三极管丶晶闸管丶场效应管基础知识培训
课件:二极管、三极管、晶闸管知识讲解
vi
+
D
+
0
t
vi
RL
vo
6
vo
-
-
0
t
(a)
(b)
稳压
稳压二极管的特点就是反向通电尚 未击穿前,其两端的电压基本保持不变。 这样,当把稳压管接入电路以后,若由 于电源电压发生波动,或其它原因造成
6
电路中各点电压变动时,负载两端的电 压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字 表示
管加反向电压时,不管控制极加
怎样的电压,它都不会导通,而
处于截止状态,这种状态称为晶
闸管的反向阻断。
主回路加反向电压
c 触发导通 d 反向阻断
可控硅只有导通和关断两种工作状态,它具有 开关特性,这种特性需要一定的条件才能转化, 此条件见下表
状态
条件
说明
从关断到导通
1、阳极电位高于是阴极电位
2、控制极有足够的正向电压和电流
图a
开关断开
b 正向阻断
(2)触发导通 在图(c)所示
电路中,晶闸管加正向电压,在
控制极上加正向触发电压,此时
指示灯亮,表明晶闸管导通,这
种状态称为晶闸管的触发导通。
(3)反向阻断 在图(d)所示
电路中,晶闸管加反向电压,即
a极接电源负极,k极接电源正极,
此时不论开关s闭合与否,指示
灯始终不亮。这说明当单向晶闸
单向可控硅的结构
不管可控硅的外形如何,它们的管芯都是由P型 硅和N型硅组成的四层P1N1P2N2结构。它有三 个PN结(J1、J2、J3),从J1结构的P1层引 出阳极A,从N2层引出阴级K,从P2层引出控制 极G,所以它是一种四6 层三端的半导体器件。
第4讲晶体三极管及场效应管.课件
ICBO IBE N
P
ICEO受温度影响 很大,当温度上
升时,ICEO增加 很快,所以IC也 相应增加。三极
管的温度特性较
差。
IBE
N
根据放大关系,
ICBO进入N E
区,形成
由于IBE的存 在,必有电流
IBE。
IBE。
4.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降, 当值下降到正常值的三分之二时的集电极电
栅-源电压对导电沟道宽度的控制作用
沟道最宽
UGS(off)
沟道变窄
沟道消失 称为夹断
uGS可以控制导电沟道的宽度。为什么g-s必 须加负电压?
动画演示
漏-源电压对漏极电流的影响
(UGS(off)< uGS <0且uDS >0的情况)
uGD>UGS(off)
uGD=UGS(off)
预夹断
uGD<UGS(off)
放大状态:发射结正偏,集电结反偏。
IC IB 截止状态:发射结零偏或反偏,集电结反偏。
IB 0, IC ICEO 0
饱和状态:反射结正偏,集电结正偏。
UCE U BE , IC IB ,UCES 0.3V
3、使用晶体管时,不能超过其极限参数。在放大状态,一
般取
___
4、温度对晶体管的参数和特性有很大的影响。
晶体三极管
一、晶体管的结构和符号 二、晶体管的放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
一、晶体管的结构和符号
双极型三极管(BJT)是半导体三极管的一种类型,它 有空穴和电子两种载流子参与导电,故称双极型,又称 半导体三极管,有两种类型:NPN型和PNP型。
晶体管培训资料
电阻器是一种被动元件,它通过限制电流的流动来改变电压 。晶体管则是一种主动元件,它可以通过放大或开关合电流 来控制电流的流动。
晶体管与二极管
总结词
二极管是单向导电的元件,而晶体管可以放大、开关合和双向导通电流。
详细描述
二极管只允许电流在一个方向上流动,而晶体管可以在没有电阻的情况下双 向导通电流。此外,晶体管还可以放大和开关合电流,而二极管只能单向导 电。
晶体管电路的优化方法
电路优化原则
了解电路优化的一般原则,包 括提高性能指标、降低成本、
减小体积等。
元器件选型优化
