脉冲激光沉积技术
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/9 6
激光辐射与靶的相互作用
• 在第一阶段,激光束聚焦在靶的表面。达 到足够的高能量通量与短脉衝宽度时,靶 表面的一切元素会快速受热,到达蒸发温 度。物质会从靶中分离出来,而蒸发出来 的物质的成分与靶的化学计量相同。物质 的瞬时溶化率大大取决於激光照射到靶上 的流量。熔化机制涉及许多复杂的物理现 象,例如碰撞、热,与电子的激发、层离, 以及流体力学。
• 第三阶段是决定薄膜质量的关键。放射出的高能核素碰击 基片表面,可能对基片造成各种破坏。下图表明了相互作 用的机制。高能核素溅射表面的部分原子,而在入射流与 受溅射原子之间,建立了一个碰撞区。膜在这个热能区 (碰撞区)形成后立即生成,这个区域正好成為凝结粒子 的最佳场所。只要凝结率比受溅射粒子的释放率高,热平 衡状况便能够快速达到,由於熔化粒子流减弱,膜便能在 基片表面生成。
Hale Waihona Puke Baidu
2018/11/9
5
PLD的机制
• 的系统设备简单,相反,它的原理却是非常复杂 的物理现象。它涉及高能量脉衝辐射衝击固体靶 时,激光与物质之间的所有物理相互作用,亦包 括等离子羽状物的形成,其后已熔化的物质通过 等离子羽状物到达已加热的基片表面的转移,及 最后的膜生成过程。所以,一般可以分為以下四 个阶段: • 1. 激光辐射与靶的相互作用 • 2. 熔化物质的动态 • 3. 熔化物质在基片的沉积 • 4. 薄膜在基片表面的成核与生成
化学气相沉积
分子束外延
超声喷雾热 解
直流溅射
薄膜制备方法
脉冲激光沉积
溶胶凝胶法
2018/11/9
1
脉冲激光沉积的实验仪器图
2018/11/9
2
• 1960年,激光的示范首次出现。自此以后,激光 受到多方面应用,发展成為强效的工具。激光对 物料加工的帮助,效果尤其显着。激光具备许多 独特的性质,例如狭窄的频率带宽、相干性、以 及高释能密度。通常,光束的强度足以汽化最坚 硬与最耐热的物料。再加上激光精确、可靠、具 备良好的空间分辨能力。这些出色表现,所以得 到机製薄膜、物料改造、物料表面加热处理、熔 接,及微型图案等工业广泛使用。除此之外,多 组分物质能够溶化,并沉积在底物上,形成化学 计量薄膜。
2018/11/9 15 返回
Laser Ablation 薄膜沉积装置
(传统蒸发沉积的问题之一是蒸发和参与沉积的能量低,只相当于健合能的数十分之一,LA法和溅射镀 膜法在这方面有优势)
在激光加热方法中,需要采用特殊的窗口材料将激光束引入真空室 中,并要使用透镜或凹面镜等将激光束聚焦至被蒸发材料上。针对不同 波长的激光束,需要选用不同光谱透过特性的窗口和透镜材料。 激光加热方法特别适用于蒸发那些成分比较复杂的合金或化合物材 料,比如近年来研究较多的高温超导材料YBa2Cu3O7等。这种方法也存 在容易产生微小的物质颗粒飞溅,影响薄膜的均匀性的问题。
2018/11/9
基片靶材旋转法 激光束运动
12
新方法:激光分子束外延
PLD中的重要实验参数
基体的加热温度
影响沉积速率和薄膜的质量
氧气的压力 沉积时间 基体与靶的距离 激光能量,频率
2018/11/9
过高不利于薄膜择优取向的形成 过低导致化学配比失衡,内部缺陷增多 影响薄膜的厚度 影响薄膜的均匀性 影响沉积速率
13
PLD法制备薄膜实验流程图
安装靶材与衬底 调整激光器参数
激光器为YAG固体激光器,波长 =532nm(绿光),激光脉宽为10ns, 频率为1Hz,3Hz,5Hz.能量为0---300mJ可调.
