线性回归的各种检验共76页

合集下载

线性回归的显著性检验

线性回归的显著性检验

线性回归的显着性检验1.回归方程的显着性在实际问题的研究中,我们事先并不能断定随机变量y与变量人,乂2,…,x p之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量X「X2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。

因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。

设随机变量丫与多个普通变量x1, x2^ ,x p的线性回归模型为其中;服从正态分布N(0,;「2)对多元线性回归方程的显着性检验就是看自变量若接受X i,X2,…,X p从整体上对随机变量y是否有明显的影响。

为此提出原假设如果H。

被接受,则表明随机变量y与x「X2,…,X p的线性回归模型就没有意义。

通过总离差平方和分解方法,可以构造对H o进行检验的统计量。

正态随机变量y i,y2/ , y n的偏差平方和可以分解为:n n nS r f (y—y)2为总的偏差平方和,S R=為(懈-y)2为回归平方和,S E f (% - ?)2为残i 1i# im差平方和。

因此,平方和分解式可以简写为:回归平方和与残差平方和分别反映了b = 0所引起的差异和随机误差的影响。

构造F检验统计量则利用分解定理得到:在正态假设下,当原假设H o :b i =0, b2 =0,…,b p =0成立时,F服从自由度为(p,n -p-1)的F分布。

对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。

,说明回归方程显着,x与y有显着的线性关系。

实际应用中,我们还可以用复相关系数来检验回归方程的显着性。

复相关系数R定义为:平方和分解式可以知道,复相关系数的取值范围为0空R乞1。

R越接近1表明S E越小,回归方程拟合越好。

2.回归系数的显着性若方程通过显着性检验,仅说明b o,b i,b2,…b p不全为零,并不意味着每个自变量对y的影响都显着,所以就需要我们对每个自变量进行显着性检验。

多元线性回归模型的检验

多元线性回归模型的检验

多元线性回归模型的检验多元线性回归模型的检验[1]多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。

1、拟合程度的测定。

与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。

计算公式为:其中,2.估计标准误差估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。

其中,k为多元线性回归方程中的自变量的个数。

3.回归方程的显著性检验回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。

能常采用F检验,F统计量的计算公式为:根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F > Fa,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著。

4.回归系数的显著性检验在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。

t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。

检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或ta / 2,t > t ? a或ta / 2,则回归系数bi与0有显著关异,反之,则与0无显著差异。

统计量t 的计算公式为:其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(x'x) ?1的主对角线上的第j个元素。

对二元线性回归而言,可用下列公式计算:其中,5.多重共线性判别若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显著所致,此时,应从回归模型中剔除这个自变量,重新建立更为简单的回归模型或更换自变量。

线性回归精确分析讲课文档

线性回归精确分析讲课文档
– 利用满足一定条件的样本数据进行回归分析
(6)指定作图时各数据点的标志变量(case labels)
11
第十一页,共76页。
一元线性回归分析操作
(二) statistics选项 (1)基本统计量输出
– Estimates:默认.显示回归系数相关统计量.
– confidence intervals:每个非标准化的回归系数95%的置信
起的因变量y的平均变动
(二)多元线性回归分析的主要问题
– 回归方程的检验
– 自变量筛选 – 多重共线性问题
18
第Hale Waihona Puke 八页,共76页。多元线性回归方程的检验
(一)拟和优度检验:
(1)判定系数R2:
– R是y和xi的复相关系数(或观察值与预测值的相关系数),测定了因变量 y与所有自变量全体之间线性相关程度
第二十三页,共76页。
23
多元线性回归分析中的自变量筛选
(二)自变量向前筛选法(forward): • 即:自变量不断进入回归方程的过程. • 首先,选择与因变量具有最高相关系数的自变量进入方程,
并进行各种检验;
• 其次,在剩余的自变量中寻找偏相关系数最高的变量进入回归方 程,并进行检验;
– 默认:回归系数检验的概率值小于PIN(0.05)才可以进入方程.
6
第六页,共76页。
一元线性回归方程的检验
(一)拟和优度检验:
(3)统计量:判定系数
– R2=SSR/SST=1-SSE/SST. – R2体现了回归方程所能解释的因变量变差的比例;1-R2则体现
了因变量总变差中,回归方程所无法解释的比例。
– R2越接近于1,则说明回归平方和占了因变量总变差平方和的绝大

