网络分析仪与S参数
S参数的原理及使用详解
S参数的原理及使用详解在进行射频、微波等高频电路设计时,需采用分布参数电路分析方法。
大多采用微波网络分析法来分析电路,对于一个网络,可用S、Y、Z参数来进行测量和分析。
S称为散射参数(或散射系数),Y称为导纳参数,Z称为阻抗参数。
Y、Z参数主要用于集总电路,对集总电路分析非常有效,测试也比较方便。
在处理高频网络时,等效电压和电流及有关的阻抗、导纳参数变得很抽象。
散射参数能更准确地表示直接测量的入射波、反射波及传输波的概念。
参数矩阵更适合于分布参数电路。
S参数是建立在入射波、反射波关系基础上的网络参数,以元器件端口的反射信号及从该端口向另外一个端口发送信号的分散程度和分量大小来描述高频网络。
S参数可以用网络分析仪来实际测量。
本文将详细介绍S参数的原理及使用。
内容包含:S参数定义S参数端口特性史密斯图观察S参数S参数仿真讲解S参数模型讲解项目中S参数使用流程需要S参数的测试场景1.S参数定义S参数测量是射频设计过程中的基本手段之一。
S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。
在有源和无源电路设计和分析中经常会用到S 参数。
1)从时域与频域评估传输线特性良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。
而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。
2)S散射也叫散射参数。
是微波传输中的一组重要参数。
由于我们很难在高频率时测量电流或电压,因此我们要测量散射参数或S 参数。
这些参数用来表征RF 元件或网络的电气属性或性能,与我们熟悉的测量(如增益、损耗和反射系数)有关。
如上图所示,其中:S12为反向传输系数,也就是隔离;S21为正向传输系数,也就是增益;S11为输入反射系数,也就是输入回波损耗;S22为输出反射系数,也就是输出回波损耗。
3)S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为VNAport也是50奥姆终端。
S参数定义、矢量网络分析仪基础知识和S参数测量
S 参数定义、矢量网络分析仪基础知识及S 参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络 习惯上又叫负载Z L 。
因为只有一个口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数 通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S 11)更方便些。
2.两端口网络 最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性 两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损 对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T 。
插损(IL ) = 20Log │T │dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量 两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S 11、S 21、S 12、S 22。
V2S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。
S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。
S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。
S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。
S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。
一分钟带你快速认识S参数
一分钟带你快速认识S参数S参数是无线电电路分析的重要工具,它可以用来描述和分析电路的传输特性和稳定性。
S参数主要用于射频和微波领域,常用于设计和测试射频放大器、滤波器、混频器等电路。
S参数是指散射参数(Scattering Parameters),也称为传输参数(Transmission Parameters)。
对于一个线性、时不变的电路,S参数可以用复数矩阵来表示。
一个二端口的电路可以表示为以下形式:V1=S11*I1+S12*I2V2=S21*I1+S22*I2其中V1和V2是电路的两个端口的电压,I1和I2是电流,S11、S12、S21、S22是S参数矩阵的元素。
S参数的四个元素描述了电路的射频特性。
其中,S11描述的是电路的输入端口反射系数,表示输入信号通过电路后在输入端口被反射回来的程度。
S22描述的是电路的输出端口反射系数,表示输出信号通过电路后在输出端口被反射回来的程度。
S21描述的是电路的传输系数,表示输入信号能够经过电路传输到输出端口的程度。
S12描述的是电路的转移系数,即表示输出信号在经过电路后传输到输入端口的程度。
S参数的值是复数形式的,因此可以包含幅度和相位信息。
