函数与方程思想在高中的应用

合集下载

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

数学家和哲学家对数学的确切范围和定义有一系列的看法。

下面是店铺整理的高中四大数学思想方法,希望对你有所帮助!一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。

应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。

运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线。

以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。

以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。

分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。

应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏。

如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

数学思想在高中数学教学中的运用

数学思想在高中数学教学中的运用

数学思想在高中数学教学中的运用数学思想是数学的灵魂,是数学思维的有力支撑,是把知识转化为能力的重要桥梁,《普通高中数学课程标准(实验)》指出:高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。

数学教学要运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及它们所体现的数学思想方法。

高中数学学习的常见形态是解题,其目的不仅在于巩固与掌握知识,更重要的是通过锻炼思维,提高学生的数学能力,在解题中渗透数学思想,把数学思想有机地运用到解题中,是数学教师立足学科特点、践行新课程理念的有效途径。

一、高中数学教学中常见的几种数学思想(一)等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

(二)数形结合“数形结合”就是根据数量与图形之间的对应关系,把抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合,通过数与形的相互转化来解决数学问题的一种重要的数学思想,数形结合包括“以形助数”和“以数辅形”两个方面。

其应用大致可以分为两种情形:可以借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质:或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质,巧妙地应用数形结合思想解题,往往会使抽象问题直观化,复杂问题简单化,达到优化解题途径的目的,从“数”的严谨性和“形”的直观性两方面思考问题,拓展了解题思路,可起到事半功倍的效果。

(三)分类讨论,在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。

以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。

函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

方程与函数思想在高中教学的实践探究

方程与函数思想在高中教学的实践探究

方程与函数思想在高中教学的实践探究作者:楼泽尚来源:《文理导航》2013年第11期【摘要】方程思想与函数思想是高中数学中的关键思想方法,综合知识面广、出题类型繁多、解题时需要应用的技巧多,因此也成为了历年高考的重点。

本文首先介绍了函数与方程思想在高中数学中的背景,然后以例题的形式,结合具体的例子讲述了函数思想与方程思想在解题中的应用。

在本文的最后,就函数与方程思想在解题中应该注意的一些问题和解题时的步骤做了总结。

【关键词】高中数学;方程思想;高考;函数思想函数思想和方程思想是中学数学中重要的思想方法,然而数学的方法和思想是数学学科的精髓,它是数学能力、数学知识、数学素质和数学最本质的高层次体现。

数学学科的本质特点也就在数学思想上得到了最好的体现。

对方程思想与函数思想的以及二者的渗透结合考察也在近几年的高考中都得到了很好的体现。

一、方程思想与函数思想概述方程与函数思想就是用方程、函数的观点和方法来处理变量或未知数之间的关系,从而解决问题的一种数学思维方式,是很重要的数学思想。

方程与函数关系密切,方程问题也可以转换为函数问题来求解,反之亦然。

1.方程思想概念方程思想是动中求静,研究运动中的等量关系。

在解决数学问题时,将未知转化为已知的手段就是通过设元,然后寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程,当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。

利用方程思想解决问题,首先要具有正确列出方程的能力,有些数学问题需要利用方程解决,而正确列出方程是关键,因此要善于根据已知条件,寻找等量关系列方程。

其次要具备用方程思想解题的意识,要善于挖掘隐含条件,要具有方程的思想意识。

最后,要掌握运用方程思想解决问题的要点。

除了几何的计算问题要使用方程或方程思想以外,经常需要用到方程思想的还有一元二次方程根的判别式,在解决与这些内容有关的问题时要注意方程思想的应用。

数学与应用数学毕业论文--函数与方程思想在中学数学中的应用

数学与应用数学毕业论文--函数与方程思想在中学数学中的应用

毕业论文(设计)文献综述毕业论文(设计)翻译文章函数与方程思想在中学数学中的应用目录中文摘要、关键词 (Ⅰ)1引言 (1)2 方程中的函数思想 (1)3 函数中的方程观点 (3)4函数与方程思想在中学数学中的应用 (5)4.1函数与方程思想在数列中的应用 (6)4.2函数与方程思想在三角中的应用 (7)4.3函数与方程思想在不等式中的应用 (8)4.4函数与方程思想在解析几何中的应用 (8)4.5函数与方程思想在二项式定理中的应用 (12)4.6函数与方程思想在概率中的应用 (12)4.7函数与方程思想在多元问题中的应用 (13)4.8讨论方程f(x)=0在某个区间上根的个数 (13)4.9函数与方程思想在复数问题中的应用 (14)参考文献 (15)英文摘要、关键词 (Ⅱ)函数与方程思想在中学数学中的应用摘要:函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决。

