解答:解:2:3=(5﹣x):x,15﹣3x=2x,15﹣3x+3x=2x+3x,15÷5=5x÷5,x=3.故选:B.点评:本题考查知识点:依据等式的性质,以及比例基本性质解方程.14.如果和相等,则m等于()A.B.C.D.考点:解比例.专题:比和比例.分析:依据题意可列比例式:=,先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以18即可求解.解答:解:=,18m=11×12,18m÷18=132÷18,m=,m=7.故答案为:A.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.二.填空题(共14小题)15.(•新干县)若a与b互为倒数,且=,那么x=.√.(判断对错)考点:解比例.专题:比和比例.分析:若a与b互为倒数,且=,根据比例的基本性质可得:5x=ab=1,那么x=.解答:解:=,根据比例的基本性质可得:5x=ab=1,那么x=;故答案为:√.点评:此题考查了比例的基本性质的运用.16.(•东莞模拟)如果ҳ:=:,那么ҳ=.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项.解答:解:ҳ:=:,X=×,X=,X=.故答案为:.点评:此题考查比例性质的运用即解比例.17.(•铁山港区模拟)下面表格中,如果x与y成正比例,“?”是32:如果x和y成反比例,“?”是8X16?y4896考点:解比例.专题:比和比例.分析:(1)如果x与y成正比例,由正比例的意义可得16:48=?:96,把?看作未知数,根据比例的基本性质进行解比例即可;(2)如果x和y成反比例,由反比例的意义可得96?=16×48,把?看作未知数,根据等式的性质进行解方程即可.解答:解:根据题意可得:(1)16:48=?:96,48?=16×96,48?=1536,48?÷48=1536÷48,?=32;所以,如果x与y成正比例,“?”是32;(2)96?=16×48,96?=768,96?÷96=768÷96,?=8;所以,如果x和y成反比例,“?”是8.故答案为:32,8.点评:本题主要考查正反比例的意义,然后根据题意列出比例或方程再进一步解答即可.18.(•沿河县模拟)根据比例关系填表:x43918152y601024考点:解比例.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为24×15=360(一定)所以xy成反比例关系.360÷4=90,360÷3=120,360÷60=6,360÷9=40,360÷10=36,360÷18=20,360÷2=180.x43693618152y901206040102024180点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.(•靖江市)如果x与y成正比例,那么表中的△是 4.5;如果x与y成反比例,那么△是2.x3△y120180考点:解比例.专题:比和比例.分析:(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两个比的比值相等列比例,并解比例即可;(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两个比的乘积相等列方程,并解方程即可.解答:解:(1)3:120=x:180,120x=3×180,120x÷120=540÷120,x=4.5;(2)180x=3×120,180x=360,180x÷180=360÷180,x=2;故答案为:4.5,2.点评:此题考查根据正、反比例的意义,解答时要根据已知两种相关联的量,看比值一定还是积一定.20.(•广州模拟)0.4:x=1:10.考点:解比例.分析:根据比例的基本性质,把原式转化为x=0.4×10,再根据等式的性质,在方程两边同时乘上求解,解答:解:0.4:x=1:10,x=0.4×10,x×=4×,x=.点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力.21.(•广州模拟)6:2.8=2.4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为6x=2.8×2.4,再根据等式的性质,在方程两边同时除以6求解.解答:解:6:2.8=2.4:x,6x=2.8×2.4,6x÷6=6.72÷6,x=1.12.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.22.(•江宁区模拟)如果A与B成正比例,那么“?”是 3.2;如果A与B成反比例,那么“?”是5.A4?B200160考点:解比例.分析:这一题可由正比例的意义和反比例的意义解答即可.解答:解:(1)A与B成正比例,△,x=3.2;(2)A与B成反比例,160x=4×200,x=5;故答案为:3.2,5.点评:此题考查了对正比例与反比例意义的理解以及应用的能力,要灵活掌握正反比例的公式.23.(•广州模拟):=4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时乘上求解.解答:解::=4:x,,,x=.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.。

