(完整word版)五年级奥数题:数的整除性
(完整版)奥数数的整除讲义及答案
数的整除( 1)性质、特色、奇偶性教室:姓名:学号:【知识要点】:整除性:( 1)若是数 a、b 都能被 c 整除,那么它的和( a+b)或差( a- b)也能被 c 整除。
(2)若是数 a 能被自然数 b 整除,自然数 b 能被自然数 c 整除,数 a 必能被数 c 整除。
(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它的也能被个数整除。
(4)若是一个数能被两个互数中的每一个数整除,那么,个数能被两个互数的整除。
反之,若一个数能被两个互数的整除,那么个数能分被两个互数整除。
整除特色:( 1)若一个数的末两位数能被4(或25)整除,个数能被4(或25)整除。
(2)若一个数的末三位数能被8(或125)整除,个数能被8(或125)整除。
(3)若一个数的各位数字之和能被3(或9)整除,个数能被3(或9)整除。
(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11 整除,个数能被11 整除。
(5)若一个数的末三位数字所表示的数与末三位从前的数字所表示的数之差(大数减小数)能被 7(或 13)整除,个数能被7(或 13)整除。
奇偶性:( 1)奇数±奇数 =偶数( 2)偶数±偶数 =偶数( 3)奇数±偶数 =奇数( 4)奇数×奇数 =奇数( 5)偶数×偶数 =偶数( 6)奇数×偶数 =偶数( 7)奇数÷奇数 =奇数( 8)⋯【典型例】例 1:一个三位数能被 3 整除,去掉它的尾端数后,所得的两位数是17 的倍数,的三位数中,最大是几?解:在两位数中,是17 的倍数的数中最大的17×5=85( 17× 6=102) .于是所求数的前两位数字 85.因 8+5=13 ,故所求数的个位数字2、5、8 ,数能被 3 整除,使数最大,其个位数字8.最大三位数是858.例 2: 1~ 200 200 个自然数中,能被 6 或 8 整除的数共有多少个?解:1~ 200 中,能被 6 整除的数共有33 个( 200÷ 6=33⋯),能被 8 整除的数共有25 个( 200 ÷8=25 ) .但[ 6, 8]=24 , 200÷ 24=8⋯⋯ 8,即 1~ 200 中,有 8 个数既被 6 整除,又被8 整除。
小学五年级数学奥数:数的整除(附练习及详解)
一、基本概念和知识1.整除例如:15÷3=5;63÷7=9一般地;如a、b、c为整数;b≠0;且a÷b=c;即整数a除以整除b(b不等于0);除得的商c正好是整数而没有余数(或者说余数是0);我们就说;a能被b整除(或者说b能整除a)7是63的约数.2.数的整除性质性质1:如果a、b都能被c整除;那么它们的和与差也能被c整除.例如:如果2|10;2|6;那么2|(10+6);并且2|(10—6).性质2:如果b与c的积能整除a;那么b与c都能整除a.即:如果bc|a;那么b|a;c|a.性质3:如果b、c都能整除a;且b和c互质;那么b与c的积能整除a.即:如果b|a;c|a;且(b;c)=1;那么bc|a.例如:如果2|28;7|28;且(2;7)=1,那么(2×7)|28.性质4:如果c能整除b;b能整除a;那么c能整除a.即:如果c|b;b|a;那么c|a.例如:如果3|9;9|27;那么3|27.3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除.③能被4(或25)整除的数的特征:末两位数能被4(或25)整除.④能被5整除的数的特征:个位是0或5.⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除.⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是0或11的倍数.⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除.练习及详解例题1. 四位数“3AA1”是9的倍数;那么A=_____.(小五奥数)解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.练习(2)已知一个五位数□691□能被55整除,所有符合题意的五位_____.例题 2. 1至100以内所有不能被3整除的数的和是_____.解析:先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+…+100)-(3+6+9+12+…+99)=(1+100)÷2×100-(3+99)÷2×33 =5050-1683=3367练习所有能被3整除的两位数的和是______.例题3. 能同时被2、3、5整除的最大三位数是_____.练习能同时被2、5、7整除的最大五位数是_____.例题4. 173□是个四位数字;数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?答案:∵能被9整除的四位数的各位数字之和能被9整除;1+7+3+□=11+□∴□内只能填7.∵能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得的差能被11整除.∴(7+□)-(1+3)=3+□能被11整除, ∴□内只能填8.∵能被6整除的自然数是偶数,并且数字和能被3整除,而1+7+3+□=11+□, ∴□内只能填4. 所以,所填三个数字之和是7+8+4=19.练习在1992后面补上三个数字;组成一个七位数;使它们分别能被2、3、5、11整除;这个七位数最小值是多少?。
五年级奥数竞赛之数的整除性
五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。
它可记为:若m/a,m/b,则m/(a?b)。
m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。
如果两个数只有唯一的公约数1,则称这两个数互质。
例如1与12,4与5,5与9,3与25等。
性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。
例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。
性质2中,“两数互质”这一条件是必不可少的。
6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。
根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。
性质3 (传递性)如果c/b,且b/a,那么c/a。
特别是若b/a,m为整数,则有b/(a×m)。
1、形如1993 1993…1993 520,且能被11整除的最小数是。