抽真空(机械泵与分子泵至10-5Pa)
开加热装置,通气体 导入激光进行镀膜 关闭仪器
2018/11/9
2018/11/9 3
脉冲激光沉积法
脉冲激光沉积法
是一种真空物理沉积工艺,是将高功率脉冲激光聚焦于靶材表面,使 其产生高温及烧蚀,而产生高温高压等离子体,等离子体定向局域膨胀 发射并在衬底上沉积形成薄膜。
2018/11/9
4
• 总的来说,的概念简单易懂。脉冲激光束聚焦在 固体靶的表面上。固体表面大量吸收电磁辐射导 致靶物质快速蒸发。蒸发的物质由容易逃出与电 离的核素组成。若果溶化作用在真空之下进行, 核素本身会即时在靶表面上形成光亮的等离子羽 状物。下图展示了一些过程中產生的典型等离子 羽状物。
2018/11/9 7
1. 激光与靶材相互作用产生等离子体
等离子体是由大量自由电子和离子及少量未电离的气体分子和原子组成,且 在整体上表现为近似于电中性的电离气体。
等离子体=自由电子+带正电的离子+未电离原子或分子,为物质的第四态。
2018/11/9 8
熔化物质的动态
• 在第二阶段,根据气体动力学定律,发射 出来的物质有移向基片的倾向,并出现向 前散射峰化现象。空间厚度随函数cosnθ而 变化,而n>>1。激光光斑的面积与等离子 的温度,对沉积膜是否均匀有重要的影响。 靶与基片的距离是另一个因素,支配熔化 物质的角度范围。亦发现,将一块障板放 近基片会缩小角度范围。
14
C 激光蒸发镀膜(laser ablation)装置
使用高功率的激光束作为能量进行薄膜的蒸发沉积的方法叫激光沉 积法。显然,这种方法也具有加热温度高、可避免坩埚污染、材料的蒸 发速率高、蒸发过程容易控制等特点。同时由于在蒸发过程中,高能激 光光子将能量直接传给被蒸发的原子,因而激光蒸发法的粒子能量一般 显著高于其它的蒸发方法。
2018/11/9 9
2.等离子体在空间的输运
靶材表面的高温(可达20000K)和高密度((1016-----1021)/cm3)的等离子体 在靶面法线方向的高温和压力梯度 等温膨胀发射(激光作用时)和绝热膨胀发射(激光终止后)
沿靶面法线方向
等离子体区 等离子体羽辉 轴向约束性
2018/11/9
10
2018/11/9
11
脉冲激光沉积的优点
可以生长和靶材成分一致的多元化合物薄膜 易于在较低温度下原位生长取向一致的织构膜和外延单晶膜 由于激光的能量高,可以沉积难熔薄膜
灵活的换靶装置便于实现多层膜及超晶格膜的生长
生长过程中可以原位引入多种气体,提高薄膜的质量 污染小 薄膜存在表面颗粒问题 缺点 很难进行大面积薄膜的均匀沉积
激光辐射与靶的相互作用
• 在第一阶段,激光束聚焦在靶的表面。达 到足够的高能量通量与短脉衝宽度时,靶 表面的一切元素会快速受热,到达蒸发温 度。物质会从靶中分离出来,而蒸发出来 的物质的成分与靶的化学计量相同。物质 的瞬时溶化率大大取决於激光照射到靶上 的流量。熔化机制涉及许多复杂的物理现 象,例如碰撞、热,与电子的激发、层离, 以及流体力学。
• 第三阶段是决定薄膜质量的关键。放射出的高能核素碰击 基片表面,可能对基片造成各种破坏。下图表明了相互作 用的机制。高能核素溅射表面的部分原子,而在入射流与 受溅射原子之间,建立了一个碰撞区。膜在这个热能区 (碰撞区)形成后立即生成,这个区域正好成為凝结粒子 的最佳场所。只要凝结率比受溅射粒子的释放率高,热平 衡状况便能够快速达到,由於熔化粒子流减弱,膜便能在 基片表面生成。
Hale Waihona Puke Baidu
2018/11/9
5
PLD的机制
• 的系统设备简单,相反,它的原理却是非常复杂 的物理现象。它涉及高能量脉衝辐射衝击固体靶 时,激光与物质之间的所有物理相互作用,亦包 括等离子羽状物的形成,其后已熔化的物质通过 等离子羽状物到达已加热的基片表面的转移,及 最后的膜生成过程。所以,一般可以分為以下四 个阶段: • 1. 激光辐射与靶的相互作用 • 2. 熔化物质的动态 • 3. 熔化物质在基片的沉积 • 4. 薄膜在基片表面的成核与生成
化学气相沉积
分子束外延
超声喷雾热 解
直流溅射
薄膜制备方法
脉冲激光沉积
溶胶凝胶法
2018/11/9
1
脉冲激光沉积的实验仪器图
2018/11/9
2