线性回归的各种检验76页PPT

线性回归的各种检验76页PPT
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
线性回归的各种检验
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

第三章--回归模型的检验

第三章--回归模型的检验
F F(k,n-k-1) 或 FF(k,n-k-1) 来拒绝或接受原假设H0,以判定原方程总体上的 线性关系是否显著成立。
对于中国居民人均消费支出的例子:
一元模型:F=285.92
二元模型:F=2057.3 给定显著性水平 =0.05,查分布表,得到临界 值:
一元例:F(1,21)=4.32 二元例: F(2,19)=3.52 显然有 F F(k,n-k-1) 即二个模型的线性关系在95%的水平下显著成立。
99.4
96.9
2758.9
1637.2
157.0
117.7
1999 4615.9 1932.1
98.7
95.7
2723.0
1566.8
169.5
123.3
2000 4998.0 1958.3
100.8
97.6
2744.8
1529.2
182.1
128.1
2001 5309.0 2014.0
100.7
2、关于拟合优度检验与方程显著性检
验关系的讨论

R2 1 RSS
TSS

F
ESS / k
RSS / n k
1
可推出: R2
kF
n k 1 kF

F
R2 / k
1 R2 / n k 1
三、变量的显著性检验(t检验)
方程的总体线性关系显著每个解释变量对被 解释变量的影响都是显著的
因此,必须对每个解释变量进行显著性检验, 以决定是否作为解释变量被保留在模型中。
问题:
由增加解释变量个数引起的R2的增大与拟合 好坏无关,R2需调整。
调整的可决系数(adjusted coefficient of determination)

线性回归的各种检验

线性回归的各种检验
一元回归分析又分为直线回归分析与曲线回 归分析两种;多元回归分析又分为多元线性回归 分析与多元非线性回归分析两种。
上一张 下一张 主 页 退 出
回归分析的任务就是揭示出呈因果关系 的相关变量间的联系形式,建立它们之 间的回归方程,利用所建立的回归方程, 由自变量(原因)来预测、控制依变量 (结果)。
以上计算也可在回归计算表中进行。
回归方程计算表1(一级数据)
序号k
Xk
Yk
Xk2
XkYk
Yk2
1
1.0 15.0 1.00 15.0 225.00
2
3.0 18.0 9.00 54.0 324.00
3
4.0 19.0 16.00 76.0 361.00
4
5.5 21.0 30.25 115.5 441.00
第六章 直线回归与相关
客观事物在发展过程中是相互联系、相 互影响,常常要研究两个或两个以上变 量间的关系。
下一张 主 页 退 出
1 回归与相关的概念
确定性关系
各种变量间的关系大致可分为两类:
非确定性关系
一类是完全确定性的关系,又称函数关系,可以 用精确的数学表达式来表示,即当变量x的值取 定后,变量y有唯一确定的值与之对应。
2 直线回归
2.1 直线回归方程的建立
2.1.1数学模型
对于两个相关变量,一个变量用x表示,另 一个变量用y表示,如果通过试验或调查获得两 个变量的n对观测值:(x1,y1),(x2, y2),……,(xn,yn)
为了直观地看出x和y间的变化趋势,可将 每一对观测值在平面直角坐标系中描点,作出散 点图 (见图6-1)。
上一张 下一张 主 页 退 出
函数关系 有精确的数学表达式