n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。
最左边一个数字是3,且此六位数能被11整除。
这样的六位数中的最小的数是。
5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。
7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。
五年级奥数题:数的整除性
数的整除性一、填空题1. 四位数“ 3AA1”是9的倍数,那么A= _____ .2. 在“ 25口79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____ .3. 能同时被2、3、5 整除的最大三位数是_____.4. 能同时被2、5、7 整除的最大五位数是_____.5. 1 至1 00以内所有不能被3整除的数的和是____ .6. 所有能被3 整除的两位数的和是 _____ .7. 已知一个五位数口691 □能被55整除,所有符合题意的五位数是______ .8. 如果六位数1992口□能被105整除,那么它的最后两位数是_______ .9. 42 □ 28□是99的倍数,这个数除以99所得的商是 ______ .10. 从左向右编号为1 至1991 号的1991 名同学排成一行, 从左向右1 至11报数,报数为11 的同学原地不动,其余同学出列;然后留下的同学再从左向右 1 至11报数,报数为 1 1的留下,其余同学出列;留下的同学第三次从左向右1至11 报数,报到1 1的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_______________ 号.二、解答题11. 173 □是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12 .在1992 后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11 整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将1 00张黄油票换成1 00张香肠票,并且在整个交换过程中刚好出手了1 991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1 —定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771 9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+口+9应等于12, □内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999 □ 0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+ ...+100)- (3+6+9+12+ (99)=(1+100) 2 100-(3+99) 2 33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21, …,96, 99这一列数共30个数,其和为12+15+18+…+96+99=(12+99) 30 2=16657. 96910 或46915五位数A691B能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,A6910能被11整除,所以(A+9+0)-(6+1)= A+2能被11整除, 因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=3 5 7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。
小学五年奥数-数的整除
数的整除【知能大展台】1. 整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。
2. 数的整除性质①如果数a能被数C整除,数b也能被数C整除,那么它们的和(a+b)或差(a-b)也能被C整除c∣a,c∣b ,贝U CIa ±bo②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。
③数a能被数b整除,数a也能被数C整除,如果b,c互质,那么数a能被b与C的积整除。
3. 数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被“整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,"或13整除,那么这个数就能被7,"或13整除【试金石】例1 •小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25, 3与25互质。
所以3□6□ 5能同时被3和25整除。
3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75o当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被 3 整除,则千位数字只能是2, 5, 8,而这些五位数中最大的一个是38625,且无重复数字。
小学五年奥数-数的整除
数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。
2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。
②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。
③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。
3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。
所以3□6□5能同时被3和25整除。
3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。
当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。
同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。
小学五年级奥数题及答案:数的整除
小学五年级奥数题及答案:数的整除
五年级奥数题及答案:数的整除,题目难度适中,建议五年级的学生认真做完题后,再来查看正确的答案。
数的整除问题:
李老师为学校一共买了28支价格相同的钢笔,共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?
