6.4矩形截面正截面承载力计算
混凝土结构扭曲截面承载力计算
混凝土结构扭曲截面承载力计算1、在弯矩、剪力和扭矩共同作用下,h w/b不大于6的矩形、T形、I形截面和h w /t w不大于6的箱形截面构件(图6.4.1),其截面应符合下列条件:当h w/b(或h w/t w)不大于4时当h w/b(或h w/t w)大于4但小于6时,按线性内插法确定。
式中:T——扭矩设计值;b——矩形截面的宽度,T形或I形截面取腹板宽度,箱形截面取两侧壁总厚度2t w;W t——受扭构件的截面受扭塑性抵抗矩,按本规范第6.4.3条的规定计算;h w——截面的腹板高度:对矩形截面,取有效高度h0;对T形截面,取有效高度减去翼缘高度;对I形和箱形截面,取腹板净高;t w——箱形截面壁厚,其值不应小于b h/7,此处,b h为箱形截面的宽度。
注:当h w/b大于6或h w/t w大于6时,受扭构件的截面尺寸要求及扭曲截面承载力计算应符合专门规定。
2、在弯矩、剪力和扭矩共同作用下的构件,当符合下列要求时,可不进行构件受剪扭承载力计算,但应按本规范第9.2.5条、第9.2.9条和第9.2.10条的规定配置构造纵向钢筋和箍筋。
3、受扭构件的截面受扭塑性抵抗矩可按下列规定计算:1 矩形截面2 T形和I形截面3 箱形截面4、矩形截面纯扭构件的受扭承载力应符合下列规定:式中:ζ——受扭的纵向普通钢筋与箍筋的配筋强度比值,ζ值不应小于0.6,当ζ大于1.7时,取1.7;A stl——受扭计算中取对称布置的全部纵向普通钢筋截面面积;A st1——受扭计算中沿截面周边配置的箍筋单肢截面面积;f yv——受扭箍筋的抗拉强度设计值,按本规范第4.2.3条采用;A cor——截面核心部分的面积,取为b cor h cor,此处,b cor、h cor分别为箍筋内表面范围内截面核心部分的短边、长边尺寸;u cor——截面核心部分的周长,取2(b cor+h cor)。
注:当ζ小于1.7或e p0大于h/6时,不应考虑预加力影响项,而应按钢筋混凝土纯扭构件计算。
.正截面承载力计算
3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。
所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。
一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。
ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。
根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。
①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。
适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。
第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。
当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。
当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。
Ⅰa阶段的应力状态是抗裂验算的依据。
第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。
裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。
随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。
第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。
当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。
混凝土结构设计原理(第2版)第6 章
上一页 下一页 返回
6.1 受压构件基本构造要求
• 当偏心受压构件的截面高度h≥600mm 时,应在侧面设置直径为不 小于10mm 的纵向构造钢筋,以防止构件因温度和混凝土收缩应力 而产生裂缝,并相应地设置复合箍筋或拉筋.
• (3)纵筋.
上一页 下一页 返回
6.1 受压构件基本构造要求
• 纵向受力钢筋的作用是与混凝土共同承担由外荷载引起的内力,防止 构件脆性破坏,减小混凝土不匀质引起的影响;同时,纵向钢筋还可以承 担构件失稳破坏时凸出面出现的拉力以及由于荷载的初始偏心、混凝 土收缩、徐变、温度应变等因素引起的拉力等.
上一页 下一页 返回
6.1 受压构件基本构造要求
• 当柱中全部纵向受力钢筋的配筋率超过3%时,箍筋直径不应小于8 mm,间距不应大于10d(d 为纵向受力钢筋的最小直径),且不应大于 200mm;箍筋末端应做成135°弯钩,且弯钩末端平直段长度不 应小于纵向受力钢筋最小直径的10倍.
• 在纵向钢筋搭接长度范围内,箍筋的直径不宜小于搭接钢筋较大直径 的0.25倍.箍筋间距不应大于10d(d 为受力钢筋中最小直径),且不 应大于200mm.当搭接的受压钢筋直径大于25mm 时,应在搭接 接头两个端面外100mm 范围内各设置两根箍筋.
上一页 下一页 返回
6.2 轴心受压构件正截面承载力计算
• 构件的稳定系数φ 主要和构件的长细比l0/i 有关(l0 为构件的计算长 度,i 为截面的最小回转半径).当为矩形截面时,长细比用l0/b 表示(b 为 截面短边),«规范»中对φ 值制定了计算表,见表6.1.