§3.3 多元线性回归模型的统计检验

§3.3 多元线性回归模型的统计检验

t=
βj βj Sβ
j
=
βj βj e′e cjj n k 1
~ t(nk 1)
2、t检验 、 检验
设计原假设与备择假设: 设计原假设与备择假设: H0:βi=0 H1:βi≠0 给定显著性水平α,可得到临界值tα/2(n-k-1), 给定显著性水平α 可得到临界值 ) 由样本求出统计量t的数值 的数值, 由样本求出统计量 的数值,通过 |t|> |t|> tα/2(n-k-1) ) 或 |t|≤ |t|≤tα/2(n-k-1) )
RSS = ∑ ei
2
2 总体平方和
Y )2 ESS = ∑(Y
回归平方和 残差平方和

TSS = Σ(Yi Y ) 2 = Σ((Yi Yi ) + (Yi Y )) 2 = Σ(Yi Yi ) 2 + 2Σ(Yi Yi )(Yi Y ) + Σ(Yi Y ) 2
由于
n 1 R = 1 (1 R ) n k 1
2 2
*2、赤池信息准则和施瓦茨准则 、
赤池信息准则( 赤池信息准则(AIC) )
AIC=-2L/n + 2(k + 1) / n
施瓦茨准则(SC) 施瓦茨准则( )
SC=-2L/n + (k + 1) ln n / n
L为对数似然值,n为样本容量,k为解释变量个数。 这两准则均要求仅当所增加的解释变量能够减少 这两准则均要求仅当所增加的解释变量能够减少 AIC值或AC值时才在原模型中增加该解释变量 值或AC值时才在原模型中增加该解释变量。 AIC值或AC值时才在原模型中增加该解释变量
β 0 = 120.70 β 1 = 0.2213 β 2 = 0.4515 s β = 36.51

简单线性回归模型的统计检验

简单线性回归模型的统计检验
第三节 拟合优度的度量
可编辑ppt
1
1、拟合优度检验
拟合优度检验:对样本回归直线与样本 观测值之间拟合程度的检验。
度量拟合优度的指标:判定系数(可决 系数)R2
问题:采用普通最小二乘估计方法,已 经保证了模型最好地拟合了样本观测值, 为什么还要检验拟合程度?
可编辑ppt
2
2、总离差平方和的分解
已知由一组样本观测值(Xi,Yi),i=1,2…,n得到如下 样本回归直线
n
X
2 i
x
2 i
s eˆ ( ˆ 2 )
ˆ
x
2 i
可编辑ppt
12
(2)在小样本情况下,若用无偏估计 ^ 2 代替 2 去 估计标准误差,则进行标准变化的统计量不再服从正
态分布,而是服从自由度为n-2的t分布
一 般 情 况 下 , 对 ˆ 1 与 ˆ 2 变 换 后 服 从 自 由 度 为 n - 2 的 t 分 布 :
可编辑ppt
15
t分布
P (t)
P(t 2tsˆe 1 ˆ( ˆ 1)1t 2)195%
拒绝域
2
t (n 2)
接受域 0
2
拒绝域
t (n 2)
t
假如0.05,t 2.1009 P ( 2 .1 0 0 9 t* 2 .1 0 0 9 ) 9 5 %
2
可编辑ppt
16
举例:一元线性模型中,i (i=1,2)的置信区间: 在变量的显著性检验中已经知道:
x
2 i
^
^
1 Y2 X
^^
因为 1 , 2 是关于Y 的线性函数,而Y是关于随机扰动项 ui的线 ^^
性函数,所以 1 , 2 也是ui的线性函数,且服从正态分布