数的整除答案:
∵9□.2□元=9□2□分
28=4_7,
∴根据整除”性质2”可知
4和7均能整除9□2□。
4|2□可知□处能填0或4或8。
因为79_0,79424,所以□处不能填0和4;
因为7|9828,所叫□处应该填8。
又∵9828分=98.28元
98.28÷28=3.51(元)
答:每支钢笔3.51元。
小学五年级奥数题及答案:数的整除.到电脑,方便收藏和打印:。
小学五年级奥数题:数的整除性(4页)
二数的整除性(B)年级班姓名得分一、填空题1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3. 下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5. 有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6. 一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7. 任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8. 有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9. 从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10. 所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13.500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14.试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.———————————————答案——————————————————————1. 2620或2711一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又238568÷88=2711所以,本题的答案是2620或2711.2. 0因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.3. 633...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要个个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.4. 10,11,12或21,22,23或32,33,34.三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2()1(++++n n n 能被3整除.5. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.6. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.7. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A 也能被9整除,所以A 有以下八种可能取值:9,18,27,36,45,54,63,72.从而A 的各位数字之和B 总是9,B 的各位数字之和C 也总是9.8. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.9. 7410根据能被2、3、5、整除的数的特征,这个四位数的个位必须是0,而十位、百位、千位上数字的和是3的倍数。
五年级奥数数的整除问题及答案
五年级奥数数的整除问题及答案
奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学习惯的过程。
让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。
数学网为大家准备了奥数题,希望的五年级奥数题及参考答案:数的整除问题,可以帮助到你们,助您快速通往高分之路!!
李老师为学校一共买了28支价格相同的钢笔,共付人民币
9□.2□元.□处数字相同,请问每支钢笔多少元?
解:∵9□.2□元=9□2□分
28=4×7,
∴根据整除"性质2"可知
4和7均能整除9□2□。
4|2□可知□处能填0或4或8。
因为79020,79424,所以□处不能填0和4;
因为7|9828,所叫□处应该填8。
又∵9828分=98.28元
98.28÷28=3.51(元)
答:每支钢笔3.51元。
五年级奥数—数的整除性(一)
数的整除性(一)数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。
(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。
(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4)若一个整数的末位是0或5,则这个数能被5整除。
(5)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
(7)若一个整数的数字和能被9整除,则这个整数能被9整除。
(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(9)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
(10)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
五年级奥数题数的整除问题【三篇】
五年级奥数题数的整除问题【三篇】
导读:本文五年级奥数题数的整除问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】判断123456789这九位数能否被11整除? 解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。
【第二篇】判断13574是否是11的倍数? 解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|0.因此13574是11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
【第三篇】判断3546725能否被13整除? 解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.。
小学五年奥数-数的整除
数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。
2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。
②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。
③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。
3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。
所以3□6□5能同时被3和25整除。
3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。
当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。
同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。
五年级奥数专题02:数的整除性
五年级奥数专题02:数的整除性二数的整除性(A)年级班姓名得分一、填空题1.四位数“3AA1”是9的倍数,那么A=_____.2.在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3.能同时被2、3、5整除的最大三位数是_____.4.能同时被2、5、7整除的最大五位数是_____.5.1至100以内所有不能被3整除的数的和是_____.6.所有能被3整除的两位数的和是______.7.已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8.如果六位数1992□□能被105整除,那么它的最后两位数是_____.9.42□28□是99的倍数,这个数除以99所得的商是_____.10.从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题11.173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.二数的整除性(B)年级班姓名得分一、填空题1.一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2.123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3.下面一个1983位数中间漏写了一个数字(方框),已知这个多位数被7整除,那么中间方框内的数字是_____.4.