脉冲压缩雷达..
脉冲压缩 雷达方程
脉冲压缩雷达方程脉冲压缩雷达方程是雷达技术中的重要概念,它是一种通过处理雷达回波信号的方法,可以提高雷达系统的距离分辨率。
本文将介绍脉冲压缩雷达方程的原理和应用。
脉冲压缩雷达方程是指通过对雷达回波信号进行特定的处理,使得雷达系统可以在较短的脉冲宽度内获得较高的距离分辨率。
在传统的雷达系统中,由于脉冲宽度较宽,导致雷达无法准确地分辨目标之间的距离。
而脉冲压缩雷达方程通过对回波信号进行复杂的信号处理,可以降低脉冲宽度,从而提高距离分辨率。
脉冲压缩雷达方程的实现需要利用雷达的发射和接收系统。
在发射端,雷达发射窄脉冲信号,脉冲宽度通常很宽。
然后,在接收端,雷达接收回波信号,并进行一系列的信号处理步骤。
其中,最关键的步骤是压缩滤波器的应用。
压缩滤波器是脉冲压缩雷达方程中的核心部分。
它的作用是对接收到的回波信号进行滤波,使得脉冲宽度变窄。
具体来说,压缩滤波器利用了信号的自相关性质,通过与发射信号进行相关运算,将回波信号的脉冲宽度压缩到较窄的范围内。
这样,雷达系统就能够在较短的时间内获取到高分辨率的距离信息。
脉冲压缩雷达方程的应用非常广泛。
首先,在军事领域,脉冲压缩雷达方程可以提高雷达系统对目标的探测和识别能力。
它可以有效地区分目标之间的距离,提供更准确的目标定位信息。
因此,在雷达导航、目标跟踪和导弹制导等军事应用中,脉冲压缩雷达方程被广泛采用。
脉冲压缩雷达方程还在民用领域得到了广泛应用。
例如,在航空领域,脉冲压缩雷达方程可以提高飞机的导航安全性,确保飞行器与其他目标之间的安全距离。
在气象领域,脉冲压缩雷达方程可以用于天气预测和气象观测,提供更准确的降水和风速信息。
脉冲压缩雷达方程是一种能够提高雷达系统距离分辨率的重要方法。
通过对回波信号进行特定的信号处理,脉冲压缩雷达方程可以使雷达系统在较短的时间内获取到更准确的距离信息。
它在军事和民用领域都有广泛的应用,为各种应用场景提供了更高的探测和识别能力。
随着雷达技术的不断发展,脉冲压缩雷达方程将继续发挥重要作用,为各个领域的应用提供更高的性能和效果。
雷达脉冲压缩算法研究
雷达脉冲压缩算法研究雷达脉冲压缩算法是一种通过对短脉冲信号进行加窗和相关运算,从而实现高分辨率雷达成像的算法。
这种算法在目标探测、识别以及跟踪等领域中有着广泛的应用。
在本文中,我们将深入地探讨雷达脉冲压缩算法的基本原理、发展历史以及未来的研究方向。
一、基本原理脉冲雷达技术中,发射的信号被目标反射后接收到信号会被传回雷达接收机。
然而,目标信号在传输过程中会遭受多径效应的干扰,这导致接收到的信号在时间域上发生扩展,时间分辨率会降低。
为了解决这个问题,雷达脉冲压缩技术应运而生。
雷达脉冲压缩算法主要基于短脉冲信号的性质,即其具有宽带性和瞬时功率很大。
算法的基本步骤为:先对短脉冲信号进行加窗,使其具有良好的频谱特性;然后进行相关运算,使反射信号会在一段极短的时间内被压缩,从而提高时间分辨率。
加窗操作的目的是消除反射信号的频率偏移,使其具有宽带性。
常用的窗函数有海明窗、布莱克曼窗、汉宁窗等。
这些窗函数在保留谱线的同时,在频域上也可以压缩主瓣宽度。
相关运算的基本原理是将原始信号与一个匹配滤波器进行卷积,从而使信号被在一小段时间内压缩。
匹配滤波器通常是原始信号的逆时域复共轭,其功率频谱密度与信号的功率频谱密度接近,但是带宽更宽。
二、历史发展雷达脉冲压缩算法的诞生最早可以追溯到20世纪50年代初。
当时,人们意识到脉冲雷达系统的时间分辨率受到多径效应的限制,无法满足目标识别和跟踪的需求。
为解决这个问题,一些科学家开始研究如何对反射信号进行压缩,并尝试应用于实际应用中。
在此后的数十年中,雷达脉冲压缩算法经历了一个逐步发展的过程。
20世纪70年代末,复合式高分辨雷达(SAR)系统的出现使得脉冲压缩技术得到了广泛的应用。
90年代初,人们开始对逆问题进行研究,从而进一步提高了脉冲压缩算法的效率和精度。
三、未来研究方向在当今的信息技术快速发展的时代,雷达脉冲压缩算法如何更好地适应未来的发展成为了一个重要的问题。
未来研究方向主要包括以下三个方面:1. 面向多异步输入的实时压缩算法。
雷达数字下变频后脉冲压缩原理公式(一)
雷达数字下变频后脉冲压缩原理公式(一)雷达数字下变频后脉冲压缩原理公式在雷达信号处理中,脉冲压缩是提高雷达分辨率和探测能力的重要技术。
雷达数字下变频(Digital Down Conversion,DDC)后脉冲压缩是一种常用的脉冲压缩方法,可以有效地减小脉冲宽度,提高雷达测量精度。
本文将介绍雷达数字下变频后脉冲压缩的原理公式,并通过例子进行解释说明。
原理概述雷达数字下变频后脉冲压缩原理是利用数字信号处理技术将接收到的雷达频率变化信号转换为基带信号,进而通过脉冲压缩算法实现对目标的高分辨率测量。
数字下变频后脉冲压缩主要包括两个步骤:数字下变频和脉冲压缩。
数字下变频公式在数字下变频过程中,首先需要进行频率变换,将接收到的射频信号转换为中频信号。
这个过程可以用以下公式表示:x IF(t)=x RF(t)⋅e−j2πf IF t其中,x IF(t)为中频信号,x RF(t)为射频信号,f IF为中频频率。
脉冲压缩公式在脉冲压缩过程中,我们需要对接收到的中频信号进行脉冲压缩处理。
常用的一种脉冲压缩方法是匹配滤波器法(Matched Filter)。
该方法的脉冲压缩公式为:R(t)=x IF(t)⊛p(t)其中,R(t)为脉冲压缩后的信号,⊛表示卷积运算,p(t)为匹配滤波器的冲激响应。
解释说明为了更好地理解雷达数字下变频后脉冲压缩原理公式,下面举一个例子进行解释说明。
假设我们接收到一个射频信号x RF(t),频率为f RF=10 GHz,并经过数字下变频后得到中频信号x IF(t),频率为f IF=1 GHz。
然后我们使用带宽为100 MHz的匹配滤波器p(t)对中频信号进行脉冲压缩处理。
根据数字下变频公式可知:x IF(t)=x RF(t)⋅e−j2πf IF t代入实际数值:x IF(t)=x RF(t)⋅e−j2π×1×109×t接下来,根据脉冲压缩公式可知:R(t)=x IF(t)⊛p(t)代入实际数值并进行卷积运算后,得到脉冲压缩后的信号R(t)。
第三章脉冲压缩雷达简介
第三章脉冲压缩雷达简介第三章脉冲压缩雷达简介3.1 脉冲压缩简介雷达的分辨理论表明:要得到⾼的测距精度和好的距离分辨⼒,发射信号必须具有⼤的带宽;要得到⾼的测速精度和好的速度分辨⼒,信号必须具有⼤的时宽。
因此,要使作⽤距离远,⼜具有⾼的测距、测速精度和好的距离、速度分辨⼒,⾸先发射信号必须是⼤带宽、长脉冲的形式。
显然,单载频矩形脉冲雷达不能满⾜现代雷达提出的要求。
⽽脉冲压缩技术可以获得⼤时宽带宽信号,使雷达同时具有作⽤距离远、⾼测距、测速精度和好的距离、速度分辨⼒。
具有⼤时宽带宽的信号通常被称作脉冲压缩信号。
脉冲压缩技术包括两部分:脉冲压缩信号的产⽣、发射部分和为获得较窄的脉冲对接收回波的处理部分。
在发射端,它通过对相对较宽的脉冲进⾏调制使其同时具有⼤的带宽,在接收端对接收的回波波形进⾏压缩处理得到较窄的脉冲。
3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的⽐值称为脉冲压缩⽐,即0D ττ=(3-1)因为01B τ=,所以,式(3-1)可写成D Bτ=(3-2)即压缩⽐等于信号的时宽-带宽积。
在许多应⽤场合,脉冲压缩系统常⽤其时宽-带宽积表⽰。
⼤时宽带宽矩形脉冲信号的复包络表达式可以写成:(),/2/2()0,j t Ae T t T u t θ?-<<=?其他(3-3)匹配滤波器输出端的信噪⽐为:()00S N EN =(3-4)其中信号能量为[13] :212E A T =(3-5)这种体制的信号具有以下⼏个显著的特点:(1)在峰值功率受限的条件下,提⾼了发射机的平均功率av P ,增强了发射信号的能量,因此扩⼤了探测距离。
(2)在接收机中设置⼀个与发射信号频谱相匹配的压缩⽹络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨⼒。
(3)有利于提⾼系统的抗⼲扰能⼒。
当然,采⽤⼤时宽带宽信号也会带来⼀些缺点[14][15],这主要有: (1)最⼩作⽤距离受脉冲宽度τ的限制。
雷达信号的脉冲压缩原理.