数学比和比例的应用试题

数学比和比例的应用试题

数学比和比例的应用试题1.地质考察员发现一种锡矿石每100千克含锡65千克,则这种锡矿石5000千克含锡()千克.A.3250B.3210C.3520D.6120【答案】A【解析】先用“65÷100”计算出每1千克锡矿石含锡多少千克,进而根据求几个相同加数和的简便运算,用乘法进行解答即可.解:5000×(65÷100),=5000×0.65,=3250(千克);答:这种锡矿石5000千克含锡3250千克.故选:A.点评:解答此题的关键是计算出1千克锡矿石含锡多少千克,进而根据整数乘法的意义,用乘法进行解答.2.下面说法正确的是()A.2和37都是质数,又是互质数B.如果m:8=5:n,那么m和n成正比例C.a、b、c都是自然数,且a>b>c,则>D.一个直角三角形中,最大内角与最小内角的比是3:1,最小内角是30度【答案】A、D【解析】A,根据互质数的意义,公因数只有1的两个数叫做互质数,如果两个数都是质数,那么这两个数一定是互质数.所以2和37都是质数,又是互质数.此说法正确.B,根据比例的基本性质,m:8=5:n,则mn=8×5,积一定,所以mn成反比列.C,根据分数大小比较的方法,设a、b、c分别为3、2、1,a+b=3+2=5,a+c=3+1=4,则,,所以.D,三角形内角和是180°,直角是90°,两个锐角的和是90°,已知最大内角与最小内角的比是3:1,也就是最小的内角是90°的,90°×=30°.所以一个直角三角形中,最大内角与最小内角的比是3:1,最小内角是30度.此说法正确.解:根据分析可知:上面四种说法正确的是:A,2和37都是质数,又是互质数.D,一个直角三角形中,最大内角与最小内角的比是3:1,最小内角是30度.故选:A、D.点评:此题考查的目的是理解互质数的意义、正、反比列的意义,掌握分数大小比较的方法、三角形的内角和是180°,3.计算第四部分面积:第一部分面积为20平方米,第二部分面积为50平方米,第三部分面积为40平方米.【答案】100【解析】根据图得出第一部分的面积比第三部分的面积等于第二部分的面积与第四部分的面积,由此列出比例解答即可.解:设第四部分的面积为x平方米,20:40=50:x,20x=40×50,x=,x=100,答:第四部分的面积是100平方米.点评:关键是根据题意得出哪两个面积的比是相等的,进而列出比例解答即可.4.某养兔专业户养了白、黑和灰三种颜色的兔、白兔和只数占总支数的,黑兔与灰兔只数的比是3:5,已知黑兔比灰兔少64只.三种兔各养了多少只?【答案】白兔有144只,黑兔有96只,灰兔有160只.【解析】因为黑兔与灰兔只数的比是3:5,所以黑兔比灰兔少5﹣3=2份,是64只,用64除以2就可以求出每一份的只数,再分别乘黑兔和灰兔的份数就可以求出灰兔和黑兔的只数;又因为白兔的只数占总只数的,则灰兔和黑兔共占总数的(1﹣),用黑兔和灰兔的总只数除以所占的分率即可求出兔的总只数,再乘就是白兔的只数.解:64÷(5﹣3),=64÷2,=32(只);所以黑兔有:32×3=96(只);灰兔有:32×5=160(只);白兔有:(160+96)÷(1﹣)×,=256÷×,=144(只).答:白兔有144只,黑兔有96只,灰兔有160只.点评:解决本题的关键是根据黑兔和灰兔的数量差求出每一份的只数;再根据所占的总只数的分率求出总数.5.把一根绳子按5:2截成甲、乙两段,甲段比乙段长2.4米,乙段长几米?【答案】1.6【解析】由题意得把一根绳子平均分成5+2=7份,甲段是5份,乙段是2份,甲比乙多5﹣2=3份,是 2.4米,进而可以求出一份的长度,再用乙段所占份数乘每份的长度就可以求出乙的长度.解:2.4÷(5﹣2),=2.4÷3,=0.8(米),乙:0.8×2=1.6(米);答:乙段长1.6米.点评:此题主要考查比的灵活运用,关键是通过两段长度之差除以对应的份数的差求出每份的长度.6.甲书架上的书是乙书架上的4:7,两个书架上各增加55本后,甲书架上的书与乙书架上的书的比是5:6,甲、乙两书架上原来各有多少本书?【答案】20;35【解析】根据“甲书架上的书是乙书架上的4:7”,假设甲书架上的书有4x本,则乙书架上有7x 本,“两个书架上各增加55本后”,甲的本书是4x+55,乙的本书是7x+55本,此时根据“甲书架上的书与乙书架上的书的比是5:6”列出比例式,根据比例的基本性质,找到等量关系,解方程,即可得解.解:假设甲书架上的书有4x本,则乙书架上有7x本,根据题意,得:(4x+55):(7x+55)=5:6,(4x+55)×6=(7x+55)×5,24x+55×6=35x+55×5,(35﹣24)x=55(6﹣5),11x=55,x=55÷11,x=5,4×5=20,7×5=35,答:甲书架上原来有20本书,乙书架上原来有35本书.点评:解答此题的关键是弄清楚两个比的不同含义,找出等量关系,即可列方程求解.7.已知甲:乙=2:5;乙:丙=4:7,而且甲+乙+丙=126,求甲、乙、丙各是多少?【答案】甲、乙、丙各是16、40、70.【解析】先求甲、乙、丙三个数的连比,再按比例分配解答即可.解:甲:乙:丙=(2×4):(5×4):(7×5)=8:20:35,126×=16,126×=40,126×=70;答:甲、乙、丙各是16、40、70.点评:此题解答关键是利用比的基本性质先求三个数的比,再按比例分配解答.8.甲、乙两人每天共做56个机器零件,如果甲、乙工作效率的比是3:5,甲、乙两人每天各做多少个零件?【答案】甲每天做21个,乙每天做35个.【解析】由“甲、乙工作效率的比是3:5”可求得每人占两人总效率的几分之几,也就是占总工作量的几分之几,再根据按比例分配的方法解答.解:56×=21(个),56×=35(个).答:甲每天做21个,乙每天做35个.点评:此题考查了学生对按比例分配方法的掌握与运用.9.学校装修多媒体教室,如果用面积为64平方分米的方砖铺地,需要162块.请你帮忙计算一下,如果改用面积为81平方分米的方砖铺地,需要多少块?(用比例方法解)【答案】128【解析】因为地板的总面积一定,所以每块砖的面积和块数成反比例,即砖的块数与砖的面积的乘积相等.据此列出等量关系式解答即可.解:设需要x块面积为81平方分米的方砖.81x=64×162,x=64×162÷81,x=128;答:如果改用面积为81平方分米的方砖铺地,需要128块.点评:在用比例解决问题时,首先要先据题意确定不变量,然后再据不变量列出等量关系式.10.货车速度与客车速度比是3:4,两车同时从甲乙两站相对行驶,在离中点6千米处相遇,当客车到达甲站时,货车离乙站还有多远?【答案】21【解析】两车在离中点6千米处相遇,那么客车就比货车多行驶6×2=12千米,把两地间的距离看作单位“1”,货车速度与客车速度比是3:4,依据时间依据路程和速度成正比可得:两车行驶的路程比是3:4,先求出客车比货车多行驶路程占总里程得房率,也就是12千米占总里程的分率,依据分数除法意义,求出两地间的距离,最后依据分数乘法意义即可解答.解:3+4=7,(6×2)÷(﹣)×(1﹣),=12×,=84×,=21(千米);答:货车离乙站还有21千米.点评:解答本题的关键是求出两地间的距离,解答的依据是分数乘法意义,以及分数除法意义.11.一种农药是把药粉和水按1:99的比例配合而成的,要配制这种农药200千克,需要药粉多少千克?396千克的水能配制这种农药多少千克?【答案】药粉2千克,400千克.【解析】根据比与分数的关系知:药粉就占了这种农药的,农药是200千克,农药的千克数已知用乘法计算,根据题意知水就占了这种家药的,不有396千克,求农药的千克数,用除法计算.解:需要药水:200×=2(千克),可配制的农药:396÷=400(千克).答:要配制这种农药200千克,需要药粉2千克,396千克的水能配制这种农药400千克.点评:本题的关键是根据比与分数的关系,求出水和药粉各占了农药的几分之几,再根据分数乘法和分数除法的意义列式解答.12.盐与水的比是2:99,297千克水可以配置多少千克的盐水呢?【答案】303【解析】由题意可知:需要2份的盐,就需要99份的水,总份数是2+99=101份;297千克水,其中水占盐水的,根据已知一个数的几分之几是多少,求这个数,用除法解答.解:2+99=101,297=303(千克);答:可以配置303千克的盐水点评:此题属于按比例分配问题,解答关键是求出总份数,把比转化成分率,根据已知一个数的几分之几是多少,求这个数,用除法解答.13.李惠家8月份共缴纳水费、电费、煤气费140元,其中电费占整个费用的,水费与煤气费的比是1:3,李惠家水费、电费、煤气费各付多少元?【答案】水费15元、电费80元、煤气费45元.【解析】其中电费占总费用的,则水费与煤气费占总数的1﹣=,由于水费与煤气费的比是1:3,则水费占三者总数的×,煤气费×,由此根据分数乘法的意义即能求.解:电费为:140×=80(元);水费为:140×(1﹣)×,=140××,=15(元);煤气费为:140×(1)×,=140××,=45(元).答:李惠家8月份共缴纳水费15元、电费80元、煤气费45元.