• 1960年,激光的示范首次出现。自此以后,激光 受到多方面应用,发展成為强效的工具。激光对 物料加工的帮助,效果尤其显着。激光具备许多 独特的性质,例如狭窄的频率带宽、相干性、以 及高释能密度。通常,光束的强度足以汽化最坚 硬与最耐热的物料。再加上激光精确、可靠、具 备良好的空间分辨能力。这些出色表现,所以得 到机製薄膜、物料改造、物料表面加热处理、熔 接,及微型图案等工业广泛使用。除此之外,多 组分物质能够溶化,并沉积在底物上,形成化学 计量薄膜。
2018/11/9 15 返回
Laser Ablation 薄膜沉积装置
(传统蒸发沉积的问题之一是蒸发和参与沉积的能量低,只相当于健合能的数十分之一,LA法和溅射镀 膜法在这方面有优势)
在激光加热方法中,需要采用特殊的窗口材料将激光束引入真空室 中,并要使用透镜或凹面镜等将激光束聚焦至被蒸发材料上。针对不同 波长的激光束,需要选用不同光谱透过特性的窗口和透镜材料。 激光加热方法特别适用于蒸发那些成分比较复杂的合金或化合物材 料,比如近年来研究较多的高温超导材料YBa2Cu3O7等。这种方法也存 在容易产生微小的物质颗粒飞溅,影响薄膜的均匀性的问题。
2018/11/9
基片靶材旋转法 激光束运动
12
新方法:激光分子束外延
PLD中的重要实验参数
基体的加热温度
影响沉积速率和薄膜的质量
氧气的压力 沉积时间 基体与靶的距离 激光能量,频率
2018/11/9
过高不利于薄膜择优取向的形成 过低导致化学配比失衡,内部缺陷增多 影响薄膜的厚度 影响薄膜的均匀性 影响沉积速率
13
PLD法制备薄膜实验流程图
安装靶材与衬底 调整激光器参数
激光器为YAG固体激光器,波长 =532nm(绿光),激光脉宽为10ns, 频率为1Hz,3Hz,5Hz.能量为0---300mJ可调.
抽真空(机械泵与分子泵至10-5Pa)
开加热装置,通气体 导入激光进行镀膜 关闭仪器
2018/11/9
2018/11/9 3
脉冲激光沉积法
脉冲激光沉积法
是一种真空物理沉积工艺,是将高功率脉冲激光聚焦于靶材表面,使 其产生高温及烧蚀,而产生高温高压等离子体,等离子体定向局域膨胀 发射并在衬底上沉积形成薄膜。
2018/11/9
4
• 总的来说,的概念简单易懂。脉冲激光束聚焦在 固体靶的表面上。固体表面大量吸收电磁辐射导 致靶物质快速蒸发。蒸发的物质由容易逃出与电 离的核素组成。若果溶化作用在真空之下进行, 核素本身会即时在靶表面上形成光亮的等离子羽 状物。下图展示了一些过程中產生的典型等离子 羽状物。
2018/11/9 7
1. 激光与靶材相互作用产生等离子体
等离子体是由大量自由电子和离子及少量未电离的气体分子和原子组成,且 在整体上表现为近似于电中性的电离气体。
等离子体=自由电子+带正电的离子+未电离原子或分子,为物质的第四态。
2018/11/9 8
熔化物质的动态
• 在第二阶段,根据气体动力学定律,发射 出来的物质有移向基片的倾向,并出现向 前散射峰化现象。空间厚度随函数cosnθ而 变化,而n>>1。激光光斑的面积与等离子 的温度,对沉积膜是否均匀有重要的影响。 靶与基片的距离是另一个因素,支配熔化 物质的角度范围。亦发现,将一块障板放 近基片会缩小角度范围。
14
C 激光蒸发镀膜(laser ablation)装置
使用高功率的激光束作为能量进行薄膜的蒸发沉积的方法叫激光沉 积法。显然,这种方法也具有加热温度高、可避免坩埚污染、材料的蒸 发速率高、蒸发过程容易控制等特点。同时由于在蒸发过程中,高能激 光光子将能量直接传给被蒸发的原子,因而激光蒸发法的粒子能量一般 显著高于其它的蒸发方法。
2018/11/9 9
2.等离子体在空间的输运
靶材表面的高温(可达20000K)和高密度((1016-----1021)/cm3)的等离子体 在靶面法线方向的高温和压力梯度 等温膨胀发射(激光作用时)和绝热膨胀发射(激光终止后)
沿靶面法线方向
等离子体区 等离子体羽辉 轴向约束性
2018/11/9
10
2018/11/9
11
脉冲激光沉积的优点
可以生长和靶材成分一致的多元化合物薄膜 易于在较低温度下原位生长取向一致的织构膜和外延单晶膜 由于激光的能量高,可以沉积难熔薄膜
灵活的换靶装置便于实现多层膜及超晶格膜的生长
生长过程中可以原位引入多种气体,提高薄膜的质量 污染小 薄膜存在表面颗粒问题 缺点 很难进行大面积薄膜的均匀沉积