线段角计算题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、线段计算题:(word 可编辑)
1、如图,点D 为线段CB 的中点,AD=8cm ,AB=10cm ,求CB 的长度.
解:∵ DB=AB ﹣AD ,
∴DB=10-8=2cm
∵点D 为线段CB 的中点
BC=2BD=4cm . 2、如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。
解:∵C 点为线段AB 的中点, AB =10cm
∴152
AC CB AB cm === ∵D 点为BC 的中点, ∴1 2.52
CD BC cm =
= ∴5 2.57.5AD AC CD cm =+=+= 答:AD 的长度为7.5cm 。
3、已知C ,D 两点将线段AB 分为三部分,且AC :CD :DB=2:3:4,若AB 的中点为M ,BD 的中点为N ,且MN=5cm ,求AB 的长.
解:设AC=2x ,CD=3x ,DB=4x , ∴AB=AC+CD+DB=9x ,
∵AB 的中点为M ,
∴MB= AB=4.5x ,
∵N 是DB 的中点,
∴NB= DB=2x ,
∴MB ﹣NB=MN ,
∴4.5x ﹣2x=5,
∴2.5x=5,
∴x=2,
∴AB=9x=18cm
4、如图,M 是线段AC 中点,B 在线段AC 上,且AB=2cm 、BC=2AB ,求BM
长度.
解:∵AB=2cm,BC=2AB,∴BC=4cm,
∴AC=AB+BC=2+4=6cm,
∵M是线段AC中点,
∴AM= AC=3cm,
∴BM=AM﹣AB=3﹣2=1cm.
故BM长度是1cm.
5、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.
解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,
∴BE= AB=x,CF= CD=2x,
∵EF=15cm,
∴BE+BC+CF=15cm,
∴x+3x+2x=15,
解得:x= ,
∴AD=AB+BC+CD=2x+3x+4x=9x= cm
6、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.
解:∵AB=10cm,BC=4cm,点C在直线AB上,∴点C在线段AB上或在线段AB的延长线上.
①当点C在线段AB上时,如图①,
则有AC=AB﹣BC=10﹣4=6.
∵点D是线段AC的中点,
∴DC= AC=3,
∴DB=DC+BC=3+4=7;
②当点C在线段AB的延长线上时,如图②,
则有AC=AB+BC=10+4=14.
∵点D是线段AC的中点,
∴DC= AC=7,
∴DB=DC﹣BC=7﹣4=3.
综上所述:线段BD的长度为7cm或3cm.
7、线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若点C恰好是AB中点,求DE的长?
(2)若AC=4cm,求DE的长.
解:(1)∵AB=12cm,点C恰好是AB中点,
∴AC=BC=6cm,
∵点D、E分别是AC和BC的中点,
∴CD=3cm,CE=3cm,
∴DE=CD+CE=6cm,
即DE的长是6cm;
(2)∵AB=12cm,AC=4cm,
∴CB=8cm,
∵点D、E分别是AC和BC的中点,
∴DC=2cm,CE=4cm,
∴DE=DC+CE=6cm,
即DE的长是6cm.
8、已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.
解:如图1所示,
∵AP=2PB,AB=6,
∴PB=AB=×6=2,AP=AB=×6=4;
∵点Q为PB的中点,
∴PQ=QB=PB=×2=1;
∴AQ=AP+PQ=4+1=5.
如图2所示,
∵AP=2PB,AB=6,
∴AB=BP=6,
∵点Q为PB的中点,
∴BQ=3,
∴AQ=AB+BQ=6+3=9.
故AQ的长度为5或9.
9、如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC 的中点.
(1)求线段BC,MN的长;
(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.
解:(1)∵M是AC的中点,
∴MC=AC=3cm,
∴BC=MB﹣MC=7cm,
又N为BC的中点,
∴CN=BC=3.5cm,
∴MN=MC+NC=6.5cm;
(2)如图:
∵M是AC的中点,
∴CM=AC,
∵N 是BC 的中点,
∴CN=BC ,
∴MN=CM ﹣CN=
AC ﹣BC=(AC ﹣BC )=acm .
10、如图,点C 是线段AB 上的一点,延长线段 AB 到点D ,使BD=CB .
(1)请依题意补全图形; (2)若AD =7,AC =3,求线段DB 的长.
解:∵AD =7,AC =3,(已知)
∴CD =AD -AC =7-3=4.
∵BD=CB ,(已知)
∴B 为CD 中点.(中点定义)
∵B 为CD 中点,(已证)
∴BD =21
CD .(中点定义)
∵CD =4,(已证)
∴BD =21
×4=2.
A