点评:解答此题的关键是求出水费、电费和煤气费占总数的分率,再根据分数乘法的意义解答即可.14.小伟和小英给希望工程捐款的钱数比是7:8,两人共捐款75元.小伟和小英各捐款多少元?【答案】小伟捐款35元,小英捐款40元.【解析】要求小伟和小英各捐款多少元,根据小伟和小英捐款钱数的比是7:8,知道捐款总数为75元,小伟捐款为总数的,小英捐款为总数的,然后根据一个数乘分数的意义即可求出.解:75×=35(元),75×=40(元),答:小伟捐款35元,小英捐款40元.点评:此题属于典型的按比例分配应用题,做题时应明确每一个人捐款的钱数分别占总钱数的几分之几,然后根据一个数乘分数的意义即可解决问题.15.王大伯计划在工作上640平方米的塑料大棚内种白菜、黄瓜和西红柿,白菜种植面积占全部面积的,黄瓜和西红柿种植面积的比是5:3,三种蔬菜各种了多少平方米?【答案】白菜种植了160平方米,黄瓜种植了300平方米,西红柿种植了180平方米.【解析】先依据分数乘法意义,求出白菜种植面积,再求出黄瓜和西红柿种植面积,最后按照按比例分配方法即可解答.解:640﹣640×,=640﹣160,=480(平方米),5+3=8,480×=300(平方米),480×=180(平方米),答:白菜种植了160平方米,黄瓜种植了300平方米,西红柿种植了180平方米.点评:本题考查知识点:(1)正确运用分数乘法意义解决问题,(2)能正确理解并掌握按比例分配方法.16.一个电视机厂五月份生产的彩色电视机与数码电视机的比是5:4,现生产的彩色电视机有4500台,生产的数码电视机有多少台?【答案】3600【解析】由“彩色电视机与数码电视机的比是5:4”可知:数码电视机的台数=彩色电视机的台数×,彩色电视机的台数已知,代入关系式即可求出数码电视机的台数.解:4500×=3600(台);答:生产的数码电视机有3600台.点评:解答此题的关键是得出:数码电视机的台数=彩色电视机的台数×,问题即可得解.17.有84个红气球,其中红气球和黄气球的比是7:5,黄气球有多少个,(用比例的知识解答)【答案】60【解析】根据题意可知红气球和黄气球的份数比是7:5,其中红气球的具体数量是84,设黄气球有x个,由此列式为:84:x=7:5,然后解答即可.解:设黄气球有x个,84:x=7:5,x=,x=60;答:黄气球有60个.点评:本题还可以把红气球和黄气球的比是7:5,转化为黄气球是红气球的,然后根据分数乘法的意义来解答:84×=60(个).18.一种药水是按药粉和水的比1:5000配制成的.现在用药粉30克配制成这样的药水,需要加水多少千克?(用比例解)【答案】150【解析】根据一种药水是按药粉和水的比1:5000配制成的,知道药粉和水的比是1:5000,此比值一定,所以药粉与水的克数成正比例,由此列出比例解决问题.解:设需要加水x克,1:5000=30:x,x=30×5000,x=150000,150000克=150千克,答:需要加水150千克.点评:解答此题的关键是,判断哪两种相关联的量成何比例,由此列出比例解决问题,注意本题的单位的换算.19.如图,已知线段AB的长为2.8cm.(1)用直尺和圆规按所给的要求作图:点C在线段BA的延长线上,且CA=AB;(2)在上题中,如果在线段BC上有一点M,且线段AM、BM长度之比为1:3,求线段CM的长.【答案】(1)(2),CM长1.4cm或3.5cm.【解析】(1)根据题意画,延长BA至C,使CA=2.8cm,(2)如果在线段BC上有一点M,且线段AM、BM长度之比为1:3,点M在线段BC的情况有两种,一种是M在线段AB上,另一种是在线段BC上,据此解答.解:(1)(2),或,因为CA=AB,AB=2.8cm,所以CA=2.8cm,①当点M在线段AC上时,设AM=x,则BM=3x,3x﹣x=2.8,2x=2.8,2x÷2=2.8÷2,x=1.4;所以CM=CA﹣AM=2.8﹣1.4=1.4(cm);②当点M在线段AB上时,设AM=x,BM=3x,x+3x=2.8,4x=2.8,4x÷4=2.8÷4,x=0.7;CM=CA+AM=2.8+0.7=3.5(cm);答:CM长1.4cm或3.5cm.点评:本题考查了学生画图,以及画图中有两种情况时如何来解答的能力.20.有两筐苹果,第二筐比第一筐少,从第二筐拿走4.2千克后,第一筐与第二筐的比是8:5,第一筐苹果比原来第二筐苹果多多少千克?【答案】8.4千克.【解析】由图意可知:设第一框苹果的重量为x千克,则第二框苹果的重量为(1﹣)x千克,再据“第一框苹果的重量:(第二框苹果的重量﹣4.2)=8:5”即可解比例求解.解:设第一框苹果的重量为x千克,则第二框苹果的重量为(1﹣)x千克,x:[(1﹣)x﹣4.2]=8:5,x:(x﹣4.2)=8:5,8×(x﹣4.2)=5x,6x﹣33.6=5x,x=33.6;33.6×=8.4(千克);答:第一筐苹果比原来第二筐苹果多8.4千克.点评:解答此题的关键是:分析题意,找出等量关系,于是列比例即可求解.21.六年一班的男生与女生的人数比是8:7,又转来2名男生后,男生与女生的人数比是9:7.六年一班原来有多少人?【答案】30【解析】根据“男生与女生的人数比是8:7,”知道男生占女生的,再由“男生与女生的人数比是9:7,”知道男生是女生的,现在比原来多了女生的(﹣),由此用2除以(﹣)求出女生的人数,进而求出原来六年一班的人数.解:女生的人数:2÷(﹣),=2,=14(人),六年一班原来有的人数:14÷7×(8+7),=2×15,=30(人),答:六年一班原来有30人.点评:此题解答的关键是抓住女生人数这个不变的量,把它作为单位“1”,找出2对应的分数,用除法列式求出单位“1”,进而求出答案.22.一个工厂女工和男工的人数比是7:8,其中男工56人,女工有多少人?【答案】49【解析】女工和男工的人数比是7:8,也就是说女工人数是男工的人数,由此列式解答即可.解:56×=49(人);答:女工有49人.点评:此题也可以列比列解答,设女工有x人,列比例式为:x:56=7:8,解这个比例即可.23.修一条路已修全长的60%,如果再修48米,这是已修与未修的比是7:2,这条路的是多少米?【答案】这条路的是30米【解析】如果再修48米,这是已修与未修的比是7:2,即此时已修的与未修的比是,则这48米占全长的﹣60%,所以,这条路全长是48÷(﹣60%)米,则它的是48÷(﹣60%)×米.解:48÷(﹣60%)×=48÷(﹣)×,=48÷×,=30(米).答:这条路的是30米.点评:首先根据再修48米后,已修与未修的比是7:2,求出已修的与未修的占全部的分率是完成本题的关键.24.有两袋大米,分给甲、乙、丙三人吃,甲吃总数的,乙吃的千克数与丙的比是3:2.第二袋大米是第一袋的,如果从第一袋取出18千克给第二袋,那么两袋大米的重量相等.甲、乙、丙三人各吃大米多少千克?【答案】甲、乙、丙三人各吃大米176千克、132千克、88千克【解析】根据题意,第一袋比第二袋大米多18×2千克,由“第二袋大米是第一袋的”,求出第一袋大米的重量为:18×2÷(1﹣)=216(千克),再求出第二袋大米的重量:216×=180(千克).那么甲吃:(216+180)×=176(千克);然后根据“乙吃的千克数与丙的比是3:2”,求出乙、丙各吃大米多少千克.解:第一袋大米的重量为:18×2÷(1﹣),=36÷,=216(千克);第二袋大米重:216×=180(千克);两袋共重:216+180=396(千克);则甲吃:396×=176(千克);乙吃:(396﹣176)÷(3+2)×3,=220÷5×3,=132(千克);丙吃:396﹣176﹣132=88(千克).答:甲、乙、丙三人各吃大米176千克、132千克、88千克.点评:此题解答的关键在于求出两袋大米的总重量,再根据“甲吃总数的,乙吃的千克数与丙的比是3:2”,解决问题.25.有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?【答案】新合金中铜和锌的比是1:2【解析】现知道再加入6克锌,熔化后共得新合金36克,可得原合金的克数,又知道原合金铜锌的比,计算出原铜锌的克数,加入锌后再计算,得出新合金铜和锌的比.解:解法一:加入的6克锌相当于新合金的6÷36=,原来的合金是新合金是1﹣=,铜没有变,占新合金的÷(2+3)×2=,新合金中的锌占1﹣=,所以新合金中的铜和锌的比是:=1:2;解法二:原来的合金重36﹣6=30(克),原来的合金每份重30÷(2+3)=6(克),含铜6×2=12(克),含锌6×3=18(克),新合金中的合金比12:(18+6)=,即铜:锌=1:2.答:新合金中铜和锌的比是1:2.点评:第二种解法易于理解,解答此题的关键是找出不变量.26.表比钟每小时快30秒,钟每小时比标准时慢30秒.问表是快还是慢?一昼夜相差多少秒?【答案】表慢了,一昼夜相差6秒【解析】一昼夜为24小时,钟每小时比标准时间慢30秒,那么一昼夜慢了30×24=720秒=12分钟,所以钟一昼夜走了23.8小时,表比钟每小时快30秒,所以表比钟多走了30×23.8=714秒,而钟比标准时间慢了720秒,所以表慢了,一昼夜相差6秒.