矩形截面偏心受压构件正截面的承载力计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
正截面承载力计算
最小配筋率的确定原则:配筋率 为的钢筋混凝土受弯构件,按Ⅲa 阶段计算的正截面受弯承载力应等于同截面素混凝土梁所能承受的弯矩M cr (M cr 为按Ⅰa 阶段计算的开裂弯矩)。
对于受弯构件, 按下式计算:(2)基本公式及其适用条件 1)基本公式式中:M —弯矩设计值;f c —混凝土轴心抗压强度设计值; f y —钢筋抗拉强度设计值; x —混凝土受压区高度。
2)适用条件l 为防止发生超筋破坏,需满足ξ≤ξb 或x ≤ξb h 0; l 防止发生少筋破坏,应满足ρ≥ρmin 或 A s ≥A s ,min=ρmin bh 。
在式(3.2.3)中,取x =ξb h 0,即得到单筋矩形截面所能min t y max(0.45f /f ,0.2% )ρ= (3.2.1) sy c 1A f bx f =α(3.2.2)()20c 1x h bx f M -≤α(3.2.3) ()20y s x h f A M -≤(3.2.4)或承受的最大弯矩的表达式: (3)计算方法 1)截面设计己知:弯矩设计值M ,混凝土强度等级,钢筋级别,构件截面尺寸b 、h求:所需受拉钢筋截面面积A s 计算步骤:①确定截面有效高度h 0h 0=h -a s式中h —梁的截面高度;a s —受拉钢筋合力点到截面受拉边缘的距离。
承载力计算时,室内正常环境下的梁、板,a s 可近似按表3.2.4取用。
表 3.2.4 室内正常环境下的梁、板a s 的近似值(㎜)②计算混凝土受压区高度x ,并判断是否属超筋梁若x ≤ξb h 0,则不属超筋梁。
否则为超筋梁,应加大截面尺寸,或构件种类纵向受力 钢筋层数混凝土强度等级 ≤C20 ≥C25 梁一层 40 35 二层65 60 板一层2520提高混凝土强度等级,或改用双筋截面。
③计算钢筋截面面积A s ,并判断是否属少筋梁若A s ≥ρmin bh ,则不属少筋梁。
否则为少筋梁,应A s=ρmin bh 。
04 单筋矩形截面正截面承载能力计算
在梁的正截面强度计算中 用等效矩形应力图代替受压 区抛物线应力图,x为等效矩 形应力图的高度,h0为截面 有效高度,它们的比 值:ξ=x/h0, ξ称为相对受压区 高度。
相对受压区高度ξ不仅反映了钢筋与混凝土的面积比(配筋率ρ), 也反映了钢筋与混凝土的材料强度比,是反映构件中两种材料配比 本质的参数。
钢筋混凝土构件在按承载能力极限状态计算时,引入下列假定: ①构件弯曲后,其截面仍保持平面,受压区混凝土平均应变和 钢筋的应变沿截面高度符合线性分布。平截面假定 ②正截面破坏时,构件受压区混凝士应力取抗压强度设计值fcd fcd,应力计算图形为矩形。等效矩形应力图 ③正截面破坏时,受弯、大偏心受压、大偏心受拉构件的受拉 主筋达到抗拉强度设计值fsd ,受拉区混凝土不参与工作(抗剪计算除外)。
2 正截面承载力计算的基本假定
以IIIa阶段作为承载力极限状态的计算依据
(l)上图为钢筋混凝土梁对应三个工作阶段的应变图。由图可见, 梁在第I阶段受压与受拉应变图呈直线分布,说明混凝土与钢筋应 变的变化规律符合平截面假定。随着弯矩的增加,当梁进入第II 阶段时,受压区混凝土压应变与受拉区钢筋拉应变的实测值均不 断增长,但应变图基本上仍是上、下两个三角形,平均应变仍符 合平截面假定。这种状况一直延续至第Ⅲ阶段,即梁破坏前。最 后,当梁破坏时,受压区混凝土边缘纤维压应变达到(或接近)混 凝上受弯时极限压应变,这标志着梁已开始破坏。
(4)由公式fsdAs=fcdbx或fsdAs(h0-x/2)=γ0Md 计算钢筋截面面积As;
(5)根据计算所得和构造要求选择钢筋直径、根数并布置,确定实际的As 实 ;实际采用的钢筋宜为计算所需钢筋截面面积的0.95~1.05倍。
(6)检查假定as是否接近实际,如误差大,重新计算(因为若as假<as实,则
单元二 受弯构件正截面承载能力计算
单三 受弯构件正截面承载能力计算一.矩形截面单筋:计算公式ƒsd •As=ƒcd •b •xMu= ƒcd •b •ho 2•s α 其中s α=ξ(1-0.5ξ),ξ=1-s α21-=x/ho 使用条件(ξ≤ξb 避免超筋,ρ≥ρmin=max ﹛0.002,0.45sdtdf f ﹜避免少筋) 双筋:计算公式ƒsd •As=ƒcd •b •x+ƒsd ’•As ’Mu= ƒcd •b •ho 2•s α+ ƒsd ’•As ’•(ho-as) 其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 使受拉钢筋受拉屈服 x ≥2as ’使受压钢筋受压屈服)若x<2as ’(受压钢筋不屈服) 则: Mu= ƒsd •As •(ho-as)二.