幅度表示信号的衰减或放大程度,而相位表示信号的相对相位差。
使用S参数可以进行电路参数的计算和仿真。
通过测量或仿真得到电路的S参数,可以进一步计算得到其他重要参数,如增益、带宽、稳定性等。
S参数还可以用于判断电路的稳定性,设计稳定的射频放大器。
在实际应用中,可以使用网络分析仪来测量电路的S参数。
网络分析仪可以通过电磁场的模拟或扫描方式,测量出电路在不同频率下的S参数,从而得到电路的传输特性。
总而言之,S参数是射频和微波领域中常用的一种电路特性描述方法。
它可以用复数矩阵表示电路的传输特性和稳定性,为电路的设计和测试提供了重要的工具。
通过S参数的测量和分析,可以更加准确地了解电路的工作情况,提高电路的性能和稳定性。
S参数的含义
S参数的含义以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。
在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。
假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB,如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。
对于由2根或以上的传输线组成的网络,还会有传输线间的互参数,可以理解为近端串扰系数、远端串扰系统,注意在奇模激励和偶模激励下的S参数值不同。
需要说明的是,S参数表示的是全频段的信息,由于传输线的带宽限制,一般在高频的衰减比较大,S参数的指标只要在由信号的边缘速率表示的EMI发射带宽范围内满足要求就可以了。
信息电子产品的运算速度与传输信息量大幅提升,相关电子零部件的高频特性也愈显重要。
如PCB、缆线、连接器等过去被视为单纯桥接作用的零部件,为满足高频应用的需要,现有规格逐渐纳入了衰减、特性阻抗、串音、传输延迟、传输延迟时滞、隔离效果、信号抖动等高频特性的项目。
S参数定义,矢量网络分析仪基本知识和S参数测量
S参数定义、矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载Z L。
因为只有一个口,总是接在最后又称终端负载。
最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
➢单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。
➢匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
➢传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
V2➢两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。
S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。
S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。
S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。
S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。
矢量网络分析仪基础知识及S参数测量
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载ZL。
因为只有一个口,总是接在zui后又称终端负载。
zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
这里仅简单的(但不严格)带上一笔。
S11与网络输出端接上匹配负载后的输入反射系数Г相当。
注意:它是网络的失配,不是负载的失配。
负载不好测出的Γ,要经过修正才能得到S11 。
S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。
上述两项是zui常用的。
S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。
S22即由输出端向网络看的网络本身引入的反射系数。
中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。
共模电感s参数测试方法
共模电感s参数测试方法共模电感是一种在电路中常用的元件,用于抑制共模干扰信号。
为了正确评估共模电感的性能,需要进行S参数测试。
本文将介绍共模电感的S参数测试方法。
我们需要明确什么是S参数。
S参数是指散射参数,用于描述电路中的信号传输和反射情况。
在共模电感的测试中,S参数可以用来评估其对共模干扰信号的抑制能力。
在进行S参数测试之前,我们需要准备测试设备和测试样品。
常用的测试设备包括网络分析仪、信号源和功率计。
测试样品即待测的共模电感。
接下来,我们可以按照以下步骤进行共模电感的S参数测试:1. 连接测试设备:首先,将信号源和功率计连接到网络分析仪。
确保连接正确,并根据测试要求设置好测试设备的参数。
2. 连接共模电感:将待测的共模电感连接到网络分析仪的测试端口。
注意正确连接电感的引脚,并确保连接良好。
3. 设置测试频率范围:根据测试要求,设置网络分析仪的测试频率范围。