第二章脉冲压缩2.1 概述表2.1 窄脉冲高距离分辨力雷达的能力窄脉冲具有宽频谱带宽。
如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。
假设调制后的脉冲带宽增加了B,由接收机的匹配滤波器压缩后,带宽将等于1/B,这个过程叫脉冲压缩。
脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。
脉冲压缩比定义为宽脉冲宽度T 与压缩后脉冲宽度τ的之比,即/T τ。
带宽B 与压缩后的脉冲宽度τ的关系为1/B τ≈。
这使得脉冲压缩比近似为BT 。
即压缩比等于信号的时宽-带宽积。
在许多应用场合,脉冲压缩系统常用其时宽-带宽 积表征。
这种体制最显著的特点是:⑴ 它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B τ≥,这两个信号参数基本上是独立的,因而可以分别加以选择来满足战术要求。
在发射机峰值功率受限的条件下,它提高了发射机的平均功率av P 增加了信号能量,因此扩大了探测距离。
⑵ 在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。
这一处理过程称之为“脉冲压缩”。
⑶ 有利于提高系统的抗干扰能力。
对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。
当然,采用大时宽带宽信号也会带来一些缺点,这主要有:⑴ 最小作用距离受脉冲宽度τ限制。
⑵ 收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。
⑶存在距离旁瓣。
一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB~35dB 以上,但将有1dB~3dB的信噪比损失。
⑷存在一定的距离和速度测定模糊。
总之,脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。
根据上面讨论,我们可以归纳出实现脉冲压缩的条件如下:⑴发射脉冲必须具有非线性的相位谱,或者说,必须使其脉冲宽度与有效频谱宽度的乘积远大于1.⑵接收机中必须具有一个压缩网络,其相频特性应与发射信号实现“相位共轭匹配”,即相位色散绝对值相同而符号相反,以消除输入回波信号的相位色散。
第三章 脉冲压缩雷达简介
∂∇第三章 脉冲紧缩雷达简介脉冲紧缩简介雷达的分辩理论标明:要得到高的测距精度亲睦的距离分辩力,发射旌旗灯号必须具有大的带宽;要得到高的测速精度亲睦的速度分辩力,旌旗灯号必须具有大的时宽.是以,要使感化距离远,又具有高的测距.测速精度亲睦的距离.速度分辩力,起首发射旌旗灯号必须是大带宽.长脉冲的情势.显然,单载频矩形脉冲雷达不克不及知足现代雷达提出的请求.而脉冲紧缩技巧可以获得大时宽带宽旌旗灯号,使雷达同时具有感化距离远.高测距.测速精度亲睦的距离.速度分辩力.具有大时宽带宽的旌旗灯号平日被称作脉冲紧缩旌旗灯号.脉冲紧缩技巧包含两部分:脉冲紧缩旌旗灯号的产生.发射部分和为获得较窄的脉冲对吸收回波的处理部分.在发射端,它经由过程对相对较宽的脉冲进行调制使其同时具有大的带宽,在吸收端对吸收的回波波形进行紧缩处理得到较窄的脉冲.脉冲紧缩道理时宽-带宽积的概念发射脉冲宽度τ和体系有用(经紧缩的)脉冲宽度0τ的比值称为脉冲紧缩比,即 0D ττ=(3-1) 因为01B τ=,所以,式(3-1)可写成D B τ=(3-2)即紧缩比等于旌旗灯号的时宽-带宽积.在很多运用处合,脉冲紧缩体系经常运用当时宽-带宽积暗示.大时宽带宽矩形脉冲旌旗灯号的复包络表达式可以写成:(),/2/2()0,j t Ae T t T u t θ⎧-<<=⎨⎩其他(3-3)匹配滤波器输出端的信噪比为:()00S N EN = (3-4)个中旌旗灯号能量为[13] :212E A T =(3-5)这种体系体例的旌旗灯号具有以下几个明显的特色:(1)在峰值功率受限的前提下,进步了发射机的平均功率av P ,加强了发射旌旗灯号的能量,是以扩大了探测距离.(2)在吸收机中设置一个与发射旌旗灯号频谱相匹配的紧缩收集,使宽脉冲的发射旌旗灯号变成窄脉冲,是以保持了优胜的距离分辩力.(3)有利于进步体系的抗干扰才能.当然,采取大时宽带宽旌旗灯号也会带来一些缺陷[14][15],这重要有:(1)最小感化距离受脉冲宽度τ的限制.(2)收发体系比较庞杂,在旌旗灯号产生和处理进程中的任何掉真,都将增大旁瓣高度.(3)消失距离旁瓣.一般采取掉配加权以克制旁瓣,主旁瓣比可达30dB ~35dB 以上,但将有1 dB ~3 dB 的信噪比损掉.(4)消失必定的距离和速度测定隐约.恰当选择旌旗灯号参数和情势可以减小隐约.但脉冲紧缩体系体例的优胜性超出了它的缺陷,已成为近代雷达普遍运用的一种体系体例.3.2.2 线性调频脉冲旌旗灯号线性调频脉冲紧缩体系体例的发射旌旗灯号,其频谱在脉冲宽度内按线性纪律变更,即用对载频进行调制的办法展宽发射旌旗灯号的频谱,使其相位具有色散.同时,在t P 受限情形下为了充分运用发射机的功率,往往采取矩形宽脉冲包络,线性调频脉冲旌旗灯号的复数表达式可写成[16][17]:200()2()()()t j t j t t s t u t e Arect e μωωτ+== (3-6)式(3-6)中u(t)为旌旗灯号复包络:22()()t j t u t Arect e μτ= (3-7)若令B 为频率变更规模,则21B f f f =∆=-,而2fωπμττ∆∆==为调制斜率.若旌旗灯号的载波中间角频率为002f ωπ=,则线性调频旌旗灯号的角频率变更纪律为:0t ωωμ=+, 2|t |τ≤(3-8)因而旌旗灯号的瞬时相位: 201()()2i t dt t dt t t C ωωμωμφ==+=++⎰⎰ (3-9) 如图3-1所示,图3-1(a )为线性调频脉冲旌旗灯号的波形;图3-1(b )为旌旗灯号的包络幅度为A,图3-1(c)为载频的调制特征,在τ内由低频端1f 至高频端2f 按线性纪律变更.图3-1 线性调频旌旗灯号波形.包络及频率变更图脉冲紧缩雷达脉冲紧缩雷达经由过程发射宽脉冲以进步发射旌旗灯号的平均功率,包管足够的最大感化距离,而在吸收时则采取响应的脉冲紧缩法获得窄脉冲,以进步距离分辩力,从而较好地解决了感化距离和分辩才能之间的抵触.给定雷达体系的距离分辩力为: 2r c B δ=(3-10)个中,c 为光速,B f =∆为发射波形带宽.对于简略的脉冲雷达,1B f T =∆=,T 为发射脉冲宽度,则有 2r cT δ=(3-11)而在脉冲紧缩体系中,发射波形往往在相位上或频率长进行调制,吸收时将回波旌旗灯号加以紧缩,使其等效带宽B 知足1B f T =∆.令脉冲紧缩后的有用脉冲宽度1B τ=,则2r c τδ=(3-12)由此可见,脉冲紧缩雷达可用宽度T 的发射脉冲来获得相当于发射脉冲有用宽度为τ的简略脉冲体系的距离分辩力.则脉冲紧缩比(发射脉冲宽度T 跟体系有用脉冲宽度τ的比值)为TD τ= (3-13)又因为1B τ=,则D TB = (3-14)即紧缩比等于旌旗灯号的时宽-带宽积.在很多运用处合,脉冲紧缩体系经常运用当时宽-带宽积表征.实现脉冲紧缩的前提如下:(1)发射脉冲的脉冲宽度与有用频谱宽度的乘积弘远于1.(2)吸收机中必须具有一个紧缩收集,其相频特征应与发射旌旗灯号实现“相位共扼匹配”,即相位色散绝对值雷同而符号相反,以清除输入回波旌旗灯号的相位色散.脉冲紧缩按发射旌旗灯号的调制纪律(调频或调相)分类,可以分为以下四种:(1)线性调频脉冲紧缩;(2)非线性调频脉冲紧缩;(3)相位编码脉冲紧缩;(4)时光频率编码脉冲紧缩.本文重要评论辩论较罕有的线性调频脉冲紧缩.线性调频脉冲紧缩雷达线性调频旌旗灯号(LFM)在二十世纪四十年月后期就被起首提出来,是研讨最早.运用最普遍的一种脉压旌旗灯号[18].