解:(1)钟一昼夜走了:30×24=720(秒),720秒=0.2小时,24﹣0.2=23.8(小时).(2)表23.8小时多走:30×23.8=714(秒).在24小时内,钟比标准时间慢了720秒,表比钟快了714秒,所以表慢了.一昼夜相差:720﹣714=6(秒)答:表慢了,一昼夜相差6秒.点评:完成本题要注意最后表和钟都要和标准时间相比较.27.慈溪市盐业公司用100吨海水晒制出2千克食用盐,现在晒制出19吨食用盐需要多少吨海水?【答案】需要海水950000吨【解析】根据每千克海水的含盐量是一定的,即海水的质量与含盐的质量的比值一定,由此判断海水的质量与盐的质量成正比例,据此即可列比例求解.解:设需要海水x吨,2千克=0.002吨,100:0.002=x:19,0.002x=100×19,x=1900÷0.002,x=950000;答:需要海水950000吨.点评:根据海水的含盐率一定,判断海水的质量与盐的质量成正比例,注意海水的质量与含盐的质量的单位要统一.28. 100克蜂蜜里含有34.5克葡萄糖.照这样计算,多少克蜂蜜里含有207克葡萄糖?(用比例的方法解)【答案】600克蜂蜜里含有207克葡萄糖【解析】根据蜂蜜里含有葡萄糖的量一定,即蜂蜜的质量与所含的葡萄糖的质量的比值一定,由此得出蜂蜜的质量与所含的葡萄糖的质量成正比例,设出未知数,列出比例解决问题.解:设x克蜂蜜里含有207克葡萄糖;100:34.5=x:207,34.5x=100×207,x=,x=600;答:600克蜂蜜里含有207克葡萄糖.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.29.铺一块地,用边长3dm的方砖要2400块.改用边长2dm的方砖铺,要用多少块砖?(用比例方法解)【答案】要用5400块砖【解析】根据题意知道,每块地的面积一定,每块方砖的面积×方砖的块数=每块地的面积(一定),由此得出每块方砖的面积与方砖的块数成反比例,设出未知数,列方程解决即可.解:设要用x块砖,2×2×x=2400×3×3,4x=2400×9,x=,x=5400;答:要用5400块砖.点评:注意此题是每块方砖的面积与方砖的块数成反比例,注意3dm与2dm是方砖的边长不是方砖的面积.30.一列客车和一列货车同时从甲、乙地相对开出,相遇后两车继续向前行驶,当客车到达乙地,货车到达甲地后,两车立即返回,已知第二次相遇的地点距甲地120千米,客车与货车的速度比是3:2,甲、乙两地相距多少千米?【答案】甲、乙两地相距600千米【解析】第二次相遇时,这时客货两车共行了3个路程,客车与货车的速度比是3:2,因相遇时用的时间相同,时间一定速度和路程成正比例,所以它们行的路程的比是3:2,,客车就行了全路程的(),第二次相遇距甲地120米,就是客车再行120千米就是2个路程,就是全路程的(2﹣)的就是120千米,据此解答.解;120÷(2﹣),=120÷(2﹣),=120÷(2﹣),=120÷,=600(千米).答:甲、乙两地相距600千米.点评:本题的关键是理解第二次相遇时客车再行120米就是2个路程,以及时间一定路程和速度成正比例,客车和货车第二次相遇时行的路程时,两车共行了3个路程,客车行的路程就是().31.一种药水是按药粉和水的比1:2500配制成的.现在用药粉15克配制成这样的药水,需要加水多少千克?【答案】需要加水37.5千克【解析】根据一种药水是按药粉和水的比1:2500配制成的,知道药粉和水的比是1:5000,此比值一定,所以药粉与水的克数成正比例,由此列出比例解决问题.解:设需要加水x克,1:2500=15:x,x=15×2500,x=37500,37500克=37.5千克,答:需要加水37.5千克.点评:解答此题还可以先根据比的知识,用15÷求出配制成的药水的重量,进而用药水的重量减去药粉的重量即可得出所需水的重量.32.王大爷家养鸡和鸭共240只,其中鸡与鸭的比是3:5,王大爷家养鸡和鸭各多少只?【答案】王大爷家养鸡和鸭分别为90只、150只【解析】鸡与鸭的比是3:5,就是鸡的只数是3份,鸭的只数是5份,共3+5=8份,鸡占总份数的,鸭占总份数的,所以求鸡的只数用240×,求鸭的只数用240×解答.解:3+5=8份,鸡的只数:240×=90(只),鸭的只数:240×=150(只),答:王大爷家养鸡和鸭分别为90只、150只.点评:本题是按比例分配的问题,找出总的份数,求出鸡鸭各自占总份数的几分之几,然后按比例分配即可求出.33.(2011•河池模拟)50千克甘蔗可以榨糖6千克,1000千克甘蔗可以榨糖多少千克?【答案】1000千克甘蔗可以榨糖120千克【解析】由题意可知:每千克甘蔗的榨糖量是一定的,则榨糖的量与甘蔗的量成正比,据此即可列比例求解.解:设可以榨糖x千克,则有6:50=x:1000,50x=6×1000,50x=6000,x=120;答:1000千克甘蔗可以榨糖120千克.点评:解答此题的主要依据是:若两个量的商一定,则这两个量成正比,可以列比例求解.34.植树的同学共有720人,已知六年级与五年级人数的比是3:2,六年级比四年级多80人,三个年级参加植树的各有多少人?【答案】四年级参加植树的有220人,五年级有200人,六年级有300人【解析】由题意可知:设四年级的人数为x,则六年级的人数为(x+80),五年级的人数为(x+80)×,又因三个年级的人数总和为720,于是就可以列方程求解.解:设四年级的人数为x,则六年级的人数为(x+80),五年级的人数为(x+80)×,x+x+80+(x+80)×=720,2x+80+x+=720,2x+x=720﹣80﹣,x=,x=220;220+80=300(人),300×=200(人);答:四年级参加植树的有220人,五年级有200人,六年级有300人.点评:解答此题的关键是:用四年级的人数表示出六年级的人数,用六年级的人数表示出五年级的人数.35.一个商场总营业额11.5万元,甲乙柜营业额比为3:2,乙丙柜营业额比为3:4,求甲柜营业额.【答案】甲柜营业额为4.5万元【解析】根据比的性质,把3:2的前后项同乘3变为9:6,把3:4的前后项同乘2变为6:8,再把这两个比写成连比为9:6:8,进而用按比例分配的方法求得甲柜营业额即可.解:甲:乙=3:2=9:6,乙:丙=3:4=6:8,则甲:乙:丙=9:6:8,则甲柜营业额:11.5×=11.5×=4.5(万元);答:甲柜营业额为4.5万元.点评:解决此题关键是把甲、乙两柜营业额的比与乙、丙两柜营业额比,改写成甲、乙、丙三柜营业额的比,再应用按比例分配的方法求得甲柜营业额.36.客、货两车同时从A、B两地相向而行,已知客车行完全程需5小时,当客车行到两地的中点时,货车离中点的路程与客车已行路程的比是1:3.照这样计算,货车行完全程需多少小时?【答案】货车行完全程需7.5小时【解析】根据题意,可以画出下面的线段图:已知货车离中点的路程与客车已行路程的比是1:3,也就是在相同时间内客车与货车所行路程的比是3:2,即客车与货车的速度比是3:2,根据在相同时间内两车所行时间的比等于速度比的反比,已知客车行完全程需5小时,由此求出货车行完全程所需时间.解:根据题意可知,客车的速度:货车的速度=3:2;时间比:客车的时间:货车的时间=2:3;货车行完全程需:5÷2×3=2.5×3=7.5(小时);答:货车行完全程需7.5小时.点评:此题解答关键是根据相同时间内,时间的比等于速度比的反比,由此解决问题.37.(2012•中山模拟)商店运来橘子、苹果和梨一共320千克.橘子和苹果的比是5:6,梨的重量是苹果的.橘子比梨多多少千克?【答案】橘子比梨多80千克【解析】由“橘子和苹果的比是5:6,”把橘子看做5份,则苹果是6份,梨是(6×)份,得橘子比梨多5﹣(6×),根据按比例分配的题目的计算方法,即可解答.解:一份是:320÷[5+6+(6×)]=320÷[11+]=320×=25(千克)橘子比梨橘子比梨:25×[5﹣(6×)]=25×=80(千克)答:橘子比梨多80千克.点评:把分数转化成比,用按比例分配的方法解答.即找准总数,找准把总数分成的总份数,求出一份是多少.38.(2013•广州模拟)荔枝树和龙眼树的比是5:3,荔枝树比龙眼树多40棵,荔枝树和龙眼树各有多少棵?【答案】荔枝树有100棵,龙眼树有60棵【解析】把“荔枝树和龙眼树的比是5:3”理解为荔枝树和龙眼树分别占两种树总棵树的和,进而得出荔枝树比龙眼树多两种树总棵树的(﹣);此时把两种树总棵树看作单位“1”,根据“对应数÷对应分率=单位“1”的量”求出两种树总棵树;继而根据一个数乘分数的意义用乘法解答即可得出结论.解:5+3=8,40÷(﹣),=40÷,=160(棵);荔枝树:160×=100(棵);龙眼树:160×=60(棵);答:荔枝树有100棵,龙眼树有60棵.点评:解答此题的关键是先进行转化,进而判断出单位“1”,根据“对应数÷对应分率=单位“1”的量”求出两种树总棵树;继而根据一个数乘分数的意义用乘法解答即可得出结论.39.修路队计划9天修路360米.照这样计算,这个修路队20天可以修路多少米?【答案】这个修路队20天可以修路800米。