这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路。

和函数有必然联系的是方程,方程f (x)=0的解就是函数y=f (x)的图像与x 轴的交点的横坐标,函数y=f (x)也可以看作二元方程f (x)-y=0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量。

这就是方程的思想,方程思想是动中求静,研究运动中的等量关系。

在中学数学中,函数与方程是相互联系不可分割的,涉及这两个方面的问题可以相互转化。

许多方程问题常常可以运用函数思想去解决,而不少函数问题又往往须转化为方程来求解。

因此,在解决一些函数和方程问题时,既要善于运用函数思想解决方程问题,又要学会灵活运用方程的观点去观察、处理函数问题。

关键词函数思想,方程思想,应用1引言函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究,从而使问题获得解决。

函数与方程的思想在高中数学中的应用

函数与方程的思想在高中数学中的应用

函数与方程的思想在高中数学中的应用作者:陈少婉来源:《广东教育·高中》2017年第01期函数与方程的思想是高中数学的基本思想之一,是通过建立函数或方程,运用函数的图像、性质等去分析问题,解决问题;更重要的是产生函数或方程的方法,能上升到思想高度主动思考问题.运用函数与方程的相互转化解决零点问题、构建函数解决不等关系问题与最值问题、利用方程的思想解决消参求值问题以及切点弦问题等等,是近年高考的热点和重难点.下面举例说明函数与方程的思想在高中数学解题中的应用.一、零点问题中的函数与方程思想函数的零点问题是近几年高考题的高频考点和重难点.许多函数问题要用方程的知识与方法来支持;许多方程的问题,需要用函数的知识与方法去解决.函数思想是对函数内容在更高层次上的抽象、概括与提炼,方程问题的函数视角就是利用函数的图像、性质来研究方程的根及范围问题.1.1.与函数的零点或方程的根或函数图像的交点个数问题例题1.1.(1)已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2,那么函数y=f (x)的图像与函数y=|lgx|的图像的交点共有()A. 10个B. 9个C. 8个D. 1个综上所述,原方程有4个实根.点评:函数零点问题的解题思路主要有两个方向,一是算出来,即利用方程求根,运用方程的思想求解,二是画出来,即转化为函数图像与轴的交点问题或者两个函数图像的交点问题,运用函数的思想以及数形结合的思想求解.在解题过程中,函数与方程相互转化.本题根据分段函数不同区间的特征,综合运用解方程、构造函数,讨论单调性等方法求解.1.2求参数的值或取值范围问题例题1.2. 已知函数f(x)=|x2-1|,g(x)=x2+ax+2,x∈R,若函数h(x)=f(x)+g (x)+2在(0,2)上有两个零点x1,x2求实数a的取值范围.点评:运用函数的思想转化零点问题,构造的函数不同,解法也不同,但用到的思想方法是相同的,在解题中要注意函数与方程的相互转化.1.3.借助零点,考查导数探究函数的性质例题1.3. 设函数f(x)=e2x-alnx.(Ⅰ)讨论f(x)的导函数f′(x)的零点的个数;值范围,体现了函数的思想.解题时要注意自变量c的取值范围,即函数定义域的确定.三、立体几何中的函数方程思想函数方程思想不仅在代数解题中发挥着重要的作用,而且在立体几何中也有着巧妙的应用.在立体几何的动点问题、最值问题和逆向问题中,通常要运用函数与方程的思想求解.3.1利用函数的图像及性质解决立几中动点的轨迹问题例题3.1. 如图,动点P在正方体ABCD-A1B1C1D1的对角线BD1上. 过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N. 设BP=x,MN=y,则函数y=f(x)的图像大致是()点评:本题是一道立体几何与函数图像相结合的题目,主要考查了函数图像的变化.由于题目中给出了自变量和因变量,如能求出函数解析式,问题即可获解.因此,可根据几何体的特征和条件分析两个变量的变化情况,通过M,N,P作底面的垂线作出M,N在平面ABCD 内的正投影,保持其长度不变,从而把空间问题平面化,建立一次函数模型.3.2利用方程的思想解立体几何逆向题例题3.2. 如图,已知四棱台ABCDA1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角PQDA的余弦值为,求四面体ADPQ的体积.解析:由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.点评:本题是一道立体几何逆向题.通过设定变量m,λ利用二面角PQDA的余弦值为以及PQ∥平面ABB1A1的条件建立等量关系,求出变量m,λ的值,体现了方程的思想.3.3运用函数的思想解决立几中的最值问题例题3.3. 如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长.解析:以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B (1,总之,作为高中数学基础知识的重要内容,数学思想与数学方法属于教学中的重点,也是学生学习过程中的难点.通过思想与方法的学习能够真正理解数学的价值和意义.函数与方程的思想是高中数学的基本思想方法之一,也是高考的重中之中,是掌握许多数学知识的基础. 运用函数与方程的思想方法去解题,才举一反三,融会贯通,才能俯瞰题目,达到“一览众山小”的境界.函数与方程思想的运用在高中数学中无处不在,在解题中应注意体会,归纳总结,形成方法和能力.责任编辑徐国坚。