线性调频经由过程对雷达的载波频率进行调制以增长雷达的发射带宽并在吸收时实现脉冲紧缩,线性调频脉压的基起源基础理如图3-2所示.图3-2 线性调频脉冲紧缩基起源基础理图线性调频波形由宽度为T 的矩形发射脉冲构成,如图3-2 (a)所示.载波频率f 在脉冲宽度内按照21f f f ∆=-做线性增长变更,调制斜率2f T μπ=∆,如图3-2(b)所示.图3-2 (c)为紧缩收集的频率-延迟特征,按照线性递减变更,与旌旗灯号的线性调频斜率相反,滤波器对线性调频旌旗灯号中最先辈入的低端频率为延时长(1d t ),对经由T 时光最落后入的高端频率2f 分量延时短(2d t ).如许,旌旗灯号中不合频率分量经由过程这一滤波器后几乎同时到达输出端,从而获得幅度增大宽度变窄的脉冲旌旗灯号,其幻想包络如图3-2(d )所示.依据图3-1(b),有12B f f f =∆=-和2f T Tωπμ∆∆==,若旌旗灯号的载波中间角频率为002f ωπ=,则线性调频旌旗灯号的角频率变更纪律为:0t ωωμ=+,2Tt ≤(3-15)因而旌旗灯号的瞬时相位为: 2001()()2i t dt t dt t t C φωωμωμ==+=++⎰⎰(3-16)则线性调频脉冲紧缩雷达的发射旌旗灯号为:201cos(),22()0,2i T A t t t u t T t ωμ⎧+≤⎪⎪=⎨⎪>⎪⎩(3-17)个中A 为旌旗灯号幅度.或者将上式暗示成:201()cos()2i t u t Arect t t T ωμ=+ (3-18)个中,t rect T为矩形函数,即:为便利剖析和盘算,用复数情势来暗示()i u t ,即: 201()2()()j t t i t u t Arect e T ωμ+= (3-19)则()i u t 的复频谱为:2200112()()222()()()T j t t j t t j t j t i i Tt U u t e dt Arect e e dt A e dt T ωμωωμωωω∞∞+-+---∞-∞-===⎰⎰⎰(3-20)因为平日运用的线性调频脉冲旌旗灯号均知足1D TB =,其频谱的振幅散布很接近矩形,()i U ω可近似地暗示为:002()0,2i U ωωωωωωω⎧∆-≤⎪⎪=⎨∆⎪->⎪⎩(3-21)()i U ω的相频特征可近似地暗示为: 20()()24i ωωπφωμ-=-+ (3-22)综上所述,线性调频旌旗灯号在D 很大时的频谱表达式为:20()2400,2()0,2j i U ωωπμωωωωωωω⎡⎤--+⎢⎥⎢⎥⎣⎦⎧∆⎪-≤⎪=⎨⎪∆->⎪⎩ (3-23)设匹配滤波器频率特征为()H ω,那么依据匹配前提应知足如下关系: ()()()i dj j t i H k U e e φωωωω--= (3-24)个中,k 为归一化系数,使幅频特征归一化,d t 为匹配滤波器的固定延时[19].是以线性调频脉冲旌旗灯号的匹配滤波器频率特征可近似为: 20()240(),2d j t H eωωπωμωωωω⎡⎤---⎢⎥⎢⎥⎣⎦∆=-≤ (3-25)设线性调频脉冲旌旗灯号经匹配滤波后的输出旌旗灯号为0()u t ,则其频谱()o U ω为:0()()(),2d j t o i U U H ωωωωωωω-∆==-≤ (3-26)则匹配滤波器输出的旌旗灯号为:02()001()()2d j f t t j t d u t U e d πωωωπ∞--∞==⎰(3-27)上式暗示的旌旗灯号是复数,而现实的旌旗灯号应为实数,是以取其实部得到输出旌旗灯号为:00()2()d d u t f t t π=- (3-28)因为0f B ,故输出旌旗灯号的载波为: 而旌旗灯号的包络为:二相编码脉冲紧缩雷达线性调频旌旗灯号的频率调制函数是中断函数,而相位编码旌旗灯号的相位调制函数是离散的有限状况.因为相位编码采取伪随机序列,亦称为伪随机编码旌旗灯号.伪随机相位编码旌旗灯号按相移取值数量分类,假如相移只取0,π两个数值,称二相编码旌旗灯号.假如相移取两个以上的数值,则称多相编码旌旗灯号.一般相位编码旌旗灯号的复数表达式为:2()()()j f t j t s t a t e e πϕ= (3-29)则旌旗灯号的复包络函数为:()()()j t u t a t e ϕ= (3-30)个中,()t ϕ为相位调制函数.对于二相编码旌旗灯号来说,()t ϕ只有0或者π两种取值.可用二进制相位序列{}0,k ϕπ=暗示,也可以用二进制序列{}1,1kj k c e ϕ==+-暗示. 假如二相编码旌旗灯号的包络为矩形,即:()0,t NT a t <<∆==⎩其他 (3-31)则二相编码旌旗灯号的复包络可写成:10()N k k c v t kT -=-⎩1u(t)=0,其他 (3-32)个中,k c 为二进制序列,v(t)为子脉冲函数,T 为子脉冲宽度,N 为码长,NT ∆=为编码旌旗灯号中断期.运用δ函数性质,式(3-32)还可写成:1120()()()()()N k k u t v t c t kT u t u t δ-==-=⊗1 (3-33)个中,⊗暗示卷积运算,且1()()0,t T u t v t <<==⎩其他 (3-34)120()()N kk u t c t kT δ-==-1(3-35)依据傅里叶变换对:sin ()trect T c fT T⇔ (3-36)2()j fkT T kT e πδ--⇔ (3-37)则式(3-33)中1()u t 和2()u t 对应的频谱分离为:112()()()j fTt T u t U f c fT e T π--=⇔=(3-38)11222()()()N N j fkTk k k k u t c t kT U f c eπδ---===-⇔=1(3-39)是以,依据傅里叶变换卷积规矩,由式(3-33),可得二相编码旌旗灯号的频谱为:12120()()()()N j fT j fkT k k U f U f U f c fT e c e ππ---=⎡⎤==⎢⎥⎣⎦∑ (3-40) 盘算标明,二相编码旌旗灯号的频谱重要取决于子脉冲频谱1()U f ,至于附加因子120N j fkT k k c e π--=∑的感化则与所采取码的情势有关.二相编码旌旗灯号的带宽B 与子脉冲带宽异常接近,有:1NB T ≈=∆(3-41)则旌旗灯号的脉冲紧缩比为:ND B N =∆⋅=∆⋅=∆(3-42)由此可见,采取长的二元序列,就能得到大时宽-带宽积的编码脉冲紧缩旌旗灯号经常运用的二相编码旌旗灯号有巴克码序列.m 序列.L 序列.双素数序列等.这里重要介绍巴克码序列和m 序列.巴克码是一种二元伪随机序列码{}k c ,(1,1),0,1,2,1k c k N ∈+-=-,其非周期自相干函数知足:10,0(,0)01,0N mk k m k N m m c c m χ--+==⎧==⎨±≠⎩∑或(3-43)表3-1 巴克码序列长度N{}k c 序列(,0),0,1,,1m m N χ=-主旁瓣比/dB2 + +;- + 2,+1;2,-1 63 + + - 3,0,-14 + + - +;+ + + - 4,-1,0,+1,;4,+1,0,-1 125 + + + - + 5,0,+1,0,+1 14 7 + + + - - + - 7,0,-1,0,-1,0,-1 17 11 + + + - - - + - - + - 11,0,-1,0,-1,0,-1,0,-1,0,-113+ + + + + - - + + - + -+13,0,+1,0,+1,0,+1,0,+1,0,+1,0,+1巴克码自相干函数的主旁瓣比等于紧缩比,即为码长N .巴克码是一种较幻想的编码紧缩旌旗灯号,惋惜其长度有限.已经证实,对于奇数长度,13N ≤;对于偶数长度,N 为一完全平方数,但已证实N 在4到6084之间不消失,超出6084的码一般不采取.今朝只找到下列几种巴克码序列,最长的是13位,如表3-1所示.在现实运用中,可以采取组合巴克码序列以扩大长度.