一般情况下,可以选择一定的频率范围进行测试,以评估共模电感在不同频率下的性能。
4. 进行S参数测试:启动网络分析仪,开始进行S参数测试。
在测试过程中,网络分析仪会向待测的共模电感发送一系列的测试信号,并测量其在不同频率下的散射参数。
5. 分析测试结果:测试完成后,可以通过网络分析仪上的软件对测试结果进行分析。
可以查看共模电感的传输和反射系数,以及其他相关参数。
根据测试结果,可以评估共模电感的性能和抑制共模干扰信号的能力。
需要注意的是,S参数测试需要进行多次测试以获得可靠的结果。
同时,测试过程中还需要注意保持测试环境的稳定,避免外界干扰对测试结果的影响。
共模电感的S参数测试是评估其性能的重要方法。
通过合理连接测试设备、设置测试参数,并进行多次测试和结果分析,可以准确评估共模电感的抑制能力,为电路设计和优化提供依据。
s参数的测量方法
s参数的测量方法s参数测量方法引言:s参数是指散射参数(scattering parameters),也称为传输参数(transmission parameters),是用于描述电子元件或电子系统中信号传输和散射特性的重要参数。
s参数测量方法广泛应用于射频(RF)和微波领域。
本文将介绍s参数的测量方法,并详细阐述其中的步骤和注意事项。
一、仪器准备s参数的测量需要使用一些特定的仪器设备,包括信号源、功率计、频谱分析仪、网络分析仪等。
在进行测量前,需要确保仪器的状态良好,并校准好相关的参数。
此外,还需要准备适当的连接线缆和适配器,以确保信号的传输和连接的稳定性。
二、建立测量系统在进行s参数测量之前,需要建立一个稳定可靠的测量系统。
首先,将待测元件与其他设备正确连接,确保信号的顺利传输。
连接线缆的选择应根据待测元件的特性阻抗来确定,以确保信号的匹配。
然后,根据实际情况设置信号源的频率范围、功率级别等参数。
最后,进行系统校准,包括响应校准和参考面校准,以消除系统中的误差。
三、测量步骤1. 响应校准:在测量之前,需要进行响应校准,以消除系统中的响应误差。
首先,将测量端口连接到响应校准器,然后通过网络分析仪对系统进行校准。
校准过程中,网络分析仪会发送信号并测量返回的信号,根据测量结果自动调整校准器,直到系统响应达到最佳状态。
2. 参考面校准:参考面校准是为了确定待测元件的参考平面,以准确测量其s参数。
将待测元件连接到系统中,并将参考平面设置为待测元件的端口。
通过网络分析仪进行参考面校准,校准过程中会测量参考面上的反射系数,并根据测量结果进行调整。
3. s参数测量:在完成校准后,即可进行s参数的测量。
通过网络分析仪设置所需的频率范围和步进值,并选择合适的测量模式(如单端口或双端口)。
网络分析仪会发送信号并测量返回的信号,然后计算出s参数的值。
测量结果可以以图表或数据的形式显示出来,以供后续分析和处理。
四、测量注意事项1. 避免干扰:在进行s参数测量时,需要注意避免其他信号的干扰。
矢量网络分析仪的功能要点都有哪些呢
矢量网络分析仪的功能要点都有哪些呢矢量网络分析仪(Vector Network Analyzer,VNA)是一种广泛应用于射频(RF)和微波领域的仪器,用于测量和分析线性电路中的传输和反射特性。
它可以测量信号的传输、驻波比(VSWR)、S参数(散射参数)、衰减、相位延迟等,是RF工程师进行射频器件和系统分析以及测试的重要工具。
以下是矢量网络分析仪的主要功能要点:1.高精度的测量:矢量网络分析仪可以实现高达10位以上的测量精度,可以对微小的信号和相位差异进行测量和分析。
它可以提供非常准确的频率、幅度和相位的测量结果。
2.宽频率范围:矢量网络分析仪可以覆盖从几kHz到数十GHz的宽频率范围,并且可以非常方便地切换和选择测试频率。
这使得它适用于不同频率范围的应用,包括射频通信、微波器件、卫星通信等。
3.双向测量:矢量网络分析仪可以同时测量信号在正向和反向方向的传输和反射特性。
这样可以更全面地了解电路的特性,包括信号的损耗、反射以及功率传输效率等。
4.散射参数分析:矢量网络分析仪可以测量和分析电路的S参数,包括S11、S21、S12和S22、这些S参数可以描述信号在电路中的传输和反射特性,是电路设计和分析中非常重要的参数。
5.驻波比测量:矢量网络分析仪可以测量信号的驻波比(VSWR),用于评估电路中的匹配情况和损耗程度。
它可以帮助工程师找出传输线路和电路中的匹配问题,并进行相应的调整和优化。
6.相位延迟测量:矢量网络分析仪可以准确测量信号在电路中的相位延迟,包括群延迟和相对延迟等。
这对于设计和分析相干系统、滤波器、延迟线路等非常重要。
7.校准和校正:矢量网络分析仪可以进行校准和校正,以确保测量结果的准确性。
常见的校准方法包括开路、短路和负载校准,以及用参考标准进行插入损耗和相位校准等。
8.数据分析和图形显示:矢量网络分析仪可以将测量结果以图形和数据表格的形式显示出来,以便工程师进行数据分析和处理。
它可以绘制频率响应曲线、相位曲线、功率图等,方便用户对不同参数进行比较和评估。
s参数 测试标准
s参数 测试标准
S参数被大量应用于高速电路和高频电路设计和仿真中,不仅仅是信号完整性和电源完整性工程师需要了解S参数,对于电子工程师、测试工程师和EMC工程师等等都需要了解,如果看不懂S参数曲线,那就无从分析频域信号,在高频的时候参数变化也无从说起。
今天我们总结了关于网络分析仪中的S参数测试问题。
测试一下,关于网络分析仪和S参数,您能回答多少问题?