浅谈函数思想在高中数学解题中的应用

浅谈函数思想在高中数学解题中的应用

浅谈函数思想在高中数学解题中的应用作者:陈燕虹来源:《读书文摘(下半月)》2018年第04期摘要:高中阶段数学作为学生学习重要阶段,对于提高学生数学解题能力、高考成绩都有着显著价值,而本文则是从函数思想概念出发,对其在高中数学解题中的有效应用进行了具体的阐述。

关键词:函数思想;高中数学;解题应用在高中数学教学过程中,有效的数学思想不仅能够促进教学质量,还能提高学生数学能力与思维,因为数学思想本身就是学生数学能力重要表现,也是学生提高自身数学逻辑思维能力的关键。

函数思想作为一种较为常见的数学思想,其本身在培养学生数学思维能力等多方面就有着较为显著的价值,再加上函数也是高中学习阶段较为重要的知识点,应用函数思想进行高中数学解题教学能够进一步提高学生解题思维与能力,促进学生全面发展。

1函数思想相关概述函数思想主要表现出来的内容就是量和量之间的关系,而且两者之间的关系是运动变化的,并非一成不变的。

如果从本质上来分析函数就是对应,像是于函数y=f(x),其中对应法则f以及自变量的变化范围可以说是函数构建的基本,而在这其中占据主导地位的则是自变量的变化;而从函数值域这一角度来分析的话,其则是由对应法则以及定义域这两者来决定的。

在数学解题过程中应用函数思想,从本质上来说就是构建出辅助函数,将数学问题转变成这一函数的性质,以此来获得相应的结果。

在应用函数思想的时候,可以使用以下三种方式来进行应用:其一,整体法。

这一方式主要是在解题教学过程中,将题目进行整体处理,也就是对其整体结构以及形式进行分析,以此来让解题变得更加清晰。

其二,假设归纳法。

这一方式就是在解题过程中先对其结果进行猜想和归纳,之后再通过具体的观察和试验进行验证。

其三,递推法。

这一方式主要是在解题过程中,对于具体问题中所存在的递推关系进行探究,以此来解决数学问题,这一方式经常会使用到数列解题之中。

2函数思想在高中数学解题中的有效应用2.1应用在数学不等式解题中在高中数学解题教学过程中,不等式解题是较为常见的问题,而将函数思想应用到其中,主要就是对函数单调性、零点以及正负区角等问题进行具体的分析。

函数与方程思想之“换元法”在高中数学解题中的应用.doc

函数与方程思想之“换元法”在高中数学解题中的应用.doc

函数与方程思想之“换元法”在高中数学解题中的应用一、换元法在问题解决中,引入一个或几个新“元”代换问题中的旧“元”,使关于新元的问题能够解决;解决以后再将结果反演回去,得出旧元问题的结果,这种方法叫做换元法,也叫代换法。