组合巴克码序列是以长度为1k 的巴克码序列作为长度为2k 的巴克码序列的码元,结构长度为12k k ⋅的组合巴克码序列[21].m 序列也是一种二元伪随机序列,它的周期自相干函数很幻想.但m 序列在非周期工作时,其自相干函数将有较高的旁瓣,当1N时,.m序列是一种周期为21n -的轮回二进制序列,n 为整数.它的产生办法比较简略,现实运用中多采取n 阶线性逻辑反馈移位存放器来产生序列,且各个移位存放器的初始状况不克不及全体为零.图3-3示出了一般线性反馈移位存放器的构成[22].图3-3 线性反馈移位存放器图3-3中一级移位存放器的状况用i a 暗示,01i a =或,i 是整数.反馈线的衔接状况用i c 暗示,1i c =暗示此线接通(介入反馈),0i c =暗示此线断开.表2列出10n ≤时m 序列的反馈衔接.表3-2 m 序列的反馈衔接级数n 长度N 序列个数反馈衔接 2 3 1 2,1 3 7 2 3,2 4 15 2 4,3或4,1 5 31 6 5,3 6 63 6 6,5 7 127 18 7,6或7,4 8 255 16 8,6,5,4 9 511 48 9,5或9,4 1010236010,7值得指出的是m序列的非周期自相干函数不如巴克码序列幻想.作为脉冲紧缩旌旗灯号,序列的非周期自相干函数更令人存眷.具有优胜的周期自相干特征的序列不必定具有优胜的非周期特征.本章小结本章重要讲述了雷达的根本构成以及扼要概述了脉冲紧缩理论,雷达为了加大发射脉冲的能量,只有增大脉冲宽度,但通例脉冲的时宽-带宽积约等于1,增大脉冲宽度会下降脉冲的有用带宽,使雷达的测距精度下降,也就是说,通例脉冲旌旗灯号体系体例雷达消失着感化距离和测距精度的抵触,为解决这一抵触,就要对脉冲频率进行调制,是以,脉冲紧缩技巧显然成为雷达发射较宽脉冲和恢复测距精度请求的脉冲宽度程度的重要办法.为包治理论研讨的完全性,特在本章参加了二相编码脉冲紧缩雷达的介绍,但是因为我们的雷达获取的目的一般为中断旌旗灯号,采取线性调频脉冲紧缩雷达比较适合,而二相编码脉冲紧缩雷达实用于离散旌旗灯号,故对二相编码脉冲紧缩雷达只做简略介绍,而线性调频脉冲雷达才是本文重点部分.第四章雷达脉冲紧缩技巧的MATLAB实现线性调频脉冲旌旗灯号脉冲紧缩雷达能同时进步雷达的感化距离和距离分辩率.这种体系体例采取宽脉冲发射以进步发射的平均功率,包管足够大的感化距离;而接收时采取响应的脉冲紧缩算法获得窄脉冲,以进步距离分辩率,较好的解决雷达感化距离与距离分辩率之间的抵触.脉冲紧缩雷达最罕有的调制旌旗灯号是线性调频(Linear Frequency Modulation )旌旗灯号,吸收时采取匹配滤波器(Matched Filter )紧缩脉冲.LFM 旌旗灯号(也称Chirp 旌旗灯号)的数学表达式为:22()2()()c K j f t t t s t rect Te π±=(4-1)式中c f 为载波频率,()t rect T为矩形旌旗灯号,11()0,t t rect TT ⎧ , ≤⎪=⎨⎪ ⎩其他(4-2)B K T=,是调频斜率,于是,旌旗灯号的瞬时频率为()22c T T f Kt t ± -≤≤,如图4-1图4-1 典范的chirp 旌旗灯号(a )up-chirp (b )down-chirp 将(4-1)式中的up-chirp 旌旗灯号重写为:2()()cj f t s t S t e π=(4-3) 式中,2()()j Kt tS t rect e Tπ= (4-4)是旌旗灯号s(t)的复包络.由傅立叶变换性质,S(t)与s(t)具有雷同的幅频特征,只是中间频率不合而以,是以,MATLAB 仿真时,只需产生S(t).MATLAB 程序1(附录1)产生(4-4)式的chirp 旌旗灯号,并作出当时域波形和幅频特征,见仿真成果. 4.2 匹配滤波道理设吸收滤波器[22]的传输函数为()H f ,冲激响应为()h t ,滤波器输入码元()s t 的中断时光为s T ,旌旗灯号和噪声之和()r t 为()()(),0s r t s t n t t T =+≤≤ (4-5)式中:()s t 为旌旗灯号码元,()n t 为高斯白噪声.并设旌旗灯号码元()s t 的频谱密度函数为()S f ,噪声()n t 的双边功率谱密度为0()2n P f n =,0n 为噪声单边功率谱密度.因为假定滤波器是线性的,依据线性电路叠加定理,当滤波器输入电压()r t 中包含旌旗灯号和噪声两部分时,滤波器的输出电压()y t 中夜包含响应的输出旌旗灯号0()s t 和输出噪声0()n t 两部分,即:00()()()y t s t n t =+ (4-6) 个中,20()()()j ft s t H f S f e dfπ∞-∞=⎰(4-7)为了求出输出噪声功率,由式2*0()()()()()()i i P f H f H f P f H f P f =⋅⋅=可知,一个随机进程经由过程线性体系时,其输出功率谱密度0()P f 等于输入功率谱密度()i P f 乘以体系传输函数()H f 的模的平方.所以,这时的输出噪声功率0N 等于:22000()()22n n N H f df H f df∞∞-∞-∞=⋅=⎰⎰(4-8)是以,在抽样时刻0t 上,输出旌旗灯号瞬时功率与噪声平均功率之比为:2220002()()()()2j ft H f S f e dfs t r n N H f dfπ∞-∞∞-∞==⎰⎰(4-9)为了求出0r 的最大值,我们运用施瓦兹不等式:2221212()()()()f x f x dx f x dx f x dx∞∞∞-∞-∞-∞≤⎰⎰⎰(4-10)若*12()()f x kf x =,个中k 为随意率性常数,则式(4-10)的等号成立.将式(4-9)右端的分子看作是式(4-10)的左端,并令: 则有:22202000()()()2()22H f df S f dfS f df E r n n n H f df∞∞∞-∞-∞-∞∞-∞≤==⎰⎰⎰⎰(4-11)式中:2()E S f df ∞-∞=⎰,为旌旗灯号码元能量.并且当2*()()j ft H f kS f e π-=(4-12)时,式(4-11)的等号成立,即得到最大输出信噪比02E n .式(4-12)标明,()H f 就是我们要找的最佳吸收滤波器传输特征,它等于旌旗灯号码元频谱的复共轭.故称此滤波器为匹配滤波器.4.3 LFM 脉冲的匹配滤波旌旗灯号()s t 的匹配滤波器的时域脉冲响应为:*0()()h t s t t =- (4-13)0t 是使滤波器物理可实现所附加的时延.理论剖析时,可令0t =0,则:*()()h t s t =-(4-14)将4-13式代入4-14式得:22()()c j f t j Kt t h t rect e e Tππ-=⨯(4-15)图4-2 LFM 旌旗灯号的匹配滤波如图4-2,()s t 经由体系()h t 得输出旌旗灯号()o s t ,2222()()()()*()()()()()()()c c o j f u j f t u j Ku j K t u s t s t h t s u h t u du h u s t u du u t u erect e e rect e du T Tππππ∞∞-∞-∞∞----∞= =- =-- =⨯⎰⎰⎰(4-16)当0t T ≤≤时,22222022222()2sin ()T T c c j Kt j Ktu t j Ktu T j f tj Kt T j f ts t e e du e ee t j Kt K T t t eKtπππππππππ---==⨯--- =⎰(4-17) 当0T t -≤≤时,22222022222()2sin ()T T c c t j Kt j Ktu j Ktu T j f tj Kt T j f ts t ee dut e eej Kt K T t t eKtπππππππππ+---=+ =⨯--+ =⎰(4-18)归并(4-17)和(4-18)两式:20sin (1)()()2c j f t tKT tt T s t Trect e KTt Tπππ-= (4-19)(4-19)式即为LFM 脉冲旌旗灯号经匹配滤波器得输出,它是一固定载频c f 的旌旗灯号.