什么是S参数
A: S-parameters S参数通过指定反射信号的幅度和相位,描述射频信号如何响应设备端口的值。
该名称来源于“散射 Scattering parameter”的S。
S参数可以以表格或图形的形式表示,并且是有价值的测量,因为它们可以洞察设备的整体性能和健康状况。
S参数是一个复数矩阵,反映了在频域范围内的反射信号 / 传输信号的特性(幅度/相位)。
S参数一直占据着微波理论和技术中最重要的位置,它们包括了早已为工程师所熟悉的测量项目,例如 S11 (输入匹配)、S22 (输出匹配)、S21 (增益/ 损耗)、S12 (隔离度)等,这些测量项目的测试结果可以很方便地导入到电子仿真工具。
S参数定义矢量网络分析仪基础知识和S参数测量
S参数定义矢量网络分析仪基础知识和S参数测量S参数是描述线性电路的重要参数,用于描述电路的传输特性。
S参数测量是设计和分析微波电路的重要手段。
本文将介绍S参数的定义、矢量网络分析仪基础知识和S参数测量的方法。
1.S参数定义S参数,即散射参数(Scattering parameters),是描述电路的传输特性的一组参数。
在一个多端口网络中,每个端口都可以分别看作是一个发射端口和一个接收端口。
S参数描述了从发射端口射入电磁波与接收端口接收的电磁波之间的关系。
一个二端口网络的S参数通常用S11、S12、S21和S22来表示。
其中,S11表示从端口1发射的波经过网络后返回端口1的比例系数,S12表示从端口2发射的波经过网络后到达端口1的比例系数,S21表示从端口1发射的波经过网络后到达端口2的比例系数,S22表示从端口2发射的波经过网络后返回端口2的比例系数。
S参数是复数,可以用幅度和相位表示。
2.矢量网络分析仪基础知识矢量网络分析仪是用于测量和分析S参数的仪器。
它可以测量信号的幅度和相位,并绘制相应的频率响应曲线。
矢量网络分析仪通常由发射器、接收器、参考源、功率传感器和频率合成器等部分组成。
矢量网络分析仪通过提供一定频率范围内的连续信号,对待测电路的输入和输出进行测量,并计算出S参数。
在测量过程中,需要将待测电路与矢量网络分析仪连接,通过校准步骤来消除测试线路的误差,确保测量的准确性。
3.S参数测量方法S参数测量通常分为基于功率反射法和功率传输法两种方法。
基于功率反射法的S参数测量是通过测量待测网络的反射功率和传输功率来计算S参数。
该方法适用于测量反射系数较大的网络,如天线。
基于功率传输法的S参数测量是通过测量待测网络的输入功率和输出功率来计算S参数。
该方法适用于测量传输系数较大的网络,如放大器。
在进行S参数测量时,需要进行一系列的校准步骤来消除测试系统中的误差。
常见的校准方法包括短路校准、开路校准和负载校准等。
S参数定义矢量网络分析仪基础知识和S参数测量
S参数定义矢量网络分析仪基础知识和S参数测量S参数(Scattering parameters)是一种描述线性电路的频率响应的参数,常用于微波电路和高频电路的设计和分析。
S参数以复数形式表示,包括幅度和相位两个部分,可以描述信号在电路中的功率传递和反射情况。
S参数通常用Sij表示,其中i和j分别表示信号源和负载之间的端口编号。
S11表示输入端口处的反射系数,S22表示输出端口处的反射系数,S21表示从输入端口到输出端口的传输系数,S12表示从输出端口到输入端口的传输系数。
参数的值一般是一个复数,包括幅度和相位两个部分。
矢量网络分析仪基础知识:矢量网络分析仪(Vector Network Analyzer,简称VNA)是用于测量和分析电路的频率响应的仪器。
它能够通过发送和接收信号来测量电路的散射参数,并可以对信号进行幅度和相位的测量。
矢量网络分析仪有多个端口,其中一个端口连接信号源,其他端口用来连接待测电路。
通过在不同频率下测量电路的散射参数,可以得到电路的频率响应,从而了解电路的传输和反射情况。
S参数测量:S参数可以通过矢量网络分析仪来测量。
测量时,信号源会向待测电路的一个端口发送信号,而其他端口的信号会被矢量网络分析仪接收并测量。
具体的S参数测量步骤如下:1.连接待测电路和矢量网络分析仪,确保连接正确。
2.设置矢量网络分析仪的频率范围和步进大小。
3.将矢量网络分析仪设置为"测量模式",并选择要测量的S参数。
4.开始测量,矢量网络分析仪会依次在每个频率点上测量S参数的幅度和相位。
5.测量完成后,可以通过矢量网络分析仪显示屏上的图表或数据来查看测量结果。
也可以将测量结果导出进行进一步的分析和处理。
S参数测量可以帮助工程师了解电路在不同频率下的传输和反射情况,并用于电路的设计和优化。
在微波电路和高频电路的设计和分析中,S参数测量是一项重要的技术。
网络分析仪的原理介绍