“元”可以是任何意义下的基本元素,如未知数、变量、常量、几何元素等,也可以是一个整体,如代数式、图形等。

本节来介绍下在解题过程中常用到的三种换元法。

第一换元法(旧式换为新元)模式:f [ ψ(x) ] = f ( u ) ,其代换为ψ(x) = u .例题1、已知例题1图(1)解:将已知等式改写为例题1图(2)注:解题的关键是能把t + 1/t 凑成t - 1/t 的表达式,所以这是凑法换元。

例题2、求函数例题2图(1)解:例题2图(2)注:由函数y = f ( x )换元为y = ψ(u),不但转换解析式也要注意转换定义域。

第二换元法(旧元换为新式)模式:f(x)= f [ ψ(u)] ,其代换为x = ψ(u) .在方程的观点上,第二换元法是把方程y = f ( x ) 化为参数方程:x = ψ(u) ,u = f(u), (u为参数)。

例题3、解不等式例题3图(1)解:例题3图(2)注:这是正切代换,遇见√(1+t ),可作代换t = tanθ , θ∈(-π/2 ,π/2),其中θ 的范围必须设出,保证代换是等价的。

例题4、求函数例题4图(1)解:函数的定义域是[-1/2 ,0 )∪(0 ,1/2 ] ,例题4图(2)注:这是正弦代换,遇见√(1-x ),可作代换x = sinθ , 或x = cosθ,要根据x 的范围确定θ 的范围。

第三换元法(旧式换为新式,及广义换元)例题5、求函数例题5图(1)解:例题5图(2)例题6、已知复数z 满足∣2z + i∣= 2 , 求∣3z - 4i ∣的取值范围。

解:(轨迹代换法)设W = 3z - 4i (W 是所求轨迹的动点),则z =1/3(W + 4i)(z 是已知轨迹的动点)代入已知轨迹方程∣2z + i∣= 2 ,即∣2/3(W + 4i)+ i∣= 2 , 即∣W +11/2i∣= 3 .∴点W 的轨迹是圆:圆心为C (0,-11/2),半径为r = 3 ,如下图所示例题6图∴∣OA∣≤ ∣W∣≤ ∣OB∣其中∣OA∣= 11/2 - 3 = 5/2 ,∣OB∣= 11/2 + 3 = 17/2 .∴5/2 ≤ ∣3z - 4i∣≤ 17/2 .。