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)1、一条路已修了500米,是未修的2/5,求这条路一共有多长?解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。

列式为:500÷2/7=1750(米)答:略。

2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少千克?分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。

那么这桶油重可以列式求出来:(14-12)÷(1/3—1/5)=2÷2/15=15(千克)那么桶重就是14-15×(1—1/5)=2(千克)或者12-15×(1—1/3)=2(千克)答:略。

3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?分析与解答:已修四天,每天修35米,则已修的是35×4=140米。

已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。

于是就有:(100%—30%)÷2=35%,这35%就是已修的。

到这儿就很好算了。

列式:35×4÷[(100%—30%)÷2]=140÷35%=400 (米)列方程为:解:设这条路全长为X米,则X—35×4—35×4=30%X 或(X—30%X)÷2=35×4答:略。

4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个?分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14×4=56(个)。

这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。

毕业复习应用题(分数、百分数、比和比例、方程)基础+培优

毕业复习应用题(分数、百分数、比和比例、方程)基础+培优

小升初毕业复习分数,比与比例题型汇总独家原创最新最全命中分数基础题题型一:单位一不变1、笑笑读一本故事书,第一天读了全书的40%,第二天读了全书的41,两天共读了52页,这本故事书有多少页?2、工程队修一条路,第一天修了全长的51,第二天修了全长的25%,还剩下154千米没修,这条路全长多少千米?3、水泥厂仓库里有水泥500吨,甲车队一次可以运走总数的12%,乙车队一次可以运走总数 20%。

如果让两个车队一起来运,一次共运走多少吨水泥?题型二:单位一改变4、一本小说,小明第一天看了全书的31,第二天看了剩下的32,还剩下全书的几分之几没看?5、张明看一本120页的故事书,第一天看了全书的41,第二天看了余下的52,第三天应从第几页看起?6、修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?题型三:比一个数几分之几多(少)几7、某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了,增加或减少了百分之几?8、一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变,升高、降低了百分之几?9、小李看了一本书,第一天看了全书的121还少5页,第二天看了全书的151还多3页,还剩206页,这本书共有多少页?10、一筐鸡蛋,第一次取出全部的一半多2个,第二次取出余下的一半少2个,篮子里还剩20个,篮子里原来有鸡蛋多少个?题型四:甲比乙多(少)几分之几11、(2017一中系)甲数比乙数多54,乙数比甲数少()() 12、水结成冰时,冰的体积比水增加 111,当冰化成水时,水的体积比冰减少题型五:总量为不变量。

13、某校六年级有甲、乙两个班,甲班人数是乙班的75,如果从乙班调3人到甲班,甲班人数是乙班人数的54,甲、乙两班原来有多少人?14、有两筐梨。

乙筐是甲筐的35 ,从甲筐取出5千克梨放入乙筐后,乙筐的梨是甲筐的79 。

小学数学比和比例问题知识汇总及解析例题

小学数学比和比例问题知识汇总及解析例题

小学数学知识总结之比和比例应用题【求比的问题】例1 两个同样容器中各装满盐水。

第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4,把这两个容器中的盐水混合起来,则混合溶液中盐与水的比是____。

(无锡市小学数学竞赛试题)则混合溶液中,盐与水的比是:某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降(1994年全国小学数学奥林匹克决赛试题)即:【比例问题】例1 甲、乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是____克。

(1989年全国小学数学奥林匹克初赛试题)例2 甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。

第二次将乙容器中的一部分混合液倒入甲容器。

这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是____升。

(1991年全国小学数学奥林匹克决赛试题)讲析:因为现在乙容器中纯酒精含量为25%,所以,乙容器中酒精与水的比为25%∶(1-25%)=1∶3第一次从甲容器中倒5升纯酒精到乙容器,才使得乙容器中纯酒精与水的比恰好是5∶15=1∶3又甲容器中纯酒精含量为62.5%,则甲容器中酒精与水的比为62.5%∶(1-62.5%)=5∶3第二次倒后,要使甲容器中纯酒精与水的比为5∶3,不妨把从甲容器中倒入乙容器的混合液中纯酒精作1份,水作3份。