网络分析仪的原理介绍网络分析仪(Network Analyzer)是一种高性能、高精度的电子测试仪器,用于测量和分析电路的电参数和传输特性。
它可以测量电路的传输损耗、反射系数、输入输出阻抗以及频率响应等,是测试和分析电路特性的重要工具。
基本原理网络分析仪基于S参数测量原理进行工作。
S参数是指散射系数(Scattering Parameters),用于描述线性恒定、无耗电路的传输特性。
S参数有四个参数:S11、S12、S21、S22,它们分别表示反射系数、传输系数和互反射系数。
网络分析仪通过向待测电路输入信号并测量电路的反射和透射信号,计算出电路的S参数。
具体来说,网络分析仪工作时,首先会向被测电路的端口输入信号,然后独立地测量相应端口上的反射信号和透射信号,再根据测量结果计算出被测电路的S参数。
工作原理网络分析仪的工作过程可以分为两部分:向电路输入信号和测量电路响应。
其中,向电路输入信号可以使用多种方式实现,例如向设备输出微波信号或者利用负载电路激励器向管件输入信号。
电路响应的测量则可以通过如反射法、传输法等多种方法实现。
其中,反射法是一种较为常见的测量方法。
在反射法中,指向设备的微波信号被分为两部分,一部分沿着电路传输,一部分被反射回来。
通过测量这两部分信号的幅度和相位,就可以计算出反射系数,进而反向计算出电路的S参数。
传输法则是另一种常用的测量方法。
在传输法中,电路的输入和输出之间的信号被测量。
传输法测量电路的传输系数,它是指从输入到输出的信号传输比例和相位关系。
通过测量输入和输出信号的幅度和相位,就可以计算出电路的传输系数,进而反向计算出电路的S参数。
应用场景网络分析仪在电路分析中的应用非常广泛,常见的应用场景包括:1.传输参数测量:用于测量和确定电路的传输损耗、传输相位等传输参数,进而分析电路性能。
2.反射参数测量:用于测量和分析电路的反射损耗、反射系数等反射参数。
3.阻抗测量:用于测量电路的输入输出阻抗,进而评估电路性能和匹配性。
s参数测试方法
s参数测试方法摘要:1.引言2.S参数测试方法的原理3.S参数测试的步骤与注意事项4.S参数测试的应用领域5.总结正文:【引言】在电子电路设计和通信系统中,S参数是一个重要的性能参数,它反映了电路的输入输出特性。
S参数测试方法是评估电路性能的关键手段,通过对S 参数的测量,可以有效评估电路的频率响应、群延迟、相位差等性能指标。
本文将详细介绍S参数测试方法的原理、步骤、注意事项及应用领域。
【S参数测试方法的原理】S参数,全称为Scattering Parameters,是指在开放电路条件下,电路的输入端和输出端的电压、电流关系。
S参数共有四个,分别为S11、S21、S12和S22。
S参数测试方法的原理是基于网络分析仪进行测量,通过向电路输入端施加信号,检测输出端的信号变化,从而得到S参数。
【S参数测试的步骤与注意事项】1.步骤一:准备工作在进行S参数测试前,首先要确保测试仪器和被测电路的连接正确无误。
这包括连接网络分析仪、信号发生器、功率计等设备,并确保连接线的质量和稳定性。
2.步骤二:设置测试参数根据被测电路的性能要求,设置网络分析仪的测试频率范围、功率范围等参数。
同时,确保信号发生器的输出信号质量和稳定性。
3.步骤三:测量S参数启动网络分析仪,使其向被测电路输入信号,并开始测量。
在测量过程中,应注意实时监测信号强度、频率等方面的变化,以确保测试结果的准确性。
4.步骤四:数据处理与分析测量完成后,通过网络分析仪的数据处理软件,提取S参数数据。
然后对数据进行分析,评估电路的性能指标,如频率响应、群延迟、相位差等。
5.注意事项在进行S参数测试时,应注意以下几点:(1)确保连接线的质量和稳定性,避免测试误差;(2)测试环境应尽量远离电磁干扰源,以减小干扰;(3)被测电路的电源应稳定,避免电压波动影响测试结果;(4)测量过程中,避免触碰电路元件,以免影响性能。
【S参数测试的应用领域】S参数测试方法广泛应用于通信、雷达、电子对抗等领域,对于评估电路性能、故障诊断和系统优化具有重要意义。
双端口测量和S参数
cos β
1
1 cos β
同一无损传输线的 T 矩阵(也称为 ABCD 矩阵)为
[
T
]
=
cos β jY0 sin
β
jZ0 sin β
cos β
该无损传输线的散射矩阵最终将会特别简单。要想计算 S11 元素,相反端口的端接条件是无入 射信号,V2+ = 0。这可以通过用匹配的负载 ZL = Z0 端接端口 2 来实现。这样,从端口 2 发射 的任何信号都不会反射回到端口 2。通过用匹配的负载端接端口 2,端口 1 的输入阻抗恰好为
/find/FieldFox
08 | 是德科技 | 双端口测量和 S 参数 — 应用指南
下面图 4 显示了典型矢量网络分析仪的体系结构。
图 4. 矢量网络分析仪(VNA)体系结构