函数与方程思想在高中数学解题中的应用

函数与方程思想在高中数学解题中的应用

函数与方程思想在高中数学解题中的应用在高中数学解题中,函数与方程思想是非常重要的。

函数思想是指将一组数据进行描述和表示的思想,是解决许多数学问题的基础。

方程思想是指通过建立方程来求解问题的思想。

函数与方程思想在高中数学解题中的应用主要体现在以下几个方面:
1、理解问题的本质:函数可以帮助我们理解问题的本质,更好地分析问题。

2、转化问题:方程可以帮助我们把问题转化为具体的数学模型,使问题变得更加可解。

3、解决问题:函数与方程的知识可以帮助我们使用数学工具解决问题。

4、描述实际问题:函数与方程可以帮助我们描述实际问题,并使用数学模型来分析问题。

总的来说,函数与方程思想在高中数学解题中起着重要的作用,帮助我们理解问题、转化问题、解决问题、描述实际问题。

高中数学中函数与方程思想的研究

高中数学中函数与方程思想的研究

高中数学中函数与方程思想的研究函数与方程思想是数学学科中的两个重要思想,也是解决实际问题的重要方法。

在高中数学教学中,函数与方程思想的应用对于提高学生的数学素养和解决问题的能力具有重要意义。

本文旨在探讨函数与方程思想在普通高中教学中的实践研究,以期为优化高中数学教学提供参考。

普通高中教学的主要目标是培养学生的创新精神和实践能力,为其未来的发展奠定基础。

在这个过程中,数学学科作为一门重要的基础课程,需要着重培养学生的逻辑思维和解决问题的能力。

函数与方程思想作为数学学科的基本思想,也是解决高中数学教学问题的关键。

在普通高中教学中,函数与方程思想的实践主要包括以下环节:教学准备:教师需要深入理解函数与方程思想的概念和特点,掌握其在解决问题中的应用方法。

同时,教师应结合具体的教学内容和教学目标,准备好相应的教案和学案。

教学目标制定:教师需要明确函数与方程思想的教学目标,包括知识目标、能力目标和情感目标。

同时,教师需要根据学生的实际情况和需求,制定相应的教学计划。

教学实施:教师在课堂上需要采用多种教学方法和手段,如案例教学、探究式教学等,引导学生理解和掌握函数与方程思想,并运用它们解决实际问题。

教学反思:教师需要及时反思自己的教学过程和效果,发现问题并及时改进,以便更好地提高教学质量和效果。

以高中数学中“函数”章节的教学为例,教师可以通过以下方式将函数与方程思想融入教学中:帮助学生理解函数的概念和性质,如定义域、值域、单调性等,为后续的应用奠定基础。

通过实例让学生了解函数在解决实际问题中的应用,如利用函数解析式解决行程问题、利润问题等。

引导学生通过方程或不等式的方式描述实际问题,然后利用函数的性质和相关算法求解。

例如,帮助学生理解以下题目:某公司为了营销一款产品,计划在三个方面进行投入(x1, x2, x3),已知产品总成本为C元。

试求C关于x1, x2, x3的函数关系式。

教师可以引导学生列出成本与投入之间的方程,然后通过调整方程的形式,使学生理解函数关系式的意义和应用。

函数思想在高中数学解题中的应用

函数思想在高中数学解题中的应用

函数思想在高中数学解题中的应用在高中数学教学中,函数是一个非常重要的概念。

函数的思想贯穿于数学的各个领域,不仅在数学理论中有着重要的地位,而且在解题中也有着广泛的应用。

函数思想在高中数学解题中的应用,可以帮助学生更好地理解和掌握数学知识,提高解题的效率和准确性。

本文将从函数的定义和特点、函数在高中数学解题中的应用以及相关解题技巧等方面展开探讨,希望能帮助学生更好地理解和应用函数思想。

一、函数的定义和特点在高中数学中,函数是一个非常基础的概念。

函数通常可以用一个数学表达式来表示,它包括自变量和因变量两部分。

自变量是函数中的输入值,而因变量是函数中的输出值。

函数的定义通常是这样的:如果对于每一个属于定义域的自变量x,函数f(x)都有唯一的对应值y,则称函数f是定义在定义域上的。

函数有着许多特点,其中包括单调性、奇偶性、周期性等。

这些特点在解题中都有着非常重要的应用。

通过函数的单调性可以确定函数的增减性,从而帮助我们分析函数的变化趋势;通过函数的奇偶性可以简化函数的运算,减少解题的复杂度;通过函数的周期性可以确定函数的周期,从而帮助我们分析函数的周期性变化规律。

函数思想在高中数学解题中有着广泛的应用,涉及到数学的各个分支,比如代数、几何、概率等。

下面我们就来具体看一下函数在高中数学解题中的应用。

1. 代数方程的解法函数思想在代数方程的解题中有着非常重要的应用。

通过定义函数并建立函数关系,可以将一个复杂的代数方程转化为一个简单的函数关系,从而简化问题的求解过程。

这种方法在解决线性方程组、二次方程、高次方程等代数方程时都有着广泛的应用。

对于一个二次方程ax²+bx+c=0,我们可以定义一个函数f(x)=ax²+bx+c,然后通过函数的性质和特点来确定方程的解的存在性、唯一性和具体的解法。

这种方法不仅可以简化问题的求解过程,而且可以帮助学生更好地理解代数方程的本质和求解方法。

2. 函数图像的分析在高中数学中,函数图像的分析是一个非常重要的内容。

函数与方程的思想方法在解题中的应用

函数与方程的思想方法在解题中的应用

函数与方程的思想方法在解题中的应用何登文数列、解析几何、立体几何、不等式及实际应用问题是高中数学的几个重要内容,在高考试题中占了较大的比例,能否顺利的解答这几类问题,直接影响到学生的高考成绩。