当t T ≤时,包络近似为辛克(sinc )函数.0()()()()()22t tS t TSa KTt rect TSa Bt rect T Tππ== (4-20)图4-3 匹配滤波的输出旌旗灯号如图4-3,当Bt ππ=±时,1t B=±为其第一零点坐标;当2Bt ππ=±时,12t B=±,习惯上,将此时的脉冲宽度界说为紧缩脉冲宽度. 1122B Bτ=⨯=(4-21)LFM 旌旗灯号的紧缩前脉冲宽度T 和紧缩后的脉冲宽度τ之比平日称为紧缩比D,TD TB τ==(4-22)上式标明,紧缩比也就是LFM 旌旗灯号的时宽频宽积.因为s(t),h(t),so(t)均为复旌旗灯号情势,MATLAB 仿真时,只需斟酌它们的复包络S(t),H(t),So(t).MATLAB 程序2(附录2)仿真了图4-2所示的进程,并将仿真成果和理论进行对比.仿真成果见图4-4,4-5. 4.4 MATLAB 仿真成果仿真一:线性调频脉冲紧缩旌旗灯号(1) 体系模子:图4-4 线性调频脉冲紧缩旌旗灯号体系框图(2) 仿真成果:图4-5 LFM 旌旗灯号的时域波形和幅频特征(3) 成果剖析:如图4-5所示,图中为典范的线性调频旌旗灯号的时域和频域特征,经调制,旌旗灯号带宽为30MHz ,旌旗灯号周期为10us.仿真二:匹配滤波吸收回波旌旗灯号(1)体系模子:图4-6 匹配滤波体系框图(2)仿真成果:图4-7 脉冲紧缩后的回波图4-8 脉冲紧缩后的回波(局部图)(3)成果剖析:如图4-8,对时光轴进行了归一化,(/(1/)t B t B =⨯).图中反应出理论与仿真成果吻合优胜.第一零点出如今1±(即1B ±)处,此时相对幅度.紧缩后的脉冲宽度近似为1B (12B ±),此时相对幅度-4dB,这与理论剖析(图4-3)一致.上面只是对各个旌旗灯号复包络的仿真,现实雷达体系中,LFM脉冲的处理进程如图4-6.雷达回波旌旗灯号()r s t 经由正交解调后,得到基带旌旗灯号,再经由匹配滤波脉冲紧缩后就可以作出判决.正交解调道理如图4-9,雷达回波旌旗灯号经正交解调后得两路互相正交的旌旗灯号I(t)和Q(t).一种数字办法处理的的匹配滤波道理如图4-10.图4-9 正交解调道理图4-10 一种脉冲紧缩雷达的数字处理方法仿真三:脉冲紧缩前后的回波仿真(1)体系模子:联合以上剖析,用MATLAB 仿真雷达发射旌旗灯号,回波旌旗灯号和紧缩后的旌旗灯号的复包络特征,其载频不予斟酌(现实中需加调制和正交解调环节),仿真旌旗灯号与体系模子如图4-11.图4-11 雷达仿真等效旌旗灯号与体系模子(2)在MATLAB指令窗中键入:LFM_radar(10e-6,30e6,10000,15000,[10500,11000,12000,12008,13000,13005], [1,1,1,1,1,1])得到的仿真成果如下:图4-12 仿真成果(3)成果剖析:由图4-12可以看出,旌旗灯号回波在紧缩之前,目的难以分辩,在旌旗灯号回波经由紧缩之后,带宽变大,目的的相对距离也扩大,当T=10us,B=30MHz时,雷达的距离分辩率为:(4-23)当两目的相距5m时,现实上是两目的的输出sinc包络叠加,他们的副瓣互相抵消;而当两目的距离大于雷达的距离分辩率时可以分辩出,并且,跟着目的距离越大,雷达越轻易区分. 本章小结本章重要介绍了雷达在传输以及吸收旌旗灯号中所采取的不合技巧,个中,因为旌旗灯号发射时须要有较大的带宽,为了实现这一目的,我们将旌旗灯号进行线性调频,脉冲紧缩,如许扩大了带宽,有利于旌旗灯号的传输,同时也包管了较大的感化距离.在接收进程中,采取匹配滤波,可以得到较大的信噪比,包管紧缩比.。
脉冲压缩雷达(2)解析
2 二相编码
一般相位编码信号的复包络表达式为
u(t) a(t)e j (t)
(t) 为相位调制函数
对二相编码信号来说, Φ(t)两个可能取值(0或π),则用二进制序列
ck e jk 1, 1
图7 N=13的巴克序列
由于巴克序列长度有限,可以通过组合巴克序列来增 加长度,但组合巴克序列不再保持原巴克序列的旁瓣特性。 有两种组合法,例如(1)以4位巴克序列作为13位的巴克码 的码元,(2)以13位巴克序列作为4位巴克码的码元。
60
40
20
0
-20
-60
-40
-20
0
20
40
60
图8 以短的序列作为码元(1)
其非周期自相关函数很理想,满足:
(m,0)
N 1|m|
ck ckm
k 0
N 0或 1
m0 m0
| (m,0) | 1, m 0
称最佳有限二元序列。但这种序列数目不多,目前 只找到下列几种巴克序列,最长的是13位(表1)。
长度N
2 3 4 5 7 11
13
表1 巴克序列
序列 {cn}
自相关函数(m=0,1,2,…,N-1)
主旁瓣比 (dB)
1 1;-1 1
2, 1; 2, -1
6
1 1 -1
3, 0,-1
9.6
1 1 -1 1;1 1 1 -1
4, -1, 0, 1; 4, 1, 0,-1
12
1 1 1 -1 1
5, 0, 1, 0, 1
14
雷达数字下变频后脉冲压缩原理公式
雷达数字下变频后脉冲压缩原理公式雷达数字下变频后脉冲压缩(Pulse Compression)技术是一种广泛应用于现代雷达系统的重要技术。
通过进行数字信号处理,可以在接收到的宽带脉冲信号中实现高分辨率的目标检测和距离测量。
本文将介绍雷达数字下变频后脉冲压缩的原理公式,并阐述其生动、全面且具有指导意义的应用。
首先,我们需要了解雷达信号的基本特性。
雷达系统通过向目标发射窄带脉冲信号并接收回波信号来获取目标信息。
通常,窄带脉冲信号具有较大的带宽,以实现较短的脉冲宽度和良好的距离分辨率。
然而,窄带脉冲信号的能量较低,会导致信噪比下降,从而降低目标检测的可靠性。
为了解决这个问题,雷达数字下变频后脉冲压缩技术应运而生。
该技术通过将接收到的窄带信号进行下变频处理,转换为中频信号。
与窄带信号相比,中频信号的能量较高,并且能够更好地抵抗噪声干扰。
接下来,中频信号经过脉冲压缩处理,实现信号的压缩。
脉冲压缩可以提高目标的距离分辨率,从而实现更精确的测量。
在雷达数字下变频后脉冲压缩中,一个重要的参数是压缩比(Compression Ratio),通常用CR表示。
压缩比定义为信号的脉冲宽度与压缩后信号的脉冲宽度之比。
良好的压缩比能够使脉冲信号的主瓣增大,而辅瓣减小,增强目标的捕获能力和分辨能力。
雷达数字下变频后脉冲压缩的原理公式可以表示为:CR = Tb / Tc其中,CR表示压缩比,Tb表示脉冲信号的宽度,Tc表示压缩后信号的宽度。
从公式中可以看出,压缩比与脉冲信号的宽度直接相关。
通过调整脉冲信号的宽度,可以实现不同的压缩比,以满足不同应用场景对目标分辨率的需求。
在实际应用中,为了改善压缩效果,常常采用复杂的算法,如相关算法、变频后滤波算法等。
这些算法能够进一步提高目标距离的分辨率和测量精度。
此外,通过合理设计雷达系统的参数,如发射功率、接收灵敏度等,也可以有效改善信号的质量。
综上所述,雷达数字下变频后脉冲压缩技术在现代雷达系统中具有重要的应用价值。
雷达信号处理方法综述
雷达信号处理方法综述雷达是一种广泛应用于军事、民用等领域的无线电测量技术,其本质是利用电磁波与物体相互作用的原理,通过测量反射回来的信号来确定目标的距离、速度和方位等信息。
然而,由于雷达应用的复杂性和环境的多样性,雷达信号处理一直是一个极具挑战性的研究领域。
本文将就雷达信号处理方法进行综述。
1. 脉冲压缩处理脉冲压缩是一种常用的雷达信号处理方法,其本质是通过合理的信号设计和处理使得雷达信号带宽变窄,达到更好的距离分辨率。
脉冲压缩技术主要包括线性调频信号、窄带信号、压缩滤波器等方法。