那么甲容器中剩下的纯酒精便是11-5=6(升)6升算作4份,这样可恰好配成5∶3。

而第二次从乙容器倒入甲容器的混合液共为1+3=4(份),所以也应是6升。

一.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

六年级比和比例应用题

六年级比和比例应用题

六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。

例如:公式,其中公式是前项,公式是后项,公式是比号。

- 比值是比的前项除以后项所得的商,如公式的比值为公式。

2. 比例的意义- 表示两个比相等的式子叫做比例。

例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。

- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。

如在公式中,公式。

二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。

- 然后计算每份的本数:公式(本)。

- 四年级分得的本数:公式(本)。

- 五年级分得的本数:公式(本)。

- 六年级分得的本数:公式(本)。

2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。

设甲、乙两地的实际距离是公式厘米。

- 可得公式,根据比例的基本性质公式厘米。

- 因为公式千米公式厘米,所以公式厘米公式千米。

3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。

设公式小时行驶公式千米。

- 速度公式路程公式时间,先求出速度为公式(千米/小时)。

- 可列出比例公式,根据比例的基本性质公式,解得公式千米。

- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。

如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。

- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。

- 边长为公式分米的方砖面积为公式平方分米。

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析在小学数学的学习中,比的应用是一个重要的知识点。

尤其是在六年级,我们经常会遇到与比相关的应用题。

本文将对这些题型进行解析,希望能帮助同学们更好地理解和掌握比的应用。

一、定义和概念我们需要理解什么是比。

比是指两个量之间的关系,通常用冒号或斜线表示。

例如,A与B的比是3:2,或者A是B的1.5倍。

二、常见的题型解析1、比例分配问题比例分配问题是比的应用中最常见的一种题型。

例如,有10个苹果,分给A、B、C三个人,要求他们之间的分配比例是2:3:5。

我们需要找出每个人应该得到多少个苹果。

解决这种问题的方法是先找出各个部分占总量的比例,然后按照比例分配。

以这个例子为例,A、B、C三人分别得到的苹果数为:10×(2/(2+3+5))、10×(3/(2+3+5))、10×(5/(2+3+5))。

2、倍数问题倍数问题是比的应用中另一种常见的题型。

例如,A的年龄是B的1.5倍,B的年龄是C的2倍,求A、B、C的年龄关系。

解决这种问题的方法是通过设未知数来找出数量关系。

以这个例子为例,我们可以设A的年龄为x,那么B的年龄就是1.5x,C的年龄就是1.5x/2=0.75x。

这样就可以清楚地看出他们之间的年龄关系。

3、比率问题比率问题是比的应用中另一种常见的题型。

例如,在生产过程中,某产品的合格率是90%,求合格品与不合格品的数量比。

解决这种问题的方法是利用数量关系来计算。

以这个例子为例,假设总产量为100件,那么合格品数量为90件,不合格品数量为10件。

所以合格品与不合格品的数量比为9:1。

三、解题思路和步骤在解决比的应用问题时,我们通常需要遵循以下步骤:1、读懂题目:首先需要认真阅读题目,理解题目中给出的信息和要求。

2、确定关系:根据题目中给出的比例或倍数关系,确定各个量之间的关系。

3、设未知数:如果需要,可以设未知数来帮助解决问题。

4、建立方程:根据题目中的数量关系建立方程。

小学数学 比例应用题(一).教师版

小学数学 比例应用题(一).教师版

工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成
的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的
比是多少?
【考点】比例应用题
【难度】4 星
【题型】解答
【关键词】2007 年,华杯赛,总决赛
【解析】根据题意,如果把 A 工程的工作量看作1,则 B 工程的工作量就是 2 , C 工程的工作量就是 3 .
【例 9】 一项公路的修建工程被平均分成两份承包给甲、乙个工程队建设,两个工程队建设了相同多的
一段时间后,分别剩下 60% 、 40% 的任务没有完成,已知两个工程队的工作效率(建设速度)
之比 3 :1 ,求这两个工程队原先承包的修建公路长度之比.
【考点】比例应用题
【难度】3 星
【题型】解答
【解析】 (法一)甲工程队以 3 倍乙工程队建设速度,仅完成了 40% 的承包任务,而乙工程队完成了 60% ,
一、比和比例的性质
性质 1:若 a: b=c:d,则(a + c):(b + d)= a:b=c:d; 性质 2:若 a: b=c:d,则(a - c):(b - d)= a:b=c:d; 性质 3:若 a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x 为常数) 性质 4:若 a: b=c:d,则 a×d = b×c;(即外项积等于内项积) 正比例:如果 a÷b=k(k 为常数),则称 a、b 成正比; 反比例:如果 a×b=k(k 为常数),则称 a、b 成反比.
9 50
;所以,丙组中男、女会员人数之比为
1 10
:
9 50
5:9

比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)

比例以及比例尺应用题(含答案)篇一:比例尺应用题60题(有答案过程)比例尺应用题专项练习60题(有答案)1.一幅地图的比例尺是1:800000,在一幅地图上量得甲乙两地的距离是2.5厘米,,则甲乙两地的实际距离是多少千米?2.在比例尺是的地图上,测得甲乙两地的距离是8厘米,在另一幅1:4000000的地图上,甲乙两地相距多少厘米?3.在一幅地图上量得北京到沈阳的铁路长5厘米,地图的比例尺是1:7000000,北京到沈阳的铁路实际有多少千米?4.在比例尺是1:100的图纸上,量得一个正方形花坛的边长是10厘米这个花坛的实际面积是多少平方米?5.在比例尺是1:5000的图纸上,量得一个长方形花园的长是10cm,宽是8cm,这个花园的实际面积是多少平方米?6.在比例尺的地图上,量得A、B两地的距离长12厘米,甲乙两车同时从AB两地相对开出,经过4小时两车相遇,已知甲乙两车的速度比是3:2,甲乙两车的速度各是多少千米?7.某县人民政府门前的广场是一个长方形,长180米,宽100米.请你选择一个合适的比例尺,在下边的图纸内画出广场的平面图,并在图上注明长和宽.我设计的比例尺是.8.在比例尺是的地图上,有一段长是40厘米的道路.一辆时速是50千米的汽车走完这段路需要多少分钟?9.北京到上海大约相距1050千米,在比例尺为1:30000000的一幅地图上,量得两地相距多少厘米?10.在一张比例尺是1:5000000的地图上,小明量得北京到上海的距离是28.8cm,已知火车每小时行120千米,姥姥四月三十日晚7:00上车,小明应最晚在什么时候去接站?11.在如图中量出所需的数据(取整厘米数),再计算.A、B两地相距80千米,A、C两地相距多少千米呢?12.在标有比例尺的地图上,量得两地间相距12厘米,一列客车和一列货车从两地同时相向而行,4小时相遇,已知客车与货车的速度比是3:2,客车每小时行驶多少千米.13.在比例尺为1:6000000的中国地图上,量得两地间的距离是10厘米,甲、乙两列火车同时从两地相对开出, 6小时相遇.甲车每小时行55千米,乙车每小时行多少千米?14.金牛与武汉的距离为120km,画在比例尺为1:600000的地图上长度为dm?15.在一幅比例尺是1:2000000的地图上,量得甲、乙两地相距10厘米,一辆汽车从甲地开往乙地,每小时行60 千米,行驶2.5小时后,离乙地还有多远?16.一个零件长0.02厘米,在一幅比例尺是150:1的地图上应画多少厘米?17.在比例尺是1:1000的地图上,量得一块长方形的菜地长5cm,宽6cm,如果在这块菜地的实际面积的上种上菠菜,剩下的按1:5种白菜和萝卜,白菜和萝卜各能种多少平方米?18.用60厘米长的铁丝围成一个直角三角形,三角形三条边的比是3:4:5.求该三角形的面积?19.在比例尺是小时行80km,需要多少小时才能到达?20.一块三角形菜地,底长80m,高60m,画在比例尺是1:500的地图上,面积是多少cm?21.在一幅比例尺是1:6000000的地图上,量得A、B两地间距离是8厘米.一列火车上午9时开始以每小时120 千米的速度从A地开往B地,则下午几时到达B地?22.有一块草地(如图)测出主要数据,标在图上,若这幅图的比例尺是1:1000,算出这块地的实际面积.2的地图上,量的A、B相距25.5cm,一辆汽车由A地去B地,每23.在一幅地图上量得甲乙两地相距1.2厘米.一辆汽车从甲地开往乙地,每小时行45千米,4小时到达,求这幅地图的比例尺.篇二:比例应用题(答案)动脑筋题――比例问题(1)年级姓名一、填空题 1. 4:( )=设4:x=16=( )?10=( )% 2021?y?10?z%,可以求得x=5,y=8, z=80. 202.在3:5里,如果前项加上6,要使比值不变,后项应加 .在3:5里,如果前项加6,前项为3+6=9,即扩大了9?3=3倍,要使比值不变,后项也应扩大3倍,即为5?3=15.后项应增加15-5=10.3.12:1的图纸上,精密零件的长度为6厘米,它的实际长度是毫米.根据:实际距离=图上距离?比例尺.可得:6?(12:1)=0.5(厘米)=5(毫米).4.某生产队有一块正方形菜地,边长120米,在总面积中种植西红柿、南瓜、1茄子面积的比是25:1:,三种蔬菜各种了亩. 2总面积:120?120=14400(平方米) 约为20.4亩、0.8亩、0.4亩5.买甲、乙两种铅笔共210支,甲种铅笔每支价值3分,乙种铅笔每支价值4分,两种铅笔用去的钱相同,甲种铅笔买了支.甲、乙两种铅笔单价之比为3:4,又两种笔用去的单价相同,故甲乙两种铅笔444数之比为4:3.其中甲占总数的即,甲种铅笔数为210??120(支). 74?376.车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是 .因为2:5=4:10,所以4辆车共有10个轮子,如果4辆车全是小卧车,那么轮子数应为16个,比实际多6个.故每4辆车中有摩托车(4?4-10)?(4-2)=3(辆),有小卧车1辆.所以摩托车与小卧车的辆数之比为3:1.1117.自然数A、B满足??,且A:B=7:13.那么,A+B= . AB182111161???设A=7K,B=13K,??,故K=12,从而AB7K13K91K182A+B=20K=240.8.光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人.43?. 二、三年级占全校总数的1-25%=75%,故三年级占全校总数的75%?4?3735一年级比三年级少的40人占全校的?25%?.于是全校有728540??224(人),一年级学生有224?25%=56(人). 289.水泥、石子、黄砂各有5吨,用水泥、石子、黄砂按5:3:2拌制某种混凝土,若用完石子,水泥缺吨.黄砂多吨.33石子占总份数的,即.当石子用5吨时,混凝土共有5?3?210325125??16(吨),因为水泥占总份数的即,那么16吨混凝土中的水1035?3?223211泥应为16??8(吨). 323221?3(吨) 同法可求得16吨混凝土中的黄砂为:16?5?3?2331112水泥缺8?5?3(吨),黄砂多5?3?1(吨). 333310.甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要小时.设甲的速度为每小时行13K米,乙的速度为每小时行11K千米,则两地相距(13K+11K)?0.5=12K千米.甲追上乙需12K?(13K-11K)=6(小时).二、解答题11.已知甲、乙两数的比为5:3,并且它们最大公约数与最小公倍数的和是1040,那么甲数是多少,乙数是多少.设甲和乙的最大公约数为K,则甲数为5K,乙数为3K,它们的最小公倍数为15K.于是K+15K=1040,解得K=65.从而甲数为5?65=325,乙数为3?65=195.12.有一块铜锌合金,其中铜与锌的比是2:3.现在加入锌6克,共得新合金36克,求在新合金内铜与锌的比.旧合金的重量为36-6=30(克). 222?,故旧合金中有铜30??12(克),有锌铜在旧合金中占2?35530-12=18(克).新合金中,铜仍为12克,锌为18+6=24(克),于是铜与锌的比为12:24=1:2.13.一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3.某人走各段路所用时间之比依次是4:5:6.已知他上坡时速度为每小时3千米.路程全长50千米.问:此人走完全程用了多少时间?11125?,上坡路程为50??上坡路占总路程的(千米),上坡时间为1?2?36632525?3?(小时). 39255125256150平路时间为??(小时),下坡时间为??(小时). 94369436251251505??10(小时) 全程时间为?936361214.一个圆柱体的容器中,放有一个长方形铁块.现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的顶面,又过了18分钟,水灌满容器.已知容器的高度是50厘米.长方体的高度是20厘米,那么长方体底面积:容器底面面积等于多少?注满容器20厘米高的水与30厘米高的水所用时间之比为20:30=2:3.注202厘米的水的时间为18??12(分),这说明注入长方形铁块所占空间的水要用时3间为12-3=9(分).已知长方形铁块高为20厘米,因此它们底的面积比等于它们的体积之比,而它们的体积比等于所注入时间之比,故长方形底面面积:容器底面面积=9:12=3:4.篇三:比和比例及列方程解应用题比和比例及列方程解应用题、浓度应用题一、有关比的应用题(按比例分配)A、已知各部分的总和与各部分量的比,求各部分量解决这种应用题有两种方法:归一法和分数乘法(1)归一法:总数量÷总份数(把比的各项相加)=每份数每份数×各自的份数=各部分的量(2)分数乘法:总数量×各部分的份数\总份数=各部分的量1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3、工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完着条路的一半,这条公路全长多少米?4、青年运输队计划3天运完一批货物。