选用适当的元器件,如高质量的 电阻电容、低噪声的晶体管等, 提高电路的整体性能。
电路设计优化
通过改进电路拓扑结构、优化元件 布局、选择合适的电源等措施,减 小电路的误差、提高电路性能和可 靠性。
晶体管种类
双极型晶体管
由三极或四极组成,具有高放 大倍数、高速放大倍数和低噪 声等优点,广泛用于信号放大
和开关电路中。
场效应管
通过电场作用实现信号放大和开 关,具有低噪声、高输入阻抗等 优点,适用于高速、低噪声电路 中。
晶闸管
一种大功率控制器件,具有导通、 关断和触发等作用,常用于交流开 关电源、电机控制等大功率应用场 景中。
06
实践案例:晶体管电路设计技巧
晶体管电路设计基本原则
掌握电路设计基本原理
了解电路的基本组成、电流电压关系、欧姆定律、基尔霍夫定律等基本电学知识。
熟悉晶体管特性
了解晶体管的静态和动态特性,包括极间电容、放大倍数、频率响应等,以便合理选择晶体管。
掌握信号流程和干扰控制
理解信号的基本流程,包括输入、放大、输出,以及如何控制干扰,提高电路的信噪比。
三极管、MOSFET、晶闸管
双极性晶体管(三极管)的简称就是BJT,是电流控制器件,通过基极电流控制集电极电流;场效应晶体管的简称叫做FET,是电压控制器件,通过栅源电压控制漏极电流;晶闸管,是电流控制器件,通过门极电压控制阳极和阴极的导通,不能控制他们的截止。
它们的共同点就是通过某一极来控制另外两个极的导通与截止。
BJT对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。
它只是把电源的能量转换成信号的能量罢了。
但三极管厉害的地方在于:它可以通过小电流控制大电流。
假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。
小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。
所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。
如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。
在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。
当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。
如果水流处于可调节的状态,这种情况就是三极管中的线性放大区。
如果那个小的阀门开启的还不够,不能打开大阀门,这种情况就是三极管中的截止区。
如果小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,这种情况就是三极管中的饱和区。
但是你关小小阀门的话,可以让三极管工作状态从饱和区返回到线性区。
如果有水流存在一个水库中,水位太高(相应与Uce太大),导致不开阀门江水就自己冲开了,这就是二极管的反向击穿。
PN结的击穿又有热击穿和电击穿。
当反向电流和反向电压的乘积超过PN结容许的耗散功率,直至PN结过热而烧毁,这种现象就是热击穿。
电击穿的过程是可逆的,当加在PN结两端的反向电压降低后,管子仍可以恢复原来的状态。
场效应管与三极管基础知识讲解
mos管分四种,N沟道增强型和耗尽型,P沟道增强型和耗尽型。
箭头指向g 的且带虚线的为N增强,没有虚线的为N耗尽。
箭头背向g端的且带虚线的为P增强,不带虚线则为P耗尽。
希望说的你能明白,小妹新手,多多关照!有没说清楚的继续,呵呵···场效应管三极管开关电路基础发布时间:2008-12-08 23:08:32三极管简介:三极管的种类很多,并且不同型号各有不同的用途。
三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。
实际上箭头所指的方向是电流的方向。