有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是___.7.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9.从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10.所有数字都是2且能被整除的最小自然数是_____位数.二、解答题11.找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13.500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14.试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.———————————————答案——————————————————————1.7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,37719=419.2.1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.3.990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4.99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5.3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+...+100)-(3+6+9+12+ (99)=(1+100)2100-(3+99)233=5050-1683=33676.1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21,…,96,99这一列数共30个数,其和为12+15+18+…+96+99=(12+99)302=16657.96910或46915五位数能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除,因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8.90因为105=357,根据数的整除性质,可知这个六位数能同时被3、5和7整除。
五年级下册数学试题-奥数——数的整除特性(全国通用)(无答案)
第5讲 数的整除特性一、知识点1. 整除概念定义 如果整数a 除以整数b ,商是整数且余数为0,则称a 能被b 整除或b 整除a ,记作a b ,其中a 叫做b 的倍数,b 叫做a 的约数(因数).注 (1)零是任何正整数的倍数;(2)1是任何正整数的约数;2. 数的整除性质(1)如果,,c b b a 则.c a(2)如果,,b c a c 则)(b a c .3. 数的整除特性(1)一个整数的个位上是0,2,4,6,8,这个数能被2整除;(2)一个整数的个位上是0,5,这个数能被5整除;(3)一个整数各位上数字的和能被3或9整除,那么这个整数也能被3或9整除;(4)一个整数的末两位数能被4或25整除,那么这个整数也能被4或25整除;(5)一个整数的末三位数能被8或125整除,那么这个整数也能被8或125整除;(6)一个整数既能被2整除,又能被3整除,那么这个数能被6整除;反之,一个整数能被6整除,那么这个数一定能被2或3整除;(7)能被11整除的数的特性:一个整数的奇数位上的数字之和与偶数位上的数字之和的差是11的倍数,那么这个数是11的倍数;(8)能被7(11或13)整除的数的特性:一个整数的末三位数与末三位之前的数之差能被7(11或13)整除,那么这个数能被7(11或13)整除.二、典型例题例1 下列11个数:23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407.其中能被4整除的有_____________________;能被8整数的是__________________; 能被25整除的有_____________________;能被125整除的有_____________________; 能被3整除的有______________________;能被9整除的有______________________; 能被11整除的有______________________.例2 173 是一个四位数,在方框内先后填入3个数字,得到3个四位数,依次能被9,11,8整除,则填入的3个数字之和是______________.例3 一个五位数y x 362能被55整除,则这个五位数是____________.例4 老师买了72本相同的书,当时没有记住每本书的价格,只记下了用掉的总钱数是13.7 元,回校后发现有两个数字看不清了.你能帮助补上这两个数字吗?例5 已知四位数abcd 是11的倍数,且有,a c b =+bc 为完全平方数,求该四位数.例6 六位数ABABA 3是6的倍数,这样的六位数有多少个?例7 由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?三、水平测试1.下列9个数:48、75、90、122、650、594、4305、7836、4100.其中能被4整除的有_______________;能被25整除的有_______________;能被9整除的有________________;能被11整除的有________________.x236能被63整除,则这个五位数是______________.2.一个五位数y3.125是一个四位数,在方框中先后填入3个数字,得到3个四位数,依次能被9,11,8整除,则填入的3个数字之和是_____________.4.在2、3、4、5、6这五个数字取四个不同的数字组成的四位数中,其中能被45整除的最大四位数是____________.568,能同时被3、4、5整除,这个六位数最小是___________.5.一个六位数abc6. 能被11整除,各位数字的和为14且小于1000的正整数有___________个.。
五年级奥数_数的整除
开元教育数的整除姓名_______________数的整除特征:①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。
⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。
⑧互质6=2*3 88=8*11 ·······例1、36、60、87、95、104、123、235、396、432、505、606、712、918这些数中。
能被2整除的数有________________________________________;是3的倍数的有_________________________________;5的倍数有____________________________。
你还能找出哪些数是6的倍数吗?______________________________________。
例2、126、248、368、472、582、1234、5678、2468、2340、97532这些数中能被4整除的数有_______________________________;8的倍数有____________________。
你还能找出12的倍数吗?___________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除性
一、填空题
1. 四位数“3AA1”是9的倍数,那么A=_____.
2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.
3. 能同时被2、3、5整除的最大三位数是_____.
4. 能同时被2、5、7整除的最大五位数是_____.
5. 1至100以内所有不能被3整除的数的和是_____.
6. 所有能被3整除的两位数的和是______.
7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.
8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____.
9. 42□28□是99的倍数,这个数除以99所得的商是_____.
10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.
二、解答题
11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?
12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?
13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?
14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
———————————————答案——————————————————————
1. 7
已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.