如上图所示,网络分析仪的核心是一个合成信号源和一组相同的调谐接收机通道。合成信号 源生成射频激励,接收机通道则跟踪合成信号源的输出。在上面这个例子中,有三个相同的 接收机通道 R、A 和 B,但其他网络分析仪体系结构可以有更多的通道。本应用指南后面介绍 的 FieldFox 分析仪有四个接收机。合成信号源从一个主振荡器开始,该振荡器具有稳定的频 率参考。这是最常见的石英晶体振荡器,它可以放置在温控箱内,保持温度稳定不变。一旦 振荡器箱温度达到设定温度 并稳定下来,此类振荡器通常可以精确到至少 5-10 ppm。合成 信号源的其余部分是一个称为锁相环(PLL)的子系统。它是一个反馈控制系统,能够使用给 定的参考通过匹配相位产生新的频率。系统中的关键元器件包括压控振荡器(VCO)、相位 比较器、倍频器或分频器(根据输出频率需要高于还是低于输入参考频率而定),以及回路 滤波器(用于正确跟踪和捕获特性)。为简单起见,上图中并未显示回路滤波器。锁相环是 特别有用且非常灵活的电路,能够对高频信号源进行精确的数字控制。通过上述的合成信号 源,网络分析仪能够输出具有精确选定频率的射频激励信号,进而在精确的数字控制下扫描 该信号。 如图所示,网络分析仪的接收机侧包括几个相同的调谐接收机。通过网络分析仪进行的测 量,得到的基本上都是两个接收机通道测量结果的比值。通过让接收机通道保持一致,它们 在测量比值中的传递函数能够相互抵消。每个接收机都包括以下器件:可编程衰减器、输入 前置放大器、混频器(用于将输入射频信号向下变频到更适合的 IF 中频信号)、带通滤波器 (只允许混频器输出信号的中频部分通过),以及正交检波器(用于将中频信号作为完整的 矢量加以测量)。接收机衰减器、前置放大器、混频器和带通滤波器的工作方式与前面介绍 频谱分析仪时提到的接收机完全相同。主要区别在于检波器类型。
电路s参数
电路s参数一、什么是电路S参数电路S参数(Scattering parameters)是指在高频电路中,描述电路中各个端口之间互相传递信号的复数系数。
S参数可以用来描述电路的反射和传输特性,是高频电路设计和测试中非常重要的参考指标。
二、S参数的物理意义1. S11:反射系数,表示从端口1输入的信号在端口1处反射回来的程度。
当S11=0时,表示输入信号完全被吸收。
2. S12:传输系数,表示从端口1输入的信号传输到端口2的程度。
当S12=0时,表示输入信号无法到达端口2。
3. S21:插入损耗系数,表示从端口2输出的信号与从端口1输入的信号之间存在多大程度上的损耗。
当S21=0时,表示输出信号无法被正确传递。
4. S22:反射系数,表示从端口2输入的信号在端口2处反射回来的程度。
当S22=0时,表示输入信号完全被吸收。
三、如何测量电路S参数测量电路S参数需要使用网络分析仪(Network Analyzer),一般分为两种类型:1. 矢量网络分析仪:可以同时测量幅度和相位信息,适用于高频电路的测量。
2. 频谱网络分析仪:只能测量幅度信息,适用于低频电路的测量。
测量S参数时需要注意以下几点:1. 测试设备和被测试电路之间需要使用匹配器进行匹配,以避免反射和干扰。
2. 测试时需要保持被测电路的稳定性,避免温度等因素对测试结果产生影响。
3. 测试时需要选择合适的测试频率范围,以覆盖被测电路的工作频率范围。
四、S参数在高频电路设计中的应用1. 优化反射系数:通过调整电路中各个元件的参数,可以使S11接近于0,从而减少信号反射和损耗。
2. 优化传输系数:通过调整电路中各个元件的参数,可以使S12和S21接近于1,从而提高信号传输效率。
3. 设计匹配网络:根据S参数特性设计匹配网络,以实现最佳传输效果和最小反射损耗。
4. 分析故障原因:当出现故障时,可以通过分析S参数变化来确定故障原因所在位置和性质。
高效矢量网络分析仪自动测试方法
高效矢量网络分析仪自动测试方法高效矢量网络分析仪(Vector Network Analyzer,VNA)是一种用于测量微波器件特性的仪器,通常被用于无线通讯、卫星通讯、无线电电视和雷达等领域。
针对多次测试同一样本或需要大规模测试的场景,可以采用自动测试方法,提高测试效率。
本文将介绍高效矢量网络分析仪自动测试方法。
一、自动测试系统原理矢量网络分析仪可以测量S参数,S参数是描述线性网络传输特性的参数,包括幅度和相位信息。
自动测试系统可以自动控制VNA,执行测试任务并保存测试结果。
自动测试系统一般包括测试计划、测试执行、测试分析和测试报告等步骤。
测试计划:包括测试样本的信息(如样本数量、名称、测量频率范围等)、测试参数(如功率、带宽等)和测试模式(如扫频模式、点频模式等)等信息。
测试执行:自动测试系统会执行测试计划中的测试任务,对每个测试样本在指定的频率范围内进行测试,并保存测试结果。