单筋T 形截面第一T 形截面:(x ≤hf ’)计算公式 ƒsd •As=ƒcd •bf ’•x Mu= ƒcd •bf ’•ho 2•s α其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋) 第二T 形截面:(x>hf ’)计算公式 ƒsd •As=ƒcd •b •x+ƒcd •(bf ’-b)•hf ’Mu= ƒcd •b •ho 2•s α+ƒcd •(bf ’-b)•hf '•(ho-hf ’/2)其中s α=ξ(1-0.5ξ) ξ=1-s α21-=x/ho使用条件(ξ≤ξ b 避免超筋 ρ≥ρmin 避免少筋)矩形截面梁配筋设计(As )已知(b*h ,ƒcd , ƒsd , ƒsd ’, Md , ro )步骤:设受拉区钢筋层数 即一般取as (一层as=40mm 二层as=70mm 三层as=90mm)求ho (ho=h-as) 求所需Mu=roMd计算roMd 与Mumin=ƒcd •b •ho 2•ξb(1-ξb)并判断其大小若 Mu<ƒcd •b •ho 2•ξb(1-ξb)配单筋 若Mu>ƒcd •b •ho 2•ξb(1-0.5ξb)配双筋一.单筋配筋:求s α=Mu /ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb • ho 求As=ƒcd •b •x/fsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As) 计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二.双筋配筋(As As ’)令ξ=ξb 求s α=ξb (1-0.5ξb) 求x=ξb • ho若x>2as ’ 求As ’=(Mu-ƒcd •b •ho 2•s α)/ƒsd ’(ho-as ’)求As=( ƒcd •b •x+ƒsd ’•As ’)/ƒsd依据求得As As ’查表选取As As ’ 计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)若x<2as ’不满足双筋配筋条件` 双筋配筋(As )求s α=[Mu-ƒsd ’•As ’(ho-as ’)]/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho若x>=2as ’ 求As=( ƒcd •b •x+ƒsd ’•As ’)/ ƒsd 若x<2as ’ 求As= Mu/ƒsd • (ho-as ’)依据求得As 查表选取As,计算配筋的最小截面尺寸bmin 并判段bmin<b(若bmin>b 需重取As 或as)矩形截面梁设计复核一.单筋截面复核已知(b*h ,ƒcd , ƒsd , Md , ro ,as , 钢筋配筋As)步骤:由as求ho (ho=h-as) 根据钢筋配筋查表选取As ,计算ρ=As/b•ho 并判断ρ>=ρmin(若ρ<ρmin说明截面尺寸过小)求X=ƒsd•As/ƒcd•b 求ξ=x/ho 并判断ξ<=ξb(若ξ>ξb)求sα= ξ(1-0.5ξ)求 Mu= ƒcd•b•ho2•sα比较Mu与roMd,若Mu>roMd则满足二.双筋截面复核已知(b*h ƒcd ƒsd ƒsd’ Md ro as as’钢筋配筋As’As)步骤:由as求ho (ho=h-as)求x=(ƒsd•As- ƒsd’•As’)/ƒcd•b若x<2as’Mu=ƒsd•As•(hor-as)若x>=2as’求ξ=x/ho 并判断ξ<=ξ b若ξ<=ξb求sα=ξ(1-0.5ξ)求Mu=ƒcd•b•ho2•sα+ƒsd’•As’(ho-as) 比较Mu与roMd,若Mu>roMd则满足若ξ>ξb 令ξ=ξb求sα=ξb(1-0.5ξb)求Mu=ƒcd•b•ho2•sα+ƒsd’As’•(ho-as)比较Mu与roMd,若Mu>roMd则满足T 形截面梁配筋设计As已知(T 形截面尺寸b*h bf hf ƒcd ƒsd Md ro )步骤:设受拉区钢筋层数 取as(一层as=50二层as=80三层as=100) 由as 求ho (ho=h-as) 求所需Mu=roMd比较Mu 与ƒcd •b •ho 2•s α+ ƒcd •('b f-b)'h f •(ho-'h f /2)一若Mu<=ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第一种T 形截面 求s α=Mu/ƒcd •b •ho 2求ξ=1-s α21- 并判断ξ<=ξb(若ξ>ξb 应重取as)求x=ξb •ho 求As=ƒsd/ƒcd •b •x根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)二若Mu>ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-'h f/2)为第二种T 形截面 求s α=[Mu-ƒcd •('b f-b)•hf ’•(ho- 'h f /2)]/ƒcd •b •ho 2 求ξ=1-s α21-并判断ξ<=ξb(若ξ>ξb 应重取as) 求x=ξ• ho求As=[ƒcd •b •x+ƒcd •('b f-b)•'h f ]/ƒsd根据As 查表选取As ,计算ρ=As/b •ho 并判断ρ>=ρmin(若ρ<ρmin 需重取As,若无合适As 应重取as)计算配筋的最小截面尺寸bmin 并判断bmin<b(若bmin>b 需重取As ,若无合适As 应重取as)T 形截面梁配筋复核已知(T 形截面尺寸b*h 'b f 'h f ƒcd ƒsd Md ro 钢筋配筋As as ) 步骤:由as 求ho(ho=h-as) 计算ƒsd •As 与ƒcd •'b f •'h f 并比较其大小 一若ƒsd •As<=ƒcd •'b f •'h f 为第一种T 形截面求x= ƒsd •As/ƒcd •'b f 求ξ=x/ho 并判断ξ<=ξ b 求s α=ξ(1-0.5ξ) 求 Mu= ƒcd •'b f •ho 2•s α 比较Mu 与roMd,若Mu>roMd 则满足 二若ƒsd •As>ƒcd •'b f •'h f 为第二种T 形截面求x=[ƒsd •As-ƒcd •('b f-b)•'h f ]/ƒcd •b 求ξ=x/ho 并判断ξ<=ξ b 求s α= ξ(1-0.5ξ) 求Mu= ƒcd •b •ho 2•s α+ƒcd •('b f-b)•'h f •(ho-hf ’/2) 比较Mu 与roMd,若Mu>roMd 则满足单元四 受弯构件斜截面承载力计算混凝土与箍筋的斜截面抗剪承载力Vcs=321ααα*0.45*sv sv k cu f f p bh ρ,03)6.02(10+- (KN )1α:1α=1.0 进中间支点1α=0.9//2α:钢筋混凝土受弯构件2α=1.0预应力钢筋混凝土2α=1.25//3α=1.1//P=100ρ当ρ>2.5时,取ρ=2.5//sv ρ箍筋配筋率sv ρ=sv A /(v s •b)//sv f 不宜大于280MPa弯起钢筋的斜截面抗剪承载力 :vsb =0.75*∑∙∙∙-s sb sd A f θsin 103 箍筋和弯起钢筋的斜截面抗剪承载力:d V 0γ<=321ααα*0.45*sv sv k cu f f p h b ρ,03)6.02(10+∙-+0.75*∑∙∙∙-s sb sd A f θsin 103 适用条件:(上限d V 0γ<=0.51*0,310h b f k cu ∙∙∙-/下限d V 0γ≤0.5*02310h b f td ∙∙∙∙-α(KN)/箍筋最小配筋率:[R235(Q235) sv ρ≥0.0018 ],[HRB335 sv ρ≥0.0012] )受弯构件斜截面抗剪配筋设计条件(d V 0γ>0.50*02310h b f td ∙∙∙∙-α(KN)) 一剪力取值规定箍筋设计计算 求箍筋配筋率sv ρ=kcu sv d f f p h b V '202622322212'0)6.02(1045.0)(+**-αααξγ(ξ>=0.6)预先选定箍筋种类与直径即(sv A ) / 求箍筋间距Sv=bA sv sv∙ρ 弯起钢筋设计计算:sbi A =)(sin 1075.0230mm f V ssd sbiθγ∙∙*-斜截面抗剪承载力复核步骤:一1复核钢筋混凝土梁是否满足公式d V 0γ<=0.51*0,310h b f k cu ∙∙∙-(KN)若不符合,应考虑加大截面尺寸或提高混凝土强度等2当钢筋混凝土中配箍筋和弯起钢筋时按公式d V 0γ<= Vcs+ vsb 。
[精华]混凝土结构的受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
(1)材料选用
▲混凝土:现浇梁板:常用C20~C30级混凝土; 预制梁板:常用C20~C35级混凝土。
(这是由于适筋梁的Mu主要取决于fyAs,因此RC受弯构 件的 fc 不宜较高)
▲钢筋:梁常用Ⅱ~Ⅲ级钢筋,板常用Ⅰ~Ⅱ级钢筋。 (RC受弯构件是带裂缝工作的,由于裂缝宽度和挠度变形
d
a'
0.5(1 ) 0.55
故取 x = xb
h0 即取 M1 s,max 1 fcbh02
(注:为提高破坏时的延性也可取x = 0.8xb)
第四章 受弯构件正截面承载力 (2)情况二:已知:M,b、h、fy、 fy ’、 fc、As’
求:As 未知数:x、 As
M f y As (h0 a)
x) 2
第四章 受弯构件正截面承载力 ▲基本公式的另一表达形式
基本公式 1 fcbx f y As
M
Mu
1 fcbx(h0
x) 2
f y As (h0
x) 2
当令 =x/h0
s=1-0.5
s= (1-0.5 ) 此两式可知: 、 s 、 s三个系
时
数只要知道其中一个,其余两个即可
其中M1 s,max1 fcbh02
第四章 受弯构件正截面承载力 ▲补充条件x= bh0或 = b的依据
由基本公式求得:
As
As
1 fc
fy
b h0
2
M
1 fcbh02 (1 0.5 )
f y (h0 a)
为使As 、 As’的总量最小,必须 使
d ( As As ) 0
钢筋混凝土受弯构件正截面承载力计算—单筋矩形截面梁计算
受压混凝土的应力-应变关系
计算原则
2)等效矩形应力图
简化原则:受压区混凝土的合力大小不变;受压区混凝土的合力作用点不变。
等效矩形应力图形的混凝土受压区高度 x 1xn ,等效矩形应力图形的应力值 为 1 fc, 1、1 的值见下表。
表 1、1 值
混凝土强 度等级
≤C50
C55
C60
C65
C70
C75
(2)求跨中截面的最大弯矩设计值。
因仅有一个可变荷载,故弯矩设计值应有取下列两者中的较大值:
M 1 1.2g 1.4q l 2
8
1 1.2 5 1.4 10 5.02 62.5
8
M 1 1.35g 1.4 0.7q l 2
8
1 1.35 5 1.4 0.7 10 5.02 51.7
需要加固、补强
计算原则
1)基本假定
01 平截面假定。
02