六年级重点应用题

六年级重点应用题

六年级重点应用题一、分数应用题。

1. 一桶油重12千克,用去它的(3)/(4),还剩多少千克?- 解析:- 首先求出用去的油的重量,用这桶油的总重量乘以用去的比例,即12×(3)/(4) = 9千克。

- 然后用总重量减去用去的重量就是剩下的重量,12 - 9=3千克。

2. 有一袋大米,吃了(2)/(5)后,还剩30千克,这袋大米原来有多少千克?- 解析:- 把这袋大米原来的重量看作单位“1”,吃了(2)/(5),那么剩下的占原来的1-(2)/(5)=(3)/(5)。

- 已知剩下30千克,所以原来大米的重量为30÷(3)/(5)=30×(5)/(3)=50千克。

3. 一本书共120页,第一天看了全书的(1)/(3),第二天看了全书的(1)/(4),两天一共看了多少页?- 解析:- 先求出第一天看的页数为120×(1)/(3)=40页。

- 再求出第二天看的页数为120×(1)/(4)=30页。

- 两天一共看的页数为40 + 30=70页。

4. 某工厂有职工200人,男职工占总人数的(3)/(5),女职工有多少人?- 解析:- 先求出男职工的人数为200×(3)/(5)=120人。

- 然后用总人数减去男职工人数得到女职工人数,200 - 120 = 80人。

二、百分数应用题。

5. 一件衣服原价200元,现在打八折出售,现价是多少元?- 解析:- 打八折就是按原价的80%出售,所以现价为200×80%=200×0.8 = 160元。

6. 某村去年造林160公顷,今年比去年增加了25%,今年造林多少公顷?- 解析:- 把去年造林的面积看作单位“1”,今年比去年增加25%,那么今年造林的面积是去年的(1 + 25%)。

- 所以今年造林的面积为160×(1 + 25%)=160×1.25=200公顷。

7. 一种商品降价15%后售价为170元,这种商品原价是多少元?- 解析:- 设这种商品原价是x元,降价15%后的价格就是(1 - 15%)x。

小学奥数-比例应用题(二)

小学奥数-比例应用题(二)

比例应用题(二)教学目标1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a :b =c :d ,则(a +c ):(b +d )=a :b =c :d ;性质2:若a :b =c :d ,则(a -c ):(b -d )=a :b =c :d ;性质3:若a :b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a :b =c :d ,则a ×d =b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒y b x a =;x y a b=;a b x y =;②x a y b =⇒mx a my b =;x ma y mb=(其中0m ≠);③x a y b =⇒x a x y a b =++;x y a b x a--=;x y a b x y a b ++=--; ④x a y b =,y c z d =⇒x ac z bd=;::::x y z ac bc bd =;⑤x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad.三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

比和比例及列方程解应用题

比和比例及列方程解应用题

比和比例及列方程解应用题一、有关比的应用题(按比例分配)在这一部分中,我们需要解决的问题是已知各部分的总和与各部分量的比,求各部分量。

为了解决这个问题,我们可以使用归一法或分数乘法。

对于归一法,我们需要先计算出总数量除以总份数的结果,这个结果就是每份数。

然后,我们将每份数乘以各自的份数,就可以得到各部分的量。

对于分数乘法,我们需要将总数量乘以各部分的份数,然后再除以总份数,就可以得到各部分的量。

以下是一些例题:1.一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?2.一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?3.工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完这条路的一半,这条公路全长多少米?4.青年运输队计划3天运完一批货物。

第一天运了480吨,占这批货物的40%;第二天运的和第三天运的吨数比是3:5,第三天运的货物是多少吨?5.红云小队三天共植树150棵,第一与第二天植树棵数的比是5:6,第二天与第三天植树的比是3:2,第一、第二、第三天植树多少棵?二、比例应用题(正比例和反比例)在这一部分中,我们需要解决的问题是已知两个量之间的比例关系,求另一个量。

这个问题可以分为正比例和反比例两种情况。

对于正比例,我们可以使用比例公式y=kx,其中k为比例系数,x和y分别表示两个量。

我们可以通过已知的x和y 值来求解k,然后再根据已知的x或y值来求解另一个量。

对于反比例,我们可以使用比例公式y=k/x,其中k为比例系数,x和y分别表示两个量。

同样地,我们可以通过已知的x和y值来求解k,然后再根据已知的x或y值来求解另一个量。

以下是一些例题:1.数学小组和美术小组人数的比为5:3,数学小组不美术小组多24人,两组各有多少人?2.师徒两人共同加工一批零件,师傅和徒弟加工零件个数的比为4:1,已知徒弟比师傅少加工600个。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比和比例及列方程解应用题
————————————————————————————————作者:————————————————————————————————日期:

比和比例及列方程解应用题、浓度应用题
一、有关比的应用题(按比例分配)
A、已知各部分的总和与各部分量的比,求各部分量
解决这种应用题有两种方法:归一法和分数乘法
(1)归一法:总数量÷总份数(把比的各项相加)=每份数
每份数×各自的份数=各部分的量
(2)分数乘法:总数量×各部分的份数\总份数=各部分的量
1、一个长方形,长与宽的比是4:3,这个长方形的周长是280厘米,它的面积是多少平方厘米?
2、一个长方体的棱长总和是96分米,长、宽、高的比是3:3:2,它的表面积和体积各是多少?
3、工程队修一条路,已经修好的和未修的比是1:2,如果再修1.5千米,刚好修完着条路的一半,这条公路全长多少米?
4、青年运输队计划3天运完一批货物。

第一天运了480吨,占这批货物的40%;第二天运的和第三天运的吨数比是3:5,第三天运的货物是多少吨?
5、红云小队三天共植树150棵,第一与第二天植树棵数的比是5:6,第二天与第三天植树的比是3:2,第一、第二、第三天植树多少棵?
B、已知各部分的差与各部分量的比,求各部分量
用各部分的差÷份数差(份数大的-份数小的)=每份数每份数×各自所占的分数=各部分的量
每份数×总份数=总数
1、数学小组和美术小组人数的比为5:3,数学小组不美术小组多24人,两组各有多少人?
2、师徒两人共同加工一批零件,师傅和徒弟加工零件个数的比为4:1,已知徒弟比师傅少加工600个。

这批零件共有多少个?
3、甲、乙两辆汽车同时从相距420千米的两地相对开出,5小时后相遇,甲车与乙车的速度比为4:3,甲、乙两张车的速度地是多少?
C、已知部分量与各部分量的比,求另一部分量或总量
用部分量÷所对应的份数=每份数
每份数×另一部分所占的份数=另一部分的量
每份数×总份数=总数量
1、果园里苹果树和梨树的比是7:5,苹果树有350棵,梨树有多少棵?两种果树一共有多少棵?苹果树比梨树多多少棵?
2、甲、乙两个课外活动小组人数的比是5:3,如果从甲组调14人到乙组去,甲组和乙组的人数比为1:2,原来两组各有多少人?
3、甲、乙、丙三个人加工一批零件,甲加工了总数的40%,乙、丙加工个数的比为2:3,已知丙加工了360个,这批零件共有多少个?
二、比例应用题(正步例和反比例应用题)
(1)正比例应用题中的各种相关联的数量有正比例关系,关系式是:y\x=k(一定)。

(2)反比例应用题中的各种相关联的数量有反比例关系,关系式是:xy=k(一定)。

(3)解答正反比例应用题的基本步骤是:A、分析数量关系,依据相关联的量之间的数量关系,判断它们成什么比例; B、根据关系列出等量关系式;C、设未知数,根据等量关系列方程;D、解方程 E、检验并写出答案。

1、有两个底面积相等的圆柱,一个圆柱高6分米,体积为50立分米。

另一个圆柱高4.8分米,体积是多少?(用比例解)
2、用一种方砖铺地,铺10平方米需要这种方砖40块,铺完面积是60平方米的房间,需这种方砖多少块?(用比例解)
3、一辆汽车的油箱里储油102升,行驶了56千米正好耗油8升,照这样计算,剩下的油还可以行驶多少千米?(用比例解)
4、一台拖拉机3小时耕地6公顷,照这样计算,如果再耕地5小时,一共可以耕地多少公顷?(用比例解)
5、有一批纸装订成本,如果每本装订35张纸,可以装订200本,如果每本多装订5张,那么少订多少本?(用比例解)
三、比例尺应用题
基本的数量关系式为:图上距离÷实际距离=比例迟
图上距离÷比例迟=实际距离
实际距离×比例迟=图上距离
1、一块长方形土地,长75米,宽30米,把它画在比例尺是1\200的设计图上,它的面积是多少平方厘米?
2、在一幅比例尺是1\18000000的地图上,量得南京到北京的距离是10.2厘米。

一架飞机每小时以600千米的速度从南京飞往北京约用多长时间?
3、在比例尺是1:6000000的地图上,量得上海到南京的距离是15厘米,上海到南京的实际距离是多少千米?
四、列方程解应用题
列方程解应用题的一般步骤:(1)弄清题意,找出未知数并用x 表示:(2)、找出应用题中数量间的相等关系,列方程;(3)解方程;
(4)检验或验算,写出答案。

1、二、列方程解应用题
1、水果店云来苹果490千克,比运来的梨的2倍还多10千克,运来梨多少千克?
2、两袋大米,第二袋比第一袋多15千克,已知第一袋大米的质量的1/3恰好与第二袋大米质量的2/7相等。

两袋大米各有多少千克?
3、小明读一本书,读了几天后,已读页数和未读页数的比为2:3,后来又读了56页,这时已读页数和未读页数的比是5:4,这本书共有多少页?
4、甲、乙两列火车同时从相距450千米的两地相对开出,甲车每小时性45千米,5小时后,两车未相遇,但两车还相距25千米,乙车每小时行多少千米?
五、浓度问题
基本概念
溶质:溶解于液体中的物质(盐、糖)
溶剂:溶解物质的液体(水……)
溶液:溶质和溶剂的混合物。

(水和溶解于其中的物质统称溶液)
基本数量关系:
溶液质量=溶质质量+溶剂质量
溶剂质量=溶液质量-溶质质量溶剂质量=溶液质量Х(1-浓度) 浓度=(溶质质量÷溶液质量)×100%
溶质质量=溶液质量Х浓度
1、某种农药的浓度是25%,现要将600克的这种农药添加水稀释成浓度为3%的药水,应该添水多少克?
2、有浓度为25%的食盐水100克,加入多少克食盐后,浓度增加到40%?
3、要将浓度为40%的某种消毒液500克稀释成5%的消毒液,需加水多少克?
4、将酒精含量为55%的A种白酒40克与酒精含量为35%的B种白酒60克混合,得到一种新型白酒C,这种白酒的浓度是多少?
5、小丽说“将浓度为30%的盐水20克与浓度是20%的盐水30克混合,就可得到浓度为25%的盐水50克”。

她的说法对吗?请计算说明。

六、工程问题
1、加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件共有多少个?(模拟3)
2、加工一批零件,甲、乙合作24天可以完成。

现在由甲先做16天,然后乙再做12天,还剩下这批零件的2/5没有完成,已知甲每天比乙多加工3个零件,那么这批零件有多少个?
3、师徒二人加工一批零件,15天可以完成,已知师傅和徒弟的工作效率之比是3:2,师傅单独加工这批零件需要几天?
4、、一项工程,甲队单独做需12天完成,如果甲乙两队合作5天后,剩下的工程由甲队完成,还需3天,乙对单独完成这项工程需多少天?
七、相遇问题
1、A、B两地相距470千米,甲车以每小时46千米,乙车以每小时40千米的速度先后从两地出发,相向而行,相遇时甲车行驶了230千米。

问:乙车比甲车早出发几小时?
2、快、慢两车同时从两城相向出发,4小时后在离中点18千米处相遇。

已知快车每小时行70千米,慢车每小时行多少千
3、甲、乙两人同时骑自行车由A城去B城,甲每小时行12千米,乙每小时行9千米,甲在途中停留4小时,因此甲比乙迟到1小时,问:A、B两城相距多少千米?
4、一列货车以每小时行50千米的速度从甲地开往乙地,同时一列客车以每小时55千米的速度从乙地开往甲地,经过6小时20分两车又相距70千米,甲、乙两地相距多少千米?
5、甲、乙两车同时从两地相向而行,甲车每小时行83千米,乙车每小时行95千米,两车在距中点24千米处相遇,求两地间的距离?。

相关文档
最新文档