测试分析:对测试结果进行分析,验证测试数据的准确性。
测试报告:将测试结果输出为报告,包括图表和数据表格。
自动测试系统的组成包括自动测量控制器、测试仪器、测试软件和测试固件等。
自动测量控制器:成为测试平台,用于控制测试仪器的各种参数(如频率、功率、灵敏度等),也可以预设多种参数组合,可以快速执行测试任务,也可以实现自动调整测试参数并得到正确的结果。
控制器通常通过串行端口、USB或以太网等接口与计算机或其他工作站连接,与测试软件相互配合,实现自动化控制测试仪器。
测试仪器:主要包括高效矢量网络分析仪(VNA)、功率计、信号源、负载和开关等。
测试仪器必须能够支持自动方式控制,并通过指定的接口与计算机和控制器通信。
测试软件:测试软件是自动测试系统的核心,提供测试计划的管理、测试执行的自动化、测试结果的分析、测试报告的生成等功能。
测试固件:测试固件是安装在测试仪器上的,通常包括测试程序、控制参数和测试过程中自动收集到的数据等信息。
矢量网络分析仪基础知识及S参数测量
矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。
注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。
1.单端口网络习惯上又叫负载ZL。
因为只有一个口,总是接在zui后又称终端负载。
zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。
单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。
2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。
匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。
传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。
插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。
两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。
两端口网络的散射参量有4个,即S11、S21、S12、S22。
这里仅简单的(但不严格)带上一笔。
S11与网络输出端接上匹配负载后的输入反射系数Г相当。
注意:它是网络的失配,不是负载的失配。
负载不好测出的Γ,要经过修正才能得到S11 。
S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。
上述两项是zui常用的。
S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。
S22即由输出端向网络看的网络本身引入的反射系数。
中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。
测试禁带宽度的方法
测试禁带宽度的方法
禁带宽度是指在频率响应曲线上,从通带到阻带的频率范围,也是一个重要的参数来描述滤波器的性能。
为了测试禁带宽度,通常可以采用以下几种方法:
1. 使用频谱分析仪:将信号输入被测滤波器,通过频谱分析仪
可以得到滤波器的频率响应曲线。
从曲线上可以看出通带和阻带的频率范围,进而计算出禁带宽度。
2. 使用网络分析仪:将网络分析仪连接到被测滤波器输入/输出端口,通过扫频可以得到滤波器的S参数。
从S参数曲线上可以看出通带和阻带的频率范围,进而计算出禁带宽度。
3. 使用直接测量法:将滤波器的输入端口和输出端口分别连接
到信号源和示波器,通过改变信号源的频率,测量输出信号的幅度。
从幅度曲线上可以看出通带和阻带的频率范围,进而计算出禁带宽度。
4. 使用信号发生器和频率计:将信号发生器连接到被测滤波器
输入端口,通过改变信号发生器的频率,测量输出信号的幅度,并使用频率计测量幅度下降到-3dB的频率。
该频率即为禁带宽度的上限。
总之,测试禁带宽度的方法有很多种,选择何种方法主要取决于实际情况和需求。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子测量原理
10.2.1 网络分析的基本概念 10.2.2 网络分析系统 10.2.3 反射参数测量 10.2.4 传输参数测量 10.2.5 S参数的全面测量及误差修正
第1页
电子测量原理
10.2.1 网络分析的基本概念
网络——对实际物理电路和元件进行的数学抽象,主要研 究外部特性。 网络分析——在感兴趣的频率范围内,通过线性激励-响 应测试确定元件的幅频特性和相频特性的过程。 网络分析仪——通过正弦扫频测量获得线性网络的传递函 数以及阻抗函数的仪器。