图1双极面结型晶体管有两个类型:npn和pnp。
npn类型包含两个n 型区域和一个分隔它们的p型区域;pnp类型则包含两个p型区域和一个分隔它们的n型区域,图2和图3分别是它们的电路符号。
以下的说明将集中在npn BJT。
图2: npn BJT 的电路符号图3: pnp BJT 的电路符号BJT工作于三种不同模式:截止模式、线性放大模式及饱和模式,见图4。
图4 四种工作模式BJT在电子学中是非常重要的元件。
它们被广泛应用在其他展品中,特别是模拟电路里的放大器和数码电路里的电子开关。
开关电路原则a. BJT三极管Transistors只要发射极e 对电源短路就是电子开关用法N管发射极E 对电源负极短路. 低边开关;b-e 正向电流饱和导通P管发射极E 对电源正极短路. 高边开关 ;b-e 反向电流饱和导通b. FET场效应管MOSFET只要源极S 对电源短路就是电子开关用法N管源极S 对电源负极短路. 低边开关;栅-源正向电压导通P管源极S 对电源正极短路. 高边开关;栅-源反向电压导通总结:低边开关用 NPN 管高边开关用 PNP 管三极管b-e 必须有大于C-E 饱和导通的电流场效应管理论上栅-源有大于漏-源导通条件的电压就就OK假如原来用NPN 三极管作ECU 氧传感器加热电源控制低边开关则直接用N-Channel 场效应管代换;或看情况修改下拉或上拉电阻基极--栅极集电极--漏极发射极--源极NPN和PNP 开关三极管(1)我把NPN三极管看成一个三个脚继电器.基极-----就是一个小电流的.继电器的信号吧集电极-----可以说是正极吧发射极------可以说负极吧有一个小电流流入了基极的话那么集电极和发射极就会通.(2)PNP三极管看成一个三个脚继电器.基极-----就是一个小电流的继电器信号集电极-----可以说是正极吧发射极------可以说负极吧有一个小电流流出了基极的话,那么集电极和发射极就会通.三极管VS场效应管三极管BJT--------TRANSISTORS ----------- 电流驱动场效应管----- FET ------------------------- 电压驱动MOS场效应管MOSFET ................ 电压驱动2N70022n7002 IC产品型号的一种描述:晶体管极性:N沟道漏极电流, Id 最大值:280mA电压, Vds 最大:60V开态电阻, Rds(on):5ohm电压@ Rds测量:10V电压, Vgs 最高:2.1V功耗:0.2W工作温度范围:-55to 150封装类型:SOT-23针脚数:3SVHC(温度关注物质):Cobalt dichloride (18-Jun-2010) SMD标号:702功率, Pd:0.2W外宽:3.05mm外部深度:2.5mm外部长度/高度:1.12mm封装类型:SOT-23带子宽度:8mm晶体管数:1晶体管类型:MOSFET温度@ 电流测量:25°C满功率温度:25°C电压Vgs @ Rds on 测量:10V电压, Vds 典型值:60V电流, Id 连续:0.115A电流, Idm 脉冲:0.8A表面安装器件:表面安装通态电阻, Rds on @ Vgs = 10V:5ohm通态电阻, Rds on @ Vgs = 4.5V:5.3ohm阈值电压, Vgs th 典型值:2.1V阈值电压, Vgs th 最高:2.5VSVHC(高度关注物质)(附加):Bis (2-ethyl(hexyl)phthalate) (DEHP) (18-Jun-2010)MOS管的基本知识(转载)2011-05-07 06:39:32| 分类:电路硬件设计| 标签:|字号大中小订阅现在的高清、液晶、等离子电视机中开关电源部分除了采用了PFC技术外,在元器件上的开关管均采用性能优异的MOS 管取代过去的大功率晶体三极管,使整机的效率、可靠性、故障率均大幅的下降。
场效应管——培训课件