函数与方程思想从某些方面来说,给我们指出了解决这些问题的思路和方法。

将这些问题转化为相应的函数或方程,我们就可以应用函数和方程的性质来解决问题了。

下面,我们通过例题来说明它们的应用。

一、利用函数与方程的思想解答数列问题例1、已知数列的通项公式n a =-2n +6n+2,这个数列的最大项的值是多少?从第几项起以后的项均为负值?分析:数列是以自然数n 为变量的点列函数,因此,我们在处理数列问题是,往往将其转化函数问题,利用相应函数的性质来求解。

解:∵ n a =-2n +6n+2,∴n a 可以看作是关于n 的二次函数,利用二次函数的性质,当n=-62--=3时,n a 有最大值11。

令-2n +6n+2≤0 解得 n ≥7∴从第七项起以后的项均为负值。

此题利用了数列的函数特性求解,使得问题简单化,使用了化未知为已知的思维方法。

例2、已知数列﹛n a ﹜是等差数列,若n s =10,2n s =50,求3n s 。

分析:本题我们可以用“等差数列中,依次取每k 项作和,其和仍成等差数列”的性质来求解,即ns、2ns-ns、3ns-2ns成等差数列,此时公差d=50-20=30,所以3ns=2ns-ns+2ns+d=50-10+50+30=120.这样很直接。

另外,在等差数列中211()22()22n d dn d d n n n n a s a +-==+-是关于n 的一次函数,因此,我们可以利用一次函数的点共线的性质求解。

解:∵﹛n a ﹜是等差数列,∴n n s ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭也是等差数列,是关于n 的一次函数,∴ 23,,2,,3,23n n n n n n n n n s s s ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三点共线,∴35010102323n n n n n n n n n s --=-- 解得3n s =120。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程思想在高考中的应用组长:潘云鹏 12033034组员:夏炎 12304177杨岑 12304154张瑶 12304184孙雪 12304013高清华 12304196谭博闻 12304159郭志岩 12304143刘春旭 12304009 函数与方程思想在高考中的应用摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议.一.函数与方程思想的概念1.函数思想函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题..2.方程思想方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径.3.函数与方程思想的相互转化很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的.方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维.二.函数思想在解题中的应用分析函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

纵观近几年的高考试题,函数的主干知识、知识的综合应用以及函数与方程思想等数学思想方法的考查,一直是高考的重点内容之一。

在高考试卷上,与函数相关的试题所占比例始终20%左右,且试题中既有灵活多变的客观性试题,又有一定能力要求的主观性试题。

函数与方程思想是最重要的一种数学思想,高考中所占比重比较大,综合知识多、题型多、应用技巧多。

在高中新课标数学中,还安排了函数与方程这一节内容,可见其重要所在。

在近几年的高考中,函数思想主要用于求变量的取值范围、解不等式等,方程观点的应用可分为逐步提高的四个层次:(1)解方程;(2)含参数方程讨论;(3)转化为对方程的研究,如直线与圆、圆锥曲线的位置关系,函数的性质,集合关系;(4)构造方程求解。

三.函数与方程思想在解方程中的具体应用例题1.(2009福建卷)若函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是A. ()41f x x =-B. ()2(1)f x x =-C. ()1x f x e =-D. ()12f x In x ⎛⎫=- ⎪⎝⎭答案 A解析 ()41f x x =-的零点为x=41,()2(1)f x x =-的零点为x=1, ()1x f x e =-的零点为x=0, ()12f x In x ⎛⎫=- ⎪⎝⎭的零点为x=23.现在我们来估算()422x g x x =+-的零点,因为g(0)= -1,g(21)=1,所以g(x)的零点x ∈(0, 21),又函数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25,只有()41f x x =-的零点适合,故选A 。

【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答例题2. (广东卷)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ).A. 5 B. 4 C. 3 D. 2解析:设等差数列的首项为a 1,公差为d 据题意得:答案:C点评:运用等差、等比数列的基本量(a 1,d ,q )列方程,方程组是求解数列基本问题的通法.例题3.直线和双曲线的左支交于A 、B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.分析:b 的变化是由于k 的变化而引起的,即对于k 的任一确定的值,b 有确定的值与之对应,因此b 是k 的函数,本题即为求这个函数的值域.解:由消去y,得.()因为直线m与双曲线的左支有两个交点,所以方程()有两个不相等的负实数根.所以解得.设,则由三点共线,得出.设,则在上为减函数,,且.,或,,或.点评:根据函数的思想建立b与k的函数关系,根据方程的思想,运用二次方程的理论具体求出b的表达式,是解此题的两个关键问题.不少解析几何问题,其中某些元素处于运动变化之中,存在着相互联系、相互制约的量,它们之间往往构成函数关系;对于直线和曲线交点问题,经常要转化为方程问题,用方程的理论加以解决.四.在运用函数与方程思想解题时应注意的问题.1.要重视基础知识和基本技能的培养和训练,深刻理解集合、函数、反函数的有关概念.2.要能熟练讨论函数性质(如单调性、奇偶性、周期性、极值等),掌握函数图像特征的分析(如范围、截距、凹凸性、渐近线、变化趋势等),函数图像的变换(平移变换对称变换、伸缩变换等),特别是要掌握与研究函数性质有关的数学知识(如向量的平移、函数的导数等).3.要能将函数、方程、不等式有机结合起来,互相转化.能用集合的语言加以表述,用参数的工具来体现运动变化,用高等数学的观点来指导问题的解决.4.要能充分运用数学建模的思想,从数学的角度发现问题、提出问题、进行探索与研究,培养实践能力和创新意识.5.函数与方程思想和化归、数形结合、分类讨论、归纳、特殊化等数学思想同样有着密不可分的关系.五.如何在中学教学中培养学生函数与方程的思想?现今我国的教育模式正在由应试教育向全面素质教育转变,素质教育不仅要求受教育者掌握一定的知识技能,而且还要求达到领悟数学思想、掌握数学方法、提高数学素养的目的因此,数学教学中,使学生掌握基本的数学知识与理论固然重要,但更重要的是掌握数学的基本技能,能运用基本的数学思想方法来解决各类数学问题,引导他们在解题过程中提炼数学思想方法,提高数学能力.教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识与运用新知识解决问题的能力.(1)注重教学的渗透教学过程中,渗透数学思想方法将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中.教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题,从而比较顺利地完成新旧知识的过渡.如等比数列前n项和的推导过程,复习回忆等差数列的求和公式,等比数列的定义和一些性质,探究了公式推导的各种方法.(2)在小结复习的教学过程中,概括、提炼数学思想方法.同一题可涉及到几种不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的基础知识中,因此,及时小结、复习以进行强化刺激,让学生在脑海中留下深刻的印象.这样有意识、有目的地结合数学基础知识,揭示、提炼概括数学思想方法,既可避免单纯追求数学思想方法教学欲速则不达的问题,又能很好地促使学生认识从感性到理性的飞跃.复习小结时可配合知识点和典型例题强化训练.如在高三复习课讲评例题“已知方程有实数解,求实数a的取值范围”时,首先从函数解析式的特点看,它是关于正余弦函数的三角方程,可在这时适当做变化,原题化为方程在上有实数解,也可看成求函数的值域.本题就利用了转化思想、函数与方程思想,如果教师在讲解时能较好地分析,注意培养学生此方面思想,就能充分发挥该题的功能,同时提高学生的解题能力.(3)在知识运用过程中,不断巩固和深化数学思想方法.在抓住学习重点、突破学习难点及解决具体数学问题中,数学思想方法是处理这些问题的助手,这些问题的解决过程,也是数学思想方法反复运用的过程.因此,注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,才能得到巩固与深化.总之,在数学的教学和学习过程中,处处蕴涵着数学思想方法.在教学过程中,教师要善于抓住有利时机,要努力向学生渗透数学思想方法,自觉运用数学思想方法分析问题、解决问题,提高学生运用数学的能力.数学思想方法是在启发学生思维过程中逐步积累和形成的.因此在教学中,要特别强调解决问题以后的“反思”,因为在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会,易于接受的.。

相关文档
最新文档