源输出信道S 定向耦合器
BPF
DUT BPF
BPF
传输测试信道A 采
处
样理
反射测试信道B 及
及
量显
参考信道R 化
示
H(s) PFD 参考频率源 第14页
测量电路的组合,首先将入射、反射及传输信号 分离开,然后通过转换开关分别进差。也可以通过幅相接收机实 现此功能。
第12页
标量网络分析仪
电子测量原理
扫频源
定向耦合器
| b1|2
DUT
| b2|2 | a1|2
A
处 理 B及 显 R示
1
➢ 矢量网络参数:S参 数 S11、S22、S21、S12
➢ 矢量相位: 21 arg S21
➢ 品质因数Q
第4页
微波网络S参数
电子测量原理
微波网络常用散射参数(S参数)表示。任何网 络都可用多个S参数表征其端口特性,对n端口网络 需要n2个S参数。
a1 S11
b1
S21 1 DUT 2
S12
程组的行列式
Δk:与第k条开路不接触的子信流图的行列式
第8页
电子测量原理
S参数的流图表示及计算(续2)
信流图计算举例 在双端口网络的端口2上终接一个反射系数为ΓL的负载:
a1
S21
Γ
b1
S11
S12
S 22
ΓL
由梅森法则: 1 S22L
故有:
T1 S11 , 1 1 S22L ,T2 S21S12L , 2 1
二极管检波器
a1为入射波、b1为反射波、b2为传输波,它们的 测量通道分别为R(参考)、A、B。通过这些信号
可确定正向S参数|S11|、|S21|。将被测网络的激励端 与测试端反接,同理可测得|S22|、|S12|。
第13页
矢量网络分析仪
电子测量原理
一种外差式矢量网络分析仪的组成框图如下:
扫频源 LO
➢ 网络分析概述 ➢ 微波网络S参数 ➢ S参数的流图表示及计算
第2页
网络分析概述
电子测量原理
线性网络与非线性网络
➢线性网络(系统):仅改变输入信号的幅度和 (或)相位,不会产生新的频率信号;
➢非线性网络(系统):改变输入信号的频率, 或产生其他频率成分。
网络分析总是假定被分析网络是线性的,因而 可以基于正弦扫频法进行频率特性的定量分析。非 线性网络通常使用频谱仪进行测量。
➢标量网络分析仪:只测量线性系统的幅度信息; ➢矢量网络分析仪:可同时进行幅度传输特性和相 位特性测量。
第10页
系统组成原理
电子测量原理
基本的网络分析仪主要由信号源、S参量测 量装置及矢量电压表组成。
信号源
被测网络
1
2
S参量 测量装置
参考信道R 矢量电压表
测试信道 T
第11页
电子测量原理
➢ 信号源:向被测网络提供入射信号或激励; ➢ S参量测量装置:实际上是反射测量电路与传输
动的方向,并用支路旁标代表支路的传递函数即信号 大小。上图所示的双端口网络可用流图表示如下:
a1
端口1
S1
b1
1
S 21 b2
S 12
S22
端口2 a2
第7页
电子测量原理
S参数的流图表示及计算(续1)
梅森(Mason)不接触环路法则
n
Tk k
T k1
T:信流图所代表的网络的增益或传输函数 Tk:第k条路径上所有支路系数的乘积 Δ:信流图行列式,即信流图所代表的网络的联立方
b1 a1
a2 0
,
S21
b2 a1
a2 0
S11:端口2匹配时端口1的反射系数 S21:端口2匹配时的正向传输系数
S22
b2 a2
a1 0
,
S12
b1 a2
a1 0
S22:端口1匹配时端口2的反射系数 S12:端口1匹配时的反向传输系数
第6页
电子测量原理
S参数的流图表示及计算
信流图 使用节点代表信号,用支路和箭头代表信号及其流
b2 S22
a2
S11、S21、S12、S22:表示双端口网络的四个S 参数,即散射参量。
第5页
微波网络S参数(续)
电子测量原理
散射方程
b1 S11a1 S12a2 b2 S21a1 S22a2
b1、b2: 端口1、2上的所有出射波 a1、a2: 端口1、2上的入射波
S参数的物理意义
S11
S11
1 S22L S21S12L 1 S22L
S11
S21S12L 1 S22L
第9页
10.2.2 网络分析系统
电子测量原理
网络分析仪是通过测定网络的反射参数和传输参 数,从而对网络中元器件特性的全部参数进行全面 描述的测量仪器,用于实现对线性网络的频率特性 测量。
网络分析仪能够完成反射、传输两种基本测量, 从而确定几乎所有的网络特性,S参数是其中最基本 的特性。
第3页
网络分析概述(续)
电子测量原理
网络分析参数 ➢ 标量反射参数: 、S11 、S22
回波损失RL 20lg , 或 20lg S11 、 20lg S22
驻波比VSWR
1 1-
, 11
1 1
S11 S11
, 22
1 1
S22 S22
➢ 标量传输参数:衰减A 20lg S21
➢ 矢量反射参数:、阻抗Z 1