(3)击穿区(图中Ⅲ区)
当VDS 增至一定数值后,I D 剧增,出现电击穿。如果对 此不加限制,将损坏管子。因此,管子不允许工作在这个 区域。
图2.2.6 结型场效应管的输出特性曲线
3. 跨导(gm) 反映在线性放大区 VGS对ID的控制能力。单位是μA/V 。
gm
I D VGS
(2.2.1)
2.2.2 绝缘栅场效应管 绝缘栅场效应管是一种栅极与源极、漏极之间有绝缘层 的场效应管,简称MOS管。 特点:输入电阻高,噪声小。 分类:有P沟道和N沟道两种类型;每种类型又分为增强 型和耗尽型两种。 一、结构和工作原理 1. N沟道增强型绝缘栅场效应管
图2.2.8 N沟道增强型绝缘栅场效应管工作原理
(3)在 VDS 0 时: 若 VGS VT ,反型层消失,无导电沟道,ID 0 ; 若 VGS VT ,出现反型层即(导电沟道),D、S之间有
电流 I D 流过; 若VGS 逐渐增大,导电沟道变宽,I D 也随之逐渐增大,
即 VGS控制 I D 的变化。
图2.2.7 N沟道增强型绝缘栅场效应管
工作原理如图2.2.8所示: (1)当 VGS 0 ,在漏、源极间加一正向电压VDS 时,漏 源极之间的电流 ID 0 。 (2)当VGS 0 ,在绝缘层和衬底之间感应出一个反型层, 使漏极和源极之间产生导电沟道。在漏、源极间加一正向电 压VD开S时启,电将压产VT生:电增流强ID型。MOS管开始形成反型层的栅源电压。
图2.2.9 N沟道耗尽型绝缘栅场效应管
二、绝缘栅场效应管的特性曲线和跨导 以N沟道MOS管为例。 1. 转移特性曲线 N沟道MOS管的转移特性曲线如图2.2.10所示。 增强型:当VGS 0 时,ID 0 ;当VGS VT 时,ID 0 。 耗尽型:当 VGS 0 时,ID 0 ;当VGS 为负电压时I D 减小;当VGS VP 时,ID 0 。
华大半导体181页PPT基础知识培训——常用半导体器件讲解
另有一类物质的导电特性处于导体和绝缘体 之间,称为半导体,如锗、硅、砷化镓和一些 硫化物、氧化物等。
((112--22
半导体的导电机理不同于其它物质,所 以它具有不同于其它物质的特点。比如: 热敏性、光敏性、掺杂性。
当受外界热和光的作用时,它的导 电能力明显变化。
((118--88
硅和锗的共价键结构
+4表示除 去价电子 后的原子
+4
+4
+4
+4
共价键共 用电子对
((119--99
形成共价键后,每个原子的最外层电 子是八个,构成稳定结构。
+4
+4
+4
+4
共价键有很强的结合力, 使原子规则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键 中,称为束缚电子,常温下束缚电子很难脱 离共价键成为自由电子,因此本征半导体中 的自由电子很少,所以本征半导体的导电能 力很弱。
(1) 最大整流电流IF (2) 反向击穿电压VBR和最大反向工作电压VRM
(3) 反向电流IR
(4) 最高工作频率 fM
((114--74477
补充参数:
(电信专业)
(5)最大整流电流 IOM
二极管长期使用时,允许流过二极管的最大正
向平均电流。
——注意与IF的关系
(6) 正向压降VF
(7) 极间电容CB、 CD
半导体和N型半导体,经过载流子的扩散, 在它们的交界面处就形成了PN结。
((112--12211
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -
《三极管基本知识》PPT课件
三极管是电子电路中的重要元件,广泛应用于放大、开关、振荡等电路中。随 着电子技术的发展,三极管的应用领域不断扩大,对电子工程师的要求也越来 越高。
课程内容和结构
课程内容
本课程将介绍三极管的基本原理、结构、特性、参数以及应用等方面的知识。
课程结构