钢筋的应力 s 等于钢筋应变 s 与其弹性模量 Es 的乘积,但不得大
于其强度设计值 fy,即
s sEs fv
03 不考虑截面受拉区混凝土的抗拉强度。
计算原则
04
受压混凝土采用理想化的应力-应变关系,当混凝土强度等级为
C50及以下时,混凝土极限压应变 cu=0.0033。
(1)受拉钢筋为4 25,As=1964 mm2; (2)受拉钢筋为3 18,As=763 mm²。
单筋矩形截面梁计算
解 查表得:
fc 9.6N/mm2
ft 1.10N/mm2
f y 300N/mm2 c 1.0
b 0.550
c 30mm
单筋矩形截面梁计算
(1)
d
25
h0 h c 2 450 30 2 408
矩形截面偏心受压构件的正截面承载力计算
1.当 bh0 x h 时, 钢筋应力由下式计算
s
cu
Es
(
h0
x
1)
由(5-1)可求得NU
0Nd fcdbx fsd As s As
2.当 x 时h,取 求x得 钢h 筋应力
力NU1
近偏心侧破坏
再由(s 5-1)求得截面承载
由公式(5-7)求截面承载力NU2 远偏心侧破坏
构件截面承载力为NU1, NU2中较小者
2)垂直于弯矩作用平面内的截面承载力复核
《公桥规》规定,对于偏心受压构件除应计算弯矩作用 平面内的强度外,尚应按轴心受压构件复核垂直于弯矩作 用平面内的强度。这时,不考虑弯矩作用,而按轴心受压
1、截面设计 大、小偏心偏心受压构件的初步判别
根据经验, 当 e0 0.时3h0,可假定截面为大偏心受压;当 时,可e假0 定0.截3h0面为小偏心受压。
注意:仅适用于矩形截面
1)当e0 0.3时h0
第一种情况:
已知:b h
求: As 、As'
Nd Md
fcd
f sd
(两个方程三个未知数)
解:(1)取 b 即x bh0
fcd b
as'
)]
➢当 2as x 时bh,0
As
fcdbx
f
' sd
As'
0 Nd
f sd
➢当 x ,bh且0
时x, 2as
令 x ,2则a可s 求得
As
0 Nd es
fsd (ho as )
2)当 e0 0时.3h0
已知:b h N d M d
f cd
f sd
f sd
l0
正截面受弯承载力计算
第三章 正截面受弯承载力计算
3.2正截面受弯构件的试验研究 3.2.1 钢筋混凝土梁正截面工作的三个阶段
试验梁
第三章 正截面受弯承载力计算
b
As
b
As
b
As
h h0
a
h h0
a
h
a h0
ec
f xn
M
es ec
f xn
Mcr
es
ec
ft
f xn
M
es
第三章 正截面受弯承载力计算
b
As
b
As
b
As
第三章 正截面受弯承载力计算
其特点是:1)纵向受拉钢筋屈服, 拉力保持为常值;裂缝截面处,受拉 区大部分混凝土已退出工作,受压区 混凝土压应力曲线图形比较丰满,有 上升段曲线,也有下降段曲线;2)弯矩 还略有增加;3)受压区边缘混凝土压应 变达到其极限压应变实验值εcu时,混 凝土被压碎,截面破坏;4)弯矩—曲率 关系为接近水平的曲线。
第三章 正截面受弯承载力计算
弯矩再增大,截面曲率加大,同时主裂缝开展越 来越宽。由于受压区混凝土应变不断增大,受压区混 凝土应变增长速度比应力增长速度快,塑性性质表现 得越来越明显,受压区应力图形呈曲线变化。当弯矩 继续增大到受拉钢筋应力即将到达屈服强度fy0时,称 为第Ⅱ阶段末,用Ⅱ 表示。
a
第Ⅱ阶段是截面混凝土裂缝发生、开展的阶段,在 此阶段中梁是带裂缝工作的。其受力特点是:1)在裂缝 截面处,受拉区大部分混凝土退出工作,拉力主要由纵 向受拉钢筋承担,但钢筋没有屈服;2)受压区混凝土已 有塑性变形,但不充分,压应力图形为只有上升段的曲 线;3)弯矩与截面曲率是曲线关系,截面曲率与挠度的 增长加快了。
正截面承载力计算
二、计算方法
控制截面:在等截面受弯构件中指弯矩组合设计值最大的
截面。在变截面中还包括截面尺寸相对较小,而弯矩组合 设计值相对较大的截面 受弯构件正截面承载力计算:可分为对控制截面进行截面
设计和截面复核两类计算问题。
1、截面设计 已知荷载效应,求材料、截面尺寸和配筋等。 第一步:选择混凝土等级和钢筋品种 第二步:确定截面尺寸:按照配筋率确定或按照跨度确定。
2014年课程单元教学设计大赛
结构设计原理
道路与桥梁工程系 郭天惠
工作任务1.1 单筋矩形截面受弯构件计算
知识回顾
上一讲的内容
1、正截面承载力计算基本假设 2、简化-等效矩形应力图形 3、承载力计算公式的适用条件 (1)超筋与适筋的界限:界限受压区高度 (2)少筋与适筋的界限:最小配筋率
工程实例 人行道板、行车道板, 小跨径板梁桥、T形 梁桥的主梁、横隔梁
As =
f cd bh0 9.2 220 456 0.3444 =1630mm2 f sd 195
由教材附表1-6选择钢筋
多方案,如选用3Φ28,As=1847mm2>计算As=1630mm2 满足要求 2Φ28+1Φ25,As=1723mm2>计算As =1630mm2 也满足要求 (不要比计算值超出过多,不经济,可能超筋,最好在5%以内。钢筋直 径类型不宜太多)
适用条件: (1)为防止出现超筋梁情况,计算受压区高度x应满足:
x b h0
(3-16)
b
ξb——相对界限受压区高度
由混凝土强度等级别和钢筋种类确定 (3-16)亦可理解为: 限制受压区最大高度,保证适筋梁的塑性破坏 限制承载力上限值 表3-2