其中,线性调频信号是最常用的一种方法。
它通过在单个脉冲内改变信号频率,使得所产生的信号包含了多个频率分量。
通过对这些分量信号进行相位累积处理,就可以实现脉冲压缩。
此外,窄带信号则是在设计信号时选择一个窄带频率,通过窄化带宽提高距离分辨率。
压缩滤波器则是在接收端对信号进行滤波,去除绝大部分带外干扰信号。
然而,脉冲压缩技术也存在一些缺陷,比如会带来相干处理的问题,直接影响目标的信噪比等。
因此,在实际应用中,通常需要结合其他信号处理技术进行综合应用。
2. 相控阵信号处理相控阵技术是一种基于阵列天线的信号处理方法,它在空间领域实现对目标信号的精确定位、较高灵敏度和干扰抑制能力等优点。
相控阵技术的信号处理方法包括平衡传输子阵列、权重调整和波束形成等。
平衡传输子阵列是一种常用的相控阵信号处理方法,它通过对每个阵元的接收信号进行平衡处理,保证每个天线之间的插入损耗差异相同,从而消除了阵列天线的失配影响。
权重调整则是在信号接收过程中对每个天线的信号进行加权,以达到方向剖面控制和干扰抑制的目的。
波束形成是指通过迭代算法对参数进行优化,从而实现波束指向和形成的过程。
3. 非相参信号处理非相参信号处理技术是近年来迅速发展的一种信号处理方法,它不需要相位信息,只利用信号幅度和功率等信息来获取目标信息。
非相参信号处理技术主要包括多普勒谱分析、阵列信号处理和小波变换等方法。
雷达数字下变频后脉冲压缩原理公式
雷达数字下变频后脉冲压缩原理公式雷达数字下变频后脉冲压缩是一种重要的信号处理技术,它能够有效地提高雷达系统的分辨能力和测量精度。
本文将对雷达数字下变频后脉冲压缩的原理进行详细介绍,并给出相应的公式,以帮助读者深入理解该技术。
雷达是一种将电磁波通过传输和接收设备发射出去,再通过接收和分析设备接收回来,以探测目标和测量目标相关参数的设备。
在雷达系统中,脉冲压缩是一种重要的信号处理技术,用于提高雷达的距离分辨能力。
传统的脉冲压缩技术主要是通过硬件实现,但随着数字信号处理技术的快速发展,数字下变频后脉冲压缩逐渐成为主流。
数字下变频后脉冲压缩的核心思想是将接收到的窄带信号下变频到中频,并对其进行脉冲压缩处理。
其原理可以用如下公式表示:$$s(t) = \frac{1}{T} \int_{0}^{T} x(t) h^*(t - \tau) dt$$其中,$x(t)$表示接收到的窄带信号,$s(t)$表示压缩后的脉冲信号,$h(t)$表示脉冲压缩滤波器的冲激响应函数,$h^*(t -\tau)$表示$h(t)$在时域上延迟$\tau$后的函数,$T$表示信号的脉冲宽度。
该公式表示,压缩后的脉冲信号$s(t)$是接收到的窄带信号$x(t)$与脉冲压缩滤波器的冲激响应函数$h(t)$的卷积积分。
通过进行卷积计算,信号在时域上得到了压缩,从而提高了距离分辨能力。
数字下变频后脉冲压缩技术具有许多优势。
首先,通过数字信号处理技术,可以灵活地调整压缩滤波器的参数,从而适应不同的工作任务和环境。
其次,使用数字信号处理器(DSP)等高性能计算设备可以实现实时处理,大大提高了雷达系统的响应速度。
此外,数字化处理还可以减少了传统脉冲压缩系统中由于模拟部分带来的误差和失真,从而提高了数据的精确度和可靠性。
总之,雷达数字下变频后脉冲压缩是一种重要的信号处理技术,通过将接收到的窄带信号下变频到中频,并对其进行脉冲压缩处理,可以提高雷达系统的分辨能力和测量精度。
雷达数字下变频后脉冲压缩原理公式
雷达数字下变频后脉冲压缩原理公式摘要:一、引言二、雷达数字下变频后脉冲压缩原理1.脉冲压缩技术的概念和作用2.数字下变频的原理3.脉冲压缩公式三、雷达数字下变频后脉冲压缩的应用1.提高距离分辨率2.降低旁瓣干扰四、结论正文:一、引言雷达技术作为现代国防和民用领域的重要技术之一,其发展一直受到广泛关注。
在雷达系统中,脉冲压缩技术是一种重要的技术手段,可以提高雷达系统的距离分辨率和信噪比。
数字下变频是雷达系统中常用的一种技术,其与脉冲压缩技术的结合可以进一步提高雷达系统的性能。
本文将探讨雷达数字下变频后脉冲压缩的原理及公式。
二、雷达数字下变频后脉冲压缩原理1.脉冲压缩技术的概念和作用脉冲压缩技术是一种通过压缩脉冲信号的时宽,提高脉冲信号的距离分辨率和信噪比的技术。
在雷达系统中,脉冲压缩技术可以有效提高雷达系统的探测能力和抗干扰能力。
2.数字下变频的原理数字下变频是指在数字信号处理过程中,将信号的频率降低到较低的频率范围内。
在雷达系统中,数字下变频可以将高频信号转换为低频信号,从而降低信号的处理复杂度。
同时,数字下变频还可以与脉冲压缩技术相结合,提高脉冲信号的距离分辨率和信噪比。
3.脉冲压缩公式在雷达数字下变频后,脉冲压缩的公式可以表示为:距离分辨率= c / (2B)其中,c 为光速,B 为信号带宽。
距离分辨率表示雷达系统能够区分两个目标的最小距离差。
可以看出,信号带宽B 越大,距离分辨率越小,雷达系统的探测能力越强。
三、雷达数字下变频后脉冲压缩的应用1.提高距离分辨率雷达数字下变频后脉冲压缩可以有效提高雷达系统的距离分辨率,使雷达系统能够更加准确地探测目标。
在实际应用中,提高距离分辨率可以提高雷达系统的抗干扰能力,提高目标的识别能力。
2.降低旁瓣干扰旁瓣干扰是雷达系统中常见的一种干扰现象,会对雷达系统的探测能力产生影响。
雷达数字下变频后脉冲压缩可以降低旁瓣干扰,提高雷达系统的信噪比。
在实际应用中,降低旁瓣干扰可以提高雷达系统的抗干扰能力,提高目标的识别能力。
脉冲压缩雷达
06
脉冲压缩雷达的应用实例
军事侦查与目标识别
目标定位与跟踪
脉冲压缩雷达能够快速准确地定 位和跟踪目标,为军事侦查和打
击提供关键信息。
识别与分类
通过分析回波信号,脉冲压缩雷达 能够识别和分类不同类型目标,如 飞机、导弹和舰船等。
隐身目标探测
对于采用隐身技术的目标,脉冲压 缩雷达通过多普勒频移和信号处理 技术,有效探测和识别隐身目标。
脉冲压缩雷达
• 引言 • 脉冲压缩雷达的工作原理 • 脉冲压缩雷达的优势 • 脉冲压缩雷达的挑战与解决方案 • 脉冲压缩雷达的发展趋势 • 脉冲压缩雷达的应用实例
01
引言
脉冲压缩雷达的定义
脉冲压缩雷达是一种雷达系统,它通 过发射宽脉冲信号,并在接收时对信 号进行压缩处理,以获得高分辨率和 低距离模糊的雷达图像。
测距精度高
总结词
脉冲压缩雷达通过精确控制发射信号的脉冲宽度和压缩比, 能够实现高精度的测距。
详细描述
脉冲压缩雷达的测距精度取决于发射信号的脉冲宽度和压缩 比。通过精确控制发射信号的脉冲宽度和压缩比,脉冲压缩 雷达能够实现高精度的测距测量,从而提高对目标距离的测 量精度。
04
脉冲压缩雷达的挑战与解决方案
03
脉冲压缩雷达的优势
高距离分辨率
总结词
脉冲压缩雷达通过发送宽脉冲信号,并在接收时进行压缩处理,能够实现高距离分辨率。
详细描述
在雷达探测中,距离分辨率指的是雷达区分两个相邻目标的能力,取决于发射信号的脉冲宽度。脉冲压缩雷达通 过发送宽脉冲信号,并在接收时进行匹配滤波处理,将宽脉冲压缩成窄脉冲,从而提高了距离分辨率,能够更好 地分辨出相邻目标。
第三章 脉冲压缩雷达简介
∂∇第三章 脉冲压缩雷达简介3.1 脉冲压缩简介雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。
因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。
显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。
而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。
具有大时宽带宽的信号通常被称作脉冲压缩信号。
脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。
在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。
3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩比,即0D ττ=(3-1)因为01B τ=,所以,式(3-1)可写成D Bτ=(3-2)即压缩比等于信号的时宽-带宽积。
在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。
大时宽带宽矩形脉冲信号的复包络表达式可以写成:(),/2/2()0,j t Ae T t T u t θ⎧-<<=⎨⎩其他(3-3)匹配滤波器输出端的信噪比为:()00S N EN =(3-4)其中信号能量为[13] :212E A T =(3-5)这种体制的信号具有以下几个显著的特点:(1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。
(2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。
(3)有利于提高系统的抗干扰能力。
当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度τ的限制。
雷达数字下变频后脉冲压缩原理公式
雷达数字下变频后脉冲压缩原理公式
(实用版)
目录
一、雷达数字下变频的原理
二、脉冲压缩的原理及其公式
三、雷达数字下变频后脉冲压缩的优越性
四、应用实例与展望
正文
一、雷达数字下变频的原理
雷达数字下变频技术是一种将高频信号转换为低频信号的技术,其主要原理是利用数字信号处理的方法,将高频信号采样、量化、编码后,通过数字混频器与本振信号混合,从而实现高频信号的下变频。
在雷达系统中,这种技术可以用于实现对目标的距离、速度、方位等信息的测量。
二、脉冲压缩的原理及其公式
脉冲压缩是一种提高雷达距离分辨率的技术,其原理是利用大带宽信号通过积累换取高分辨。
根据距离分辨率的公式:rc/2B,其中 c 为光速,B 为信号带宽,可知,信号带宽越大,距离分辨率越高。
脉冲压缩技术就是通过压缩脉冲的带宽,从而提高距离分辨率。
三、雷达数字下变频后脉冲压缩的优越性
雷达数字下变频后脉冲压缩技术具有以下优越性:
1.提高距离分辨率:通过数字下变频技术,可以实现对高频信号的采样、量化和编码,从而提高信号带宽,进一步提高距离分辨率。
2.抑制旁瓣:脉冲压缩技术可以有效地抑制旁瓣,提高信噪比,从而使接收端能获得高主旁瓣信噪比。
3.抗干扰能力强:数字下变频技术可以实现对信号的数字化处理,具有较强的抗干扰能力。
四、应用实例与展望
雷达数字下变频后脉冲压缩技术在现代雷达系统中得到了广泛的应用,如线性调频(LFM)脉冲压缩雷达等。
线性调频脉冲压缩技术在雷达系统中的应用分析
线性调频脉冲压缩技术在雷达系统中的应用分析线性调频脉冲压缩技术(Linear Frequency Modulated Continuous Waveform Compression,简称LFMCW)是一种常用于雷达系统中的信号处理技术。
LFMCW技术通过在发送端连续变化载频频率,然后在接收端进行脉冲压缩处理,达到提高雷达系统性能的目的。
LFMCW技术在雷达系统中有以下几个应用:1. 目标测距:LFMCW雷达通过连续变化载频频率,在接收端可以通过测量脉冲压缩后的信号到达时间来计算目标距离。
由于脉冲压缩技术可以实现较高的距离分辨率,因此LFMCW雷达对目标的准确测距非常有效。
2. 目标速度测量:利用LFMCW雷达在发送过程中持续改变载频频率,接收到的回波信号会受到多普勒频移的影响。
通过测量回波信号的频率差异,可以计算出目标的径向速度。
这种技术可以应用在雷达测速、交通流量检测等领域。
3. 目标角度测量:LFMCW雷达可以通过改变载频频率的方式,通过测量回波信号的相位差异来计算目标的角度信息。
这是因为目标的位置不同会导致回波信号的相位差异。
LFMCW雷达可以实现对目标的方位角和俯仰角的测量。
4. 多目标分辨:LFMCW雷达通过改变载频频率的方式,在接收端可以对回波信号进行不同的频率切片,从而实现对多个目标的同时探测和跟踪。
利用多目标跟踪算法,LFMCW雷达可以将不同目标的回波信号分离,实现对多个目标的高精度测量和跟踪。
5. 抗多径干扰能力:LFMCW雷达的脉冲压缩技术可以有效地抑制多径干扰。
当雷达信号在发射和接收过程中受到多个路径的反射时,回波信号会叠加形成干扰。
通过脉冲压缩技术,可以有效地将干扰信号分离出来,提高雷达系统的抗多径干扰能力。
LFMCW技术在雷达系统中可以实现目标测距、速度测量、角度测量、多目标分辨和抗多径干扰等功能。
这种技术不仅提高了雷达系统的性能和测量精度,还具有较低的成本和较小的体积。
雷达的工作原理是什么
雷达的工作原理是什么
雷达是一种使用电磁波进行探测和测量的技术。
雷达基本原理是通过发送射频脉冲信号并接收其反射回来的信号,以确定目标的位置、距离和速度。
具体而言,雷达工作原理包括以下步骤:
1. 发射信号:雷达系统通过天线向目标区域发射射频脉冲信号。
这些信号一般属于微波频段,具有高频率和短波长。
2. 接收回波:当射频信号遇到物体,如飞机、船只或云层等,一部分信号会被反射回来,形成回波。
雷达系统中的接收器将接收到的回波信号放大并进行处理。
3. 脉冲压缩:为了提高雷达的距离分辨率,接收到的回波信号通常需要进行脉冲压缩处理。
脉冲压缩通过改变信号的压缩和展宽来提高距离分辨率,从而更好地确定目标位置。
4. 信号处理:接收到的回波信号经过滤波、放大和调制等处理后,以数字形式传输给雷达系统的处理器。
处理器对信号进行解调、抽取和分析,从而确定目标的位置、距离和速度等信息。
5. 显示结果:雷达系统将处理后的结果通过显示器或其他输出设备展示给操作员。
通常以图像或数值的形式显示目标的位置、距离和速度等信息。
通过这些步骤,雷达系统能够实现对目标的探测、跟踪和测量。
雷达在军事、民航、气象、海洋等领域都有广泛的应用。
雷达脉冲压缩技术应用分析
雷达脉冲压缩技术应用分析摘要:脉冲压缩技术能在雷达发射功率受限的情况下,有效提高雷达探测距离能力,同时还能保证较高的分辨力,是雷达反隐身、多目标精确检测和抗外部干扰的重要手段。
本文介绍了脉冲压缩技术原理、波形分类和实现方法,并对主要波形信号的性能特点进行了分析。
关键词:脉冲压缩线性调频相位编码1 引言现代社会对空天的利用愈发重视,新型技术层出不穷,相应人们对雷达在作用距离、分辨能力和测量精度等方面也产生了更高的需求。
根据雷达系统理论可知,随着发射机功率的提升,雷达探测距离相应提高,但分辨能力却会降低,长距离与高精度貌似不可兼得,但脉冲压缩技术在雷达系统中的应用有效解决了这一矛盾。
在现代战争日益复杂的电磁环境下,脉冲压缩雷达通过发射大时宽信号以提升发射功率,有效增加了雷达信干比和测量距离,通过压缩得到的窄脉冲又提高了探测精度,还能有效对抗箔条干扰和抑制杂波,已广泛应用于跟踪监视和空中交通管制等领域,AN/TPS-59、AN/FPS-117和ASR-12等先进雷达系统都采用了脉冲压缩技术。
2 脉冲压缩原理雷达发展初期,根据距离分辨率公式=cτ/2n (c为光速,τ为脉冲时间宽度),通常认为距离分辨率由雷达发射的脉冲时间宽度决定,由于发射机峰值功率的限制,想要提高测量距离只能延长发射脉冲时间,而这势必降低距离分辨率,这使得同时提高距离与距离分辨率变的不可行。
随着科学技术的发展,根据信号与系统原理,距离分辨率公式演变为 =c/2B(B为雷达信号带宽),距离分辨率变为由雷达信号带宽决定,而带宽只决定于信号幅度和频率的变化,那么,对信号进行调幅或调频就可以增大信号的等效带宽,这就使得同时提高距离与距离分辨率变的可行。
雷达脉冲压缩技术的原理就是调制一个带宽为B,持续时间为T的宽脉冲,以提高发射平均功率,获得较远的探测距离,接收时利用匹配滤波器处理目标回波,把接收的宽脉冲压缩为一个持续时间τ=1/B的窄脉冲,从而得到较高的分辨率精度。
线性调频脉冲压缩技术在雷达系统中的应用分析
线性调频脉冲压缩技术在雷达系统中的应用分析雷达(Radar)是一种利用电磁波原理来探测目标位置与运动状态的技术。
线性调频脉冲压缩技术(Linear Frequency Modulated Pulse Compression,简称LFMPC)是雷达系统中常用的信号处理技术之一,它通过变化脉冲信号的频率来提高雷达的分辨率和探测性能。
本文将从原理、应用和优势三个方面对线性调频脉冲压缩技术在雷达系统中的应用进行分析。
线性调频脉冲压缩技术的原理是基于脉冲压缩的概念。
脉冲压缩是指将较宽的脉冲信号在时域上进行压缩,从而在频域上获得更好的分辨率和距离分辨率。
线性调频脉冲压缩技术通过线性调频信号来实现脉冲压缩。
具体而言,脉冲信号的频率随时间线性变化,这种信号可以通过傅里叶变换得到频谱,将其与接收到的信号进行相关运算,即可得到压缩后的信号。
压缩后的信号具有更窄的带宽和更长的脉冲宽度,从而提高了信号的分辨率和目标的探测能力。
线性调频脉冲压缩技术在雷达系统中有广泛的应用。
线性调频脉冲压缩技术可以提高雷达系统的距离分辨率。
由于线性调频信号具有较宽的带宽,可以使得雷达系统能够更准确地测量目标与雷达之间的距离,从而提高雷达系统的分辨率。
线性调频脉冲压缩技术还可以提高雷达系统的速度分辨率。
线性调频信号的频率变化率与目标的速度成正比,通过测量返回信号的频率变化率,可以准确地估计目标的速度。
而且,线性调频脉冲压缩技术还可以提高雷达系统的抗干扰能力。
由于线性调频信号的频率变化比较大,相邻频率之间的干扰信号在相关运算中会被抵消,从而提高了系统对干扰的抑制能力。
线性调频脉冲压缩技术在雷达系统中具有一些优势。
线性调频脉冲压缩技术具有较高的距离分辨率和速度分辨率,能够提供更精确的目标测量结果。
由于线性调频脉冲压缩技术能够提高系统的抗干扰能力,使得雷达系统在复杂电磁环境下仍能稳定工作。
线性调频脉冲压缩技术的硬件实现相对简单,成本相对较低,适用于各种不同类型的雷达系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
'
T P , D ' P T
'
可见输出脉冲的峰值功率增大了D倍。 若输入脉冲幅度为A,输出脉冲幅度为A’,则:
A T ' D A T
'
,
A A D
'
因为噪声通过压缩滤波器后,噪声不会被压 缩,其噪声电平仍保持在接收机原有的噪声电平
上,所以输出信噪比也提高了D倍:
(S / N )0 D ( S / N )i
t
td 2 td 1
T ' T
f1
td1
f2
T’ td2
f
t
(3) 同相位矢量相加方法
f
压缩前信号频谱矢量图
f
压缩后信号频谱矢量图
6 脉冲压缩雷达信号处理方式(1)
中频 信号
匹配滤波 脉冲压缩
I/Q 解调
采样 保持
窄带A/D 转换
高速 存储
信号 滤波器
频谱 分析
检测器 CFAR
检测 结果
模拟脉冲压缩方式
1 4
增加雷达系统发射信号脉冲宽度有利于提高的雷达 发射平均功率,但影响雷达系统的带宽和距离分辨率。
压缩后与压缩前雷达信号时宽之比为:
T 1 ' T TB
定义雷达信号时宽与带宽的乘积为脉冲压缩比:
'
D TB
'
如果压缩滤波器是无源的,它本身不消耗 能量也不产生能量,满足能量守恒原理:
E P T P T
相位编码脉冲压缩雷达有二相制、多相制以及巴克码、伪随机 码等类型。在二相制相位编码脉冲压缩体制中,宽度为T的宽脉冲 被划分为N个宽度为τ的子脉冲,每个子脉冲的相位按0°、180° 两相编码。经过压缩滤波器后,输出的是一个主瓣宽度为τ、幅度 为宽脉冲回波幅度N倍的窄脉冲。在要求大脉冲压缩比的场合,相 位的编码通常采用伪随机码,对于同一码长,可以得到多种不同的 编码。相位编码脉冲压缩雷达多采用数字技术进行压缩滤波处理。 数字处理方法的优点是在计算机控制下可以快速改变发射波形,相 应地改变信号处理,以适应不同的战术要求。 脉冲压缩雷达采用的宽频带信号有利于反噪声干扰。在相位编 码脉冲压缩雷达中,还可以方便地选择不同的编码,来对付欺骗干 扰。脉冲压缩技术可与动目标显示、单脉冲测角、相控阵天线等雷 达技术兼容,因而在超远程警戒雷达、远程跟踪雷达、三坐标雷达、 合成孔径雷达、精密测量雷达以及相控阵雷达中都得到广泛应用。
(1)最小作用距离受脉冲宽度的限制。 (2)收发系统比较复杂,在信号产生和处理
过程中的任何失真,都将增大旁瓣高度。 (3)存在距离旁瓣,通过加权处理抑制旁瓣。
(4)存在距离和速度耦合,影响距离测量。
发射宽频带的宽脉冲信号,并将回波信号压缩处理成窄脉冲的 雷达。常规脉冲雷达为了增大雷达探测距离,在发射机峰值功率受 到限制的情况下,通常采用增加发射脉冲宽度,提高平均功率的方 法;而为了得到高的距离分辨力,却要求回波脉冲越窄越好,这两 者是互相矛盾的。脉冲压缩雷达能有效地解决常规脉冲雷达中增大 探测距离与提高距离分辨力的矛盾。 按发射信号的调制方式分,脉冲压缩雷达主要有线性调频、非 线性调频与相位编码等几种体制。 线性调频体制的关键器件是压缩滤波器,常用的压缩滤波器是 声表面波色散延迟线或数字电路,其延迟时间与信号频率成线性关 系。压缩后的信号脉冲宽度仅为发射信号宽度的D分之一,因而距 离分辨力也改善了相应的数值。而压缩后的窄脉冲幅度则增大D倍。
第5章
脉冲压缩雷达系统
1
概述
c r 2B
雷达的距离分辨率取决于信号的带宽(B):
普通脉冲雷达, 雷达信号的时宽(T)与带宽(B)满足:
1 T B
对于脉冲压缩雷达,雷达信号的
时宽(T)与带宽(B’)满足:
T B 1
'
1 , B T
'
这样,经过压缩后雷达信号的时宽(T’)为:
ji ( f )
H ( f ) K | Ui ( f ) | e
经过匹配压缩滤波器后的输出应为:
ji ( f ) j 2ftd
e
2
Uo ( f ) H ( f )Ui ( f ) K | Ui ( f ) | e
j 2ftd
(2) 信号延迟积累方法
A t
接收机输入的高 频脉冲的包络
这意味着,接收机的灵敏度提高了,脉冲 压缩雷达的作用距离将提高。
2 脉冲压缩雷达的优点:
(1) 脉冲宽度与有效频谱宽度这两个参数可
以独立选取,解决了雷达作用距离与距离分辨
率之间的矛盾。 (2) 通过匹配压缩处理获得高的距离分辨率。 (3) 宽带信号有利于提高系统的抗干扰能力。
3 脉冲压缩雷达的缺点:
4 脉冲压缩雷达存在条件:
(1) 发射信号必须具有非线性的相位谱。 (2)存在对应的匹配压缩网络。
压缩 网络
5 脉冲压缩的原理
• 频谱分析方法
• 信号延迟积累方法 • 同相位矢量相加方法
(1) 频谱分析方法
设发射信号的频谱为:
Ui ( f ) | Ui ( f ) | e
则,匹配压缩滤波器的频谱应为:
6 脉冲压缩雷达信号处理方式(2)
I/Q信号
采样 保持 宽带A/D 转换 存 储 匹配滤波 脉冲压缩
信号 滤波器
频谱 分析
检测器 CFAR
检测 结果
数字脉冲压缩
7 线性调频脉冲压缩雷达的信号频谱
(1) 线性调频脉冲信号(LFM):
t s(t ) rect
j 2 ( f 0t Kt 2 / 2) e
T
f f2
f1 t td1
输入高频信号的 时间--频率特性
t
td2
f f1 td1 td2 f2 T’
信号压缩的频 率--时延特性
f
压缩脉冲输出
t
图中存在下述关系:
A
T td 2 t d 1 T
'
'
f
f2 T
t
T T ( td 2 td 1 )
因为 所以
f1 t
td1 td2 f
T
'
1 ' B
由脉冲雷达系统的方程可比(其它条件不变时):
PtG 22 RCS PtG 22 RCS Prs Rt 3 4 3 (4 ) Rt Lt Lr ( 4 ) P L L rs t r
(2)当时间带宽积较大时, LFM信号的频谱近似为:
1 f j[ ( f f 0 ) 2 / K / 4] S( f ) rect( )e B K
radar pulse with linear frequency modulation 1