本课程将按照“由浅入深、循序渐进”的原则,先介绍三极管的基本概念和原理,然后逐步深入讲解三极管的特 性和应用。具体内容包括:三极管的基本原理、结构和分类;三极管的放大原理和特性;三极管的参数和选型; 三极管的应用电路和实例等。
输入特性曲线
输入特性曲线表示三极管在放 大状态下,基极电流(Ib)与 基极-发射极电压(Vbe)之
间的关系。
输入特性曲线与二极管的伏 安特性曲线类似,呈指数关
系。
当Vbe较小时,Ib几乎为零, 当Vbe超过一定值后,Ib随 Vbe的增大而迅速增大。
输出特性曲线
输出特性曲线表示三极管在放大状态下,集电极电流 (Ic)与集电极-发射极电压(Vce)之间的关系。
工业控制领域
三极管在工业控制电路中也有 着广泛的应用,如电机控制、
温度控制等。
消费电子领域
音响、电视、冰箱等消费电子 产品中也需要使用三极管进行
信号放大或电路控制。
03
三极管结构与工作原理
三极管内部结构
掺杂浓度
发射区掺杂浓度最高,基区很薄且 掺杂浓度最低,集电区掺杂浓度较 高。
PN结
三极管内部包含两个PN结,分别 是发射结和集电结。
三极管主要参数
01
02
03
电流放大系数
表示三极管对电流的放大 能力,是判断三极管放大 性能的重要参数。
极间反向电流
包括集电极-基极反向饱和 电流和集电极-发射极反向 饱和电流,反映了三极管 的截止性能。
培训资料料(三极管)
判断三个电极
01
利用万用表的欧姆档,测量三极管三个电极之间的电阻,根据测量结果判断三极管的三个电极。
三极管的检测方法
判断类型
02
通过测量基极和集电极之间的电阻,可以判断三极管的类型是NPN型还是PNP型。
判断放大倍数
03
通过测量基极和集电极之间的电阻,可以计算出三极管的放大倍数。
三极管的代换原则
代换步骤
首先将原三极管从电路板上拆下,然后将新三极管插入相应的位置,并固定好引脚。
注意问题
代换三极管时需要注意新三极管的型号、规格、放大倍数等参数是否与原三极管相同,同时还需要注意接线方式是否正确。
三极管的代换方法
三极管常见故障及维修
06
三极管的一般故障主要包括开路、短路和性能不良等。
总结词
三极管开路故障通常表现为电路无法正常工作,检测时可通过测量三极管的直流电阻和电压来判断。三极管短路故障可能导致电路异常发热甚至烧毁,检测时需要进行电路板和三极管的清洁与检查。性能不良故障通常表现为信号失真或放大效果不佳等,这类故障需要通过调整三极管的静态工作点和负载电阻等参数来解决。
04
音频放大器
三极管可以作为音频放大器的重要元件,通过输入信号控制三极管的基极电流,从而实现信号的放大。
音量控制
利用三极管的电流放大特性,可以实现对音频信号的电平控制,从而调节音量大小。
三极管在音频设备中的应用
开关电路
三极管可以作为开关电路的组成部分,利用其导通和截止状态实现电路的开关控制。
继电器
电子的传输
电子传输是指半导体材料中有负电荷的区域,随着温度和电场的变化,电子会扩散和漂移。
基极电流对集电极电流的控制
放大系数的定义
培训资料三极管
偏置电路故障
要点一
总结词
偏置电路故障会导致三极管无法正常 工作。
要点二
详细描述
偏置电路是三极管正常工作的关键, 如果偏置电路出现故障,如电阻器损 坏、电容器漏电等,会导致三极管无 法正常工作。这可能是由于电路设计 不合理、元件质量差或使用环境恶劣 等原因造成的。
要点三
排除方法
检查偏置电路的各个元件,确保其正 常工作。如果发现元件损坏,应及时 更换。同时,检查电路设计是否合理 ,确保其符合三极管的工作要求。
06
三极管的发展趋势与展望
三极管的发展历程
01
02
03
1947年
贝尔实验室的巴丁、布拉 顿和肖克利发明了晶体管 ,这是电子技术史上的里 程碑。
1950年
德州仪器的基尔比和仙童 的诺伊斯发明了集成电路 。
1952年
肖克利发明了第一种硅晶 体管。
三极管的发展历程
1956年
仙童的诺伊斯、德州仪器的基尔比发明了集成电 路。
智能家居领域