由
水工钢筋混凝土结构学
第六章 受压第构件四旳截节面承配载力置对称钢筋旳偏心受压构件(矩形截面)
二、一般箍筋柱旳计算
KN Nu ( fc A f yAs )
N
As
A
fc
f y As
• 某现浇旳轴心受压柱,柱底固定,顶部 为不移动铰接,柱高6500mm,该柱承受 旳轴向力设计值为N=650kN(含自重), 采用C20混凝土,Ⅱ级钢筋,试设计截面 及配筋。
第三节 偏心受压构件正截面承载力计算
As
KNe ' fcbh(h '0 f 'y (h '0 a)
h) 2
式中e '
h 2
a
'
e0 , h '0
h
a
'
垂直于弯矩作用平面旳承载力复核
偏心受压构件还可能因为柱子长细比较大,在与弯矩作用平 面相垂直旳平面内发生纵向弯曲而破坏。在这个平面内是没有 弯矩作用旳,所以应按轴心受压构件进行承载力复核,计算时 须考虑稳定系数旳影响。
用稳定系数φ表达长柱承载力较短柱降低旳程 度。 φ =Nu长/Nu短, 影响原因:柱子旳长细比l0/b,混凝土强度等 级和配筋率影响很小。 l0/b<8时,不考虑纵向 弯曲旳影响, φ =1,称为短柱。
❖l0/b<8旳称为短柱。 ❖实际工程构件计算长度l0取值可参照规范。 ❖长细比限制在l0/b 30,l0/h25。
三 偏心受拉构件钢筋拉应力旳计算
s
0.0033
0.8
1 Es
s
fy
0.8 0.8 b
若按上式计算出来的
s大于f
,
钢筋混凝土受拉构件承载力计算—偏心受拉构件正截面承载力计算
这时本题转化为已知As´求As的问题。
(3)求As
= −
+ ′ ′ ( − ′ )
得
× × = . × . × − .
+ × × ( − )
偏心受拉构件正截面受拉承载力计算
− =
×
属于大偏心受拉构件。
(2) 计算As´
= − + = −
+ =
由式(5-6)可得
′
− ² ( − . )
=
′ ( − ′ )
As=1963mm2
,
(1-1)、(1-2)式可得
′
=
=
− ( −. ) ²
′ ( −′ )
+′ ′ +
(5-6)
(5-7)
当采用对称配筋时,求得x为负值,取 = 2′ ,并对As´合力点取矩,计算As 。
偏心受拉构件正截面受拉承载力计算
315×103 ×125−1.0×14.3×1000×1752 ×0.55×(1−0.5×0.55)
=
<0
300×(175−25)
偏心受拉构件正截面受拉承载力计算
取
′ = ′ = . × × = ²
取2
16,
选2
16,A's=402mm2
偏心受拉构件的正截面受力原理及承载能力计算
判别条件:
M h
e
as
N 2
M h
e
as
N 2
第6章 受压构件
6.1 轴心受压构件的承载力计算
二、轴心受压短柱的承载力计算
根据短柱的破坏特征,其截面的应力分布如图所示,轴心受 压短柱的承载力可按下列公式计算。
N 1
d
Nu
1
d
( f c A f 'y A 's ) 当
承载力计算包括: (1) 截面设计;(2)截面校核。
三、轴心受压长柱的破坏特征
l0 / i l0 / I / A l0——柱的计算长度,与柱的两端支承条件有关, 两端铰支 :l0=l 一端固定,一端铰支:l0=0.7l 两端固定:l0=0.5l 一端固定,一端自由:l0=2.0l 满足下列条件的为短柱,否则为长柱。 矩形截面 l0 b 8 由于长细比不同,影响两者承载力的 圆形截面 l0 d 7 因素不一样,两者的破坏形态也有所 任意截面 l0 i 28 不同。
一、大偏心受压构件的破坏特征
这种破坏始于受拉钢筋先达到屈服强度,最后受压区边 缘混凝土εc→εcu ,混凝土被压碎而引起的——受拉破坏。 截面破坏时,受压钢筋σ’s→f ’y。 其破坏性质与双筋矩形截面梁 类似—延性破坏
大偏压破坏形式.swf
6.3 偏心受压构件正截面破坏特征 二、小偏心受压构件的破坏特征
(3) 当N 90%Nu 时,柱子出现纵向裂缝。随着N的 进一步增大,混凝土保护层开始剥落,当N Nu时 箍筋之间的纵向钢筋被压屈,并向外凸出,中部混 凝土被压碎,柱子破坏。 (4) 达到承载能力极限状态时 混凝土的压应变: c cu 0.002 , 混凝土的应力: c fc ;
第6章 钢筋混凝土受压构件承载力计算 2. 工程中的受压构件 实际工程中,典型的轴心受压构件有:承受节点荷载的屋架 腹杆和上弦杆;对称框架结构中的内柱;桩基等。在钢筋混凝 土结构中,严格意义上的轴心受力构件是不存在的。但当外加 荷载的偏心很小时,可近似按轴压构件来计算。工程中的屋架 上弦、排架柱、牛腿柱、框架柱等都是偏心受压构件。
混凝土结构设计原理 第五章 受扭构件承载力计算
fy Astl s z Ast1 ucor f yv
试验表明,当0.5≤z ≤2.0范围时,受扭破坏时纵筋和箍 筋基本上都能达到屈服强度。 《规范》建议取0.6≤z ≤1.7, 当z >1.7时,取z =1.7 设计中通常取z =1.~1.2。
《规范》矩形受扭承载力计算公式
Tu 0.35 f tWt 1.2 z
对于矩形截面一般剪扭构件,
Tu 0.35 t f tWt 1.2 z f yv
Ast1 Acor s
nAsv1 Vu 0.7(1.5 t ) ft bh0 1.25 f yv h0 s
1.5 t V Wt 1 0.5 T bh0