线性回归分析

线性回归分析

一元线性回归分析1.理论回归分析是通过试验和观测来寻找变量之间关系的一种统计分析方法。

主要目的在于了解自变量与因变量之间的数量关系。

采用普通最小二乘法进行回归系数的探索,对于一元线性回归模型,设(X1,Y1),(X2,Y2),…,(X n,Y n)是取至总体(X,Y)的一组样本。

对于平面中的这n个点,可以使用无数条曲线来拟合。

要求样本回归函数尽可能好地拟合这组值。

综合起来看,这条直线处于样本数据的中心位置最合理。

由此得回归方程:y=β0+β1x+ε其中Y为因变量,X为解释变量(即自变量),ε为随机扰动项,β0,β1为标准化的偏斜率系数,也叫做回归系数。

ε需要满足以下4个条件:1.数据满足近似正态性:服从正态分布的随机变量。

2.无偏态性:∑(εi)=03.同方差齐性:所有的εi 的方差相同,同时也说明εi与自变量、因变量之间都是相互独立的。

4.独立性:εi 之间相互独立,且满足COV(εi,εj)=0(i≠j)。

最小二乘法的原则是以“残差平方和最小”确定直线位置。

用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。

最常用的是普通最小二乘法(OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。

线性回归分析根据已有样本的观测值,寻求β0,β1的合理估计值^β0,^β1,对样本中的每个x i,由一元线性回归方程可以确定一个关于y i的估计值^y i=^β0+^β1x i,称为Y关于x的线性回归方程或者经验回归公式。

^β0=y-x^β1,^β1=L xy/L xx,其中L xx=J12−x2,L xy=J1−xy,x=1J1 ,y=1J1 。

再通过回归方程的检验:首先计算SST=SSR+SSE=J1^y−y 2+J1−^y2。

其中SST为总体平方和,代表原始数据所反映的总偏差大小;SSR为回归平方和(可解释误差),由自变量引起的偏差,放映X的重要程度;SSE为剩余平方和(不可解释误差),由试验误差以及其他未加控制因子引起的偏差,放映了试验误差及其他随机因素对试验结果的影响。

线性回归的显著性检验

线性回归的显著性检验

线性回归的显着性检验1.回归方程的显着性在实际问题的研究中,我们事先并不能断定随机变量y与变量x1,x2/ ,x p之间确有线性关系,在进行回归参数的估计之前,我们用多元线性回归方程去拟合随机变量y与变量人〃2,…,X p之间的关系,只是根据一些定性分析所作的一种假设。

因此,和一元线性回归方程的显着性检验类似,在求出线性回归方程后,还需对回归方程进行显着性检验。

设随机变量丫与多个普通变量X j,X2,…,X p的线性回归模型为其中;服从正态分布N(o,;「2)对多元线性回归方程的显着性检验就是看自变量若接受X i, X2,…,X p从整体上对随机变量y是否有明显的影响。

为此提出原假设如果H。

被接受,则表明随机变量y与X i,X2,…,X p的线性回归模型就没有意义。

通过总离差平方和分解方法,可以构造对H o进行检验的统计量。

正态随机变量y i, y2/ , y n的偏差平方和可以分解为:n n nS r八(y i -y)2为总的偏差平方和,S R八(场-y)2为回归平方和,S E八(y i-?)2为残i 1i £i A差平方和。

因此,平方和分解式可以简写为:回归平方和与残差平方和分别反映了 b = 0所引起的差异和随机误差的影响。

构造F检验统计量则利用分解定理得到:在正态假设下,当原假设H°:b1 =0, d =0,…,b p =0成立时,F服从自由度为(p,n - p「1)的F 分布。

对于给定的显着水平[,当F大于临界值(p, n-p-1)时,拒绝H。

,说明回归方程显着,x与y有显着的线性关系。

R定义实际应用中,我们还可以用复相关系数来检验回归方程的显着性。

复相关系数为:平方和分解式可以知道,复相关系数的取值范围为O^R^I。

R越接近1表明S E越小,回归方程拟合越好。

2•回归系数的显着性若方程通过显着性检验,仅说明bog,b2,…b p不全为零,并不意味着每个自变量对y的影响都显着,所以就需要我们对每个自变量进行显着性检验。

简单线性回归模型的统计检验

简单线性回归模型的统计检验
15
t分布
P(t)
P(t
2
t
ˆ1 1 seˆ(ˆ1)
t ) 1
2
95%
拒绝域
2
t (n 2)
接受域 0
2
拒绝域
t (n 2)
t
假如 0.05,t 2.1009 P(2.1009 t* 2.1009) 95%
2
16
举例:一元线性模型中,i (i=1,2)的置信区间: 在变量的显著性检验中已经知道:
在实际计算可决系数时,在 ˆ1 已经估计出后:
R 2
ˆ12
xi2
y
2 i
在例2.2收入-消费支出例中,
R2 1
ei2 yi2
1 76650 5870212.5
0.9869
注:可决系数是一个非负的统计量。它也是随
着抽样的不同而不同。为此,对可决系数的统计 可靠性也应进行检验,这将在第3章中进行。
Yˆi ˆ0 ˆ1 X i
yi Yi Y (Yi Yˆi ) (Yˆi Y ) ei yˆi
3
如果Yi=Ŷi 即实际观测值落在样本回归“线”上,则拟合最好。
可以认为,“离差”全部来自回归线,而与“残差”无关。 4
对于所有样本点,则需考虑这些点与样本均值离 差的平方和,可以证明:
偏估计ˆ 2 ei2 直接代替 2 来计算参数估计量的标准误差: n2
seˆ(ˆ1) ˆ
n
X
2 i
xi2
seˆ(ˆ2 )
ˆ
xi2
12
(2)在小样本情况下,若用无偏估计 ^2代替 去2
估计标准误差,则进行标准变化的统计量不再服从正
态分布,而是服从自由度为n-2的t分布

3.3多元线性回归检验

3.3多元线性回归检验
在变量的显著性检验中已经知道:
t ˆi i
S ˆi
ˆi i ~ t(n k 1)
ee cii n k 1
容易推出:在(1-)的置信水平下i的置信区间是
(i
t
2
si , i
t
2
si )
其中,t/2为显著性水平为 、自由度为n-k-1的临界值。
在中国居民人均收入-消费支出二元模型例中,
如何才能缩小置信区间?
•增大样本容量n,因为在同样的样本容量下,n越 大,t分布表中的临界值越小,同时,增大样本容 量,还可使样本参数估计量的标准差减小;
•提高模型的拟合优度,因为样本参数估计量的标 准差与残差平方和呈正比,模型优度越高,残差 平方和应越小。
•提高样本观测值的分散度,一般情况下,样本观 测值越分散,(X’X)-1的分母的|X’X|的值越大,致 使区间缩小。
一、拟合优度检验 1、可决系数与调整的可决系数
总离差平方和的分解
则 TSS (Yi Y )2
((Yi Yˆi ) (Yˆi Y )) 2 (Yi Yˆi )2 2(Yi Yˆi )(Yˆi Y ) (Yˆi Y )2
由于 (Yi Yˆ)(Yˆi 2, ,n
中的参数j是否显著不为0。 可提出如下原假设与备择假设:
H0: 0=1=2= =k=0
H1: j不全为0
F检验的思想来自于总离差平方和的分解式: TSS=ESS+RSS
由于回归平方和 ESS

2 i
是解释变量 X的联合体对被解
释变量 Y 的线性作用的结果,考虑比值
ESS / RSS
AIC=7.09 AC=7.19 从这点看,可以说前期人均居民消费CONSP(-1)应 包括在模型中。

计量经济学)多元线性回归模型的统计检验

计量经济学)多元线性回归模型的统计检验
• 在多元回归模型中,也可以用该统计量来衡量 样本回归线对样本观测值的拟合程度。
总离差平方和、回归平方和及残差平方和
• 定义 T ( Y S i Y ) 2 S E ( Y ˆ i S Y ) 2 S R ( Y i S Y ˆ i ) 2 S
TSS为总离差平方和(Total Sum of Squares),反映被解释变 量样本观测值总体离差的大小;
所以,可以用回归平方和占总离差平方和的比重来衡量样本回 归线对样本观测值的拟合程度。也即用
R2
ESS (Yˆi TSS (Yi
Y)2 Y)2