智能家居是未来家庭生活的发展趋势,而三极管在智能家 居领域中也有着广泛的应用,例如智能照明、智能安防、 智能家电等设备中都离不开三极管。未来随着智能家居市 场的不断扩大,三极管在智能家居领域的应用前景也将更 加广阔。
THANKS
谢谢您的观看
标准值进行比较,判断三极管是否正常工作。
03
注意事项
在检测过程中,要确保万用表的量程选择正确,避免因量程过大或过小
而影响测量结果的准确性。同时,要确保三极管处于安全的工作状态,
避免因过压或过流而损坏三极管。
三极管的代换
代换原则
在代换三极管时,应选择性能参数相近或更好的三极管进 行代换,以保证电路的正常工作。
培训资料料(三极管)
解决方案
针对不同的短路原因采取不同的措施,如调整偏置、更换管子等,以确保三极管在电路中能够正常放大信号。
三极管短路问题及解决方案
总结词
详细描述
解决方案
三极管性能不良问题及解决方案
05
三极管的典型应用案例分析
三极管在音频放大器中应用广泛,具有提高放大倍数、降低噪声等优点。
总结词
在音频放大器中,三极管可以作为放大器件,利用其电流放大作用,将微弱的音频信号放大,推动扬声器发声。同时,三极管具有低噪声、线性好等优点,能够提高音频质量。
xx年xx月xx日
培训资料料(三极管)
CATALOGUE
目录
三极管概述三极管的电流放大原理三极管的参数和测试方法三极管的常见问题和解决方案三极管的典型应用案例分析
01
三极管概述
三极管是一种半导体器件,它通过控制电流在三个区域内流动来实现放大或开关功能。
三个区域分别是:发射区、基区和集电区。
三极管的定义
详细描述
在数字电路中,三极管可以作为逻辑门器件,如与门、或门等,利用其开关特性实现逻辑运算。三极管构成的逻辑门速度快,功耗低,能够提高数字电路的工作效率和性能。
数字电路中的三极管应用
谢谢您的观看
THANKS
三极管在电路中的工作电压范围,通常为0.7-1.5伏特。
开启电压
饱和电压
穿透电流
反向饱和电流
当三极管进入放大状态时,随着输入电压的增加,输出电压变化缓慢,此时的电压称为饱和电压。
当三极管基极开路时,集电极和发射极之间的电流称为穿透电流。
当三极管基极反向偏置时,集电极和发射极之间的电流称为反向饱和电流。
1
载流子的运动和电流放大效应
1.1 半导体基本知识
本征半导体(载流子)
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子 自由电子的产生使共价键中 留有一个空位置,称为空穴
一定温度下,自由电子与空穴对的浓度一定; 温度升高,热运动加剧,挣脱共价键的电子增多,自由 电子与空穴对的浓度加大。
本征半导体(载流子)
运载电荷的粒子称为载流子。 外加电场时,带负电的自 由电子和带正电的空穴均参与导 电,且运动方向相反。 电流=电子电流+空穴电流 由于载流子数目很少,故导 电性很差。 两种载流子
本征半导体(载流子浓度)
本征激发:半导体在热激发下产生自由电子与空穴对 的现象。 复合: 自由电子与空穴相碰同时消失。 在一定的温度下,热激发产生的自由电子与空穴对, 与复合的自由电子与空穴对数目相等,故达到动态平 衡 由于载流子数目很少,故本征半导体导电性很差,且 与环境温度密切相关。
PN 结的电容效应
• 势垒电容 PN结外加电压变化时,空间电荷区的宽度将发生 变化,有电荷的积累和释放的过程,与电容的充放电 相同,其等效电容称为势垒电容Cb。 扩散电容 PN结外加正向电压变化,扩散区的非平衡少子的数 量将随之变化,扩散区内电荷的积累与释放过程,呈现 出电容充放电的性质,其等效的电容称之为扩散电容Cd。 结电容: C j Cb Cd
PN结加上正向电压、正向偏置的意 思都是: P区加正、N区加负电压。
PN结加上反向电压、反向偏置的意 思都是: P区加负、N区加正电压。
(1)正向电压
必要吗?
外电场的方向与内电场方向相反。 外电场削弱内电场 →耗尽层变窄 →扩散运动>漂移运动 →多子扩散形成正向电流 PN结导通
正向电压_动画演示
电子与通信工程系