称为剪扭构件混凝土强度 降低系数,小于0.5时取 0.5;大于1时取1。
ft
Tcr , p
b f t (3h b) f tWt 6
2
◆
混凝土材料为弹塑性材料。
◆ 达到开裂极限状态时开裂扭矩介于Tcr,e和Tcr,p之间。 ◆ 引入修正降低系数考虑应力非完全塑性分布的影响。
◆ 根据实验结果,修正系数在0.87~0.97之间,《规范》 为偏于安全起见,取 0.7。开裂扭矩的计算公式为
A's + Astl /3
+
As 4
Astl /3
=
Astl /3
Astl /3
As+ Astl /3
Asv1 s
Ast 1 s
2
Asv1 s
+
=
Asv1 Ast 1 + s s
对于弯剪扭构件,为防止少筋破坏 ★按面积计算的箍筋配筋率
Asv ft sv sv,min 0.28 bs f yv
第三章 第四节 单筋矩形截面受弯构件正截面承载力计算
Mu
xc
C
Z
x 0 T C
xt
h0
Tc T s
M 0
M u TZ CZ
设AS—钢筋的面积;fy—钢筋的屈服强度,T= ASfy 。 Z和C与压区高度及压区应力分布有关。
第四节
单筋矩形截面受弯构件正截面承载力计算
b x h
一、计算基本公式及适用条件
基本公式 h0 受弯构件正截面承载能力计算,应满足作用 在结构上的荷载在结构截面中产生的弯矩设计 值M不超过按材料的强度设计值计算得到的受 as 弯构件承载能力设计值Mu, 即:M ≤ Mu
h0——截面有效高度, h0=h-as h——截面高度 as ——受拉钢筋合力点至混凝土受拉边缘的距离,初步计算时,对 于C25~C45等级的混凝土,可按35mm(单排受拉筋)、60mm(双排受拉 筋)、20mm(平板)取值。
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
◆ 例题3-1
解:查表得: fc=9.6N/mm2 ,; fy=300N/mm2 ; ξb=0.55;截面有效 高度 h。=500-40=460mm ;纵向受拉钢筋按一排放置,则梁的有效 高度h0=500—40=460mm。 1.计算受压区高度x
f y As 300 804 x 125.6mm b h0 0.55 460 253mm 1 f cb 1.0 9.6 200
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
单筋矩形截面 仅在受拉区布置纵向受力钢筋的矩形截面 双筋矩形截面 同时在受拉区和受压区布置纵向受力钢筋的矩形截面
第6章-受压构件的截面承载力-自学笔记
第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。
图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。
(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。
即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。
尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。
偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。
当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。
就是图6-2b这种情况。
当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。
就是图6-2c 这种情况。
§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。
§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。
轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。
双筋矩形梁正截面承载力计算
双筋矩形梁正截面承载力计算双筋矩形梁正截面承载力计算一、双筋矩形梁正截面承载力计算图式二、基本计算公式和适用条件1.根据双筋矩形梁正截面受弯承载力的计算图式,由平衡条件可写出以下两个基本计算公式:由∑=0X 得:s y sy c A f A f bx f =''+1α 由∑=0M 得:)(2001a h A f x h bx f M M sy c u '-''+⎪⎭⎫ ⎝⎛-=≤α 式中'y f —— 钢筋的抗压强度设计值; 's A —— 受压钢筋截面面积;'a —— 受压钢筋合力点到截面受压边缘的距离。
其它符号意义同前。
2.适用条件 应用式以上公式时必须满足下列适用条件:(1)0h x b ξ≤ (2)'2a x ≥如果不能满足(2)的要求,即'2a x <时,可近似取'2a x =,这时受压钢筋的合力将与受压区混凝土压应力的合力相重合,如对受压钢筋合力点取矩,即可得到正截面受弯承载力的计算公式为:)(0a h A f M M s y u '-=≤当b ξξ≤的条件未能满足时,原则上仍以增大截面尺寸或提高混凝土强度等级为好。
只有在这两种措施都受到限制时,才可考虑用增大受压钢筋用量的办法来减小ξ。