设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771÷9=419.
2. 1
这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.
3. 990
要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.
4. 99960
解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.
解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.
5. 3367
先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.
(1+2+3+...+100)-(3+6+9+12+ (99)
=(1+100)÷2⨯100-(3+99)÷2⨯33
=5050-1683
=3367
6. 1665
能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:
12,15,18,21,…,96,99
这一列数共30个数,其和为
12+15+18+…+96+99
=(12+99)⨯30÷2
=1665
7. 96910或46915
A691能被55整除,即此五位数既能被5整除,又能被11整除.所以五位数B
A能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除, B=0或5.当B=0时,6910
因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.
8. 90
因为105=3⨯5⨯7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。
根据能被5整除的数的特征,可知这个六位数的个位数只能是0或5两种,
再根据能被3整除的数的特征,可知这个六位数有如下七个可能:199200,199230,199260,199290,199215,199245,199275.
最后用7去试除知,199290能被7整除.
所以,199290能被105整除,它的最后两位数是90.
[注]此题也可以这样思考:先把后面两个方框中填上0后的199200除以105,根据余数
的大小来决定最后两个方框内应填什么.
199200÷105=1897 (15)
105-15=90
如果199200再加上90,199290便可被105整除,故最后两位数是90.
9. 4316
因为99=9⨯11,所以42□28□既是9的倍数,又是11的倍数.根据是9的倍
数的特点,这个数各位上数字的和是9的倍数.42□28□这个六位数中已知的四
个数的和是4+2+2+8=16,因此空格中两个数字的和是2或11.我们把右起第一、三、五位看做奇位,那么奇位上已知两个数字的和是2+2=4,而偶位上已知两个数字的和是4+8=12,再根据是11的倍数的特点,奇位上数字的和与偶位上数的和之差是0或11的倍数,所以填入空格的两个数应该相差3或相差8.从以上分析可知填入的两个数字的和不可能是2,应该是11.显然它们的差不可能是8,应
该是3,7和4.填入空格时要注意7填在偶位上,4填
在奇位上,即原六位数是又427284÷99=4316,所以所得的商是4316.
10. 1331
第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121 的倍数;
第三次报数后留下的同学最初编号都是1331的倍数.
所以最后留下的只有一位同学,他的最初编号是1331.
11. ∵能被9整除的四位数的各位数字之和能被9整除,
1+7+3+□=11+□
∴□内只能填7.
∵能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得的差能被11整除.
∴ (7+□)-(1+3)=3+□能被11整除, ∴□内只能填8.
∵能被6整除的自然数是偶数,并且数字和能被3整除,
而1+7+3+□=11+□, ∴□内只能填4.
所以,所填三个数字之和是7+8+4=19.
12.
设补上的三个数字组成三位数abc,由这个七位数能被2,5整除,说明c=0;
由这个七位数能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,从而
a+b能被3整除;
由这个七位数又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;
由所组成的七位数应该最小,因而取a+b=3,a-b=1,从而a=2,b=1.
所以这个最小七位数是1992210.
[注]小朋友通常的解法是:根据这个七位数分别能被2,3,5,11整除的条件,这个七位数必定是2,3,5,11的公倍数,而2,3,5,11的最小公倍数是2⨯3⨯5⨯11=330.
这样,1992000÷330=6036…120,因此符合题意的七位数应是(6036+1)倍的数,即
1992000+(330-120)=1992210.
13. 不可能.由于瓦夏原有100张票,最后还有100张票,所以他作了多少次“两换三”,那么也就作了多少次“三换两”,因此他一共出手了2k +3k =5k 张票,而1991不是5的倍数.
14. 显然,这样的自然数不可能为两位数,因为如果是两位数的话,则必然具有形式xx ,但x x x 2=+为偶数,与它的各位数字之和等于13矛盾.现设求之数为三位数xyz .于是由题意13=++z y x ,且由被11整除的判别法则知z y x +-是11的倍数.又由于所求之数为最小,故有z y x +-=11.两式相减得1=y .于是=+z x 12,由于3,9≥≤x z 从而.当9,3==z x 时.
所以,所求的最小自然数是319.。