yˆi2 yi2
1
ei2 yi2
检验模型的拟合优度。
R2叫做多重可决系数,也简称为可决系数或判定系数。
毫无疑问,R2越接近于1,模型的拟合优度越高。 但是在应用过程中人们发现,如果在模型中增加一个解释变量, 那么模型的回归平方和随之增大,从而R2也随之增大。 这就给人一个错觉:要使模型拟合得好,就必须增加解释变量。 所以,用来检验拟合优度的统计量必须能够防止这种倾向。
概率性质的反证法的根据是小概率事件原理。该原理认 为“小概率事件在一次试验中几乎是不可能发生的”。
具体思路是这样:在原假设 H0 下构造一个事件(该事件就 是拒绝域),这个事件在“原假设 H0 正确”的条件下是一个
小概率事件(其发生概率为 )。随机抽取一组容量为 n 的
样本观测值进行该事件的试验,如果该事件发生了,说明“原 假设 H0 正确”是错误的,因为不应该出现的小概率事件出 现了,因而应该拒绝原假设 H0。反之,如果该小概率事件没 有出现,就没有理由拒绝原假设 H0,应该接受原假设 H0。
~F(k,nk1)

多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法

对多元线性回归模型的各种检验方法对于形如u X X X Y k k +++++=ββββ 22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验:一、 对单个总体参数的假设检验:t 检验在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。

特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。

如果拒绝0H ,说明解释变量j X 对被解释变量Y 具有显著的线性影响,估计值j βˆ才敢使用;反之,说明解释变量j X 对被解释变量Y 不具有显著的线性影响,估计值j βˆ对我们就没有意义。

具体检验方法如下:(1) 给定虚拟假设 0H :j j a =β;(2) 计算统计量 )ˆ(ˆ)ˆ()(ˆjj j j j j Se a Se E t βββββ-=-= 的数值; 11ˆ)ˆ(++-==j j jj jj j C C Se 1T X)(X ,其中σβ(3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ;(4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )ˆ(ˆj jj Se t βββ-=必须服从已知的t 分布函数。

什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定):(1) 随机抽样性。

我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21 =。

这保证了误差u 自身的随机性,即无自相关性,0))())(((=--j j i i u E u u E u Cov 。

(2) 条件期望值为0。

给定解释变量的任何值,误差u 的期望值为零。

回归分析(2))回归方程的检验

回归分析(2))回归方程的检验
§ 2.4 回归方程的显著性检验及精度估计
回归方程的显著性检验
原因:杂乱无序,无相关关系的散点也可以拟 合成一条直线或曲线,但无意义。
内容:回归方程拟合度的检验 回归方程线性关系显著性检验 回归变量的显著性检验
§ 2.4 回归方程的显著性检验及精度估计
模型合适吗? 在解决工程实际问题时,一般说来,事 y x1 先并不能断言 与 , x2 ,, xm 间一定具有线 性关系。因此,当我们按线性回归模型来处 x1 , y 理后,所得到的 关于x2 ,, xm 的线性回 归方程是否能代表实际问题呢?这就是统计 上常说的假设检验问题,即要检验线性回归 方程是否有显著意义。如果显著,我们就可 以用线性回归模型代表实际问题,否则该模 型不能代表实际问题。

1 2 m




YY——X代入由B为回归系数的方程后得到的 因变量矩阵; U——回归平方和; Q——剩余平方和; R——复相关系数; F——F检验值,即回归方差与剩余方差之比; SS——剩余标准差; Y1,Y2,Y3,f1,f2——中间变量。
2.Matlab函数: inv()——矩阵求逆; mean()——求均值; sum()——求和; sqrtm()——开方。

1 1 ij ij
§2.5 线性回归模型预测精度估计

通过对模型及变量的显著性检验后,我们可 用所建立的回归模型进行预测或控制。但用模 型进行预测,所得结果的精度如何?即真值 (实际值)与模型预测值的误差有多大?这是 我们关心的问题,应该作出估计,为此给出剩 余标准差
r剩 S剩 /(n r 1)

§ 2.4 回归方程的显著性检验——F检验
具体操作该如何进行呢?我们是这样考虑的, y 如果某个自变量 对 x i的作用不显著,也就 y 是说 对 x不重要(或可有可无),则认为它 i i 前面的系数 应取零值,因此检验自变量x i是 否显著(重要),就是等价于检验假设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰归的各种检验
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
相关文档
最新文档