三、计算步骤(一)截面选择(设计题)设计双筋矩形梁截面时,s A 总是未知量,而's A 则可能有未知或已知这两种不同情况。
1.已知M 、b 、h 和材料强度等级,计算所需s A 和's A (1)基本数据:c f ,y f 及'y f ,1α, 1β,b ξ(2)验算是否需用双筋截面由于梁承担的弯矩相对较大,截面相对较小,估计受拉钢筋较多,需布置两排,故取mm a 60=,a h h -=0。
单筋矩形截面所能承担的最大弯矩为:M bh f M b b c u <-=)5.01(201max 1ξξα,说明需用双筋截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 受压构件
2、小偏心受压(受压破坏) ei≤eib.min=0.3h0
N Nu fcbx f yAs s s As
e
ei N
N
e
fcbx(h0
x) 2
f yAs(h0
a)
ss
fy
x xb
f y s s f y
ssAs
第六章 受压构件
◆ 另一方面,当偏心距很小时,如果附 加偏心距ea与荷载偏心距e0方向相反,
◆ 则可能发生As一侧混凝土首先达到受 压破坏的情况。
e'
e0 - ea N
◆ 此时通常为全截面受压,由图示截面
应力分布,对A's取矩,可得,
f'yAs
f'yA's
As
Ne
fcbh(h0 0.5h) f y(h0 a)
N
e
fcbx(h0
x) 2
f yAs (h0
a)
重新求解x 和A's
⑶若x h0>h,应取x=h,同时应取 =1,代入基本公式直接解得A's
As
Ne
fcbh(h0 0.5h) f y(h0 a)
第六章 受压构件
由基本公式求解x 和A's的具体运
算是很麻烦的。 迭代计算方法
用相对受压区高度x ,
N
Nu
fcbx
f yAs
fy
x
xb
As
N
e
fcbx(h0
x) 2
f yAs (h0
a)
N e fcbh02x (1 0.5x ) f yAs(h0 a)
在小偏压范围x =xb~1.1,s=x(1-0.5x) 变化很小。
fcbx(h0
x) 2
f yAs (h0
a)
当A's已知时,两个基本方程有二个未知数As 和 x,有唯一解。
先由第二式求解x,若x < xbh0,且x>2a',则可将代入第一式得
As
fcbx
f yAs fy
N
★ 若As若小于rminbh?
应取As=rminbh。
若x > xbh0?则应按A's为未知情况重新计算确定A's
f yAs (h0
a)
两个基本方程中有三个未知数,As、A's和 x,故无唯一解。
与双筋梁类似,为使总配筋面积(As+A's)最小?
可取x=xbh0得
As
Ne
fcbh02xb (1 0.5xb )
f y(h0 a)
★ 若A's<0.002bh?
则取A's=0.002bh,然后按 A's为已知情况计算。
f'yA's
两个基本方程中有三个未知数,As、A's和x,故无唯一解。 小偏心受压,即x >xb,ss< fy,As未达到受拉屈服。 进一步考虑,如果x <2 xb, ss > - fy' ,则As未达到受压屈服 因此,当xb <x < (2 xb),As 无论怎样配筋,都不能达到屈服,
为使用钢量最小,故可取As =max(0.45ft/fy, 0.002bh)。
e'=0.5h-a'-(e0-ea), h'0=h-a'
As max 00..04052ffbyth
Ne
fcbh(h0
0.5h)
f y(h0 a)
第六章 受压构件
确定As后,就只有x 和A's两个未
知数,故可得唯一解。
根据求得的x ,可分为三种情况
N
Nu
As
fcbh0xb
f yAs fy
N
★ 若As<rminbh ?
应取As=rminbh。
第六章 受压构件
N Nu fcbx f yAs f y As
⑵A's为已知时
N
e
fcbx(h0
x) 2
f yAs (h0
a)
当A's已知时,两个基本方程有二个未知数As 和 x,有唯一解。
N
e
fcbx(h0
x) 2
f yAs (h0
a)
e ei 0.5h a
fyAs
f'yA's
8.4 矩形截面正截面承载力计算
第六章 受压构件
N Nu fcbx f yAs f y As
⑴As和A's均未知时
N
e
fcbx(h0
x) 2
若x<2a' ? 则可偏于安全的近似取x=2a',按下式确定As
第六章 受压构件
N Nu fcbx f yAs f y As
⑵A's为已知时
N
e
fcbx(h0
x) 2
f yAs (h0
a)
当A's已知时,两个基本方程有二个未知数As 和 x,有唯一解。
先由第二式求解x,若x < xbh0,且x>2a',则可将代入第一式得
0.6
对于Ⅱ级钢筋和
0.4
<C50混凝土,s在
0.4~0.5之间,近似
As
fcbx
f yAs fy
N
★ 若As若小于rminbh?
应取As=rminbh。
若x > xbh0?则应按A's为未知情况重新计算确定A's
若x<2a' ? 则可偏于安全的近似取x=2a',按下式确定As
As
N (ei 0.5h a) f y (h0 a)
★若As若小于rminbh? 应取As=rminbh。
先由第二式求解x,若x < xbh0,且x>2a',则可将代入第一式得
As
fcbx
f yAs fy
N
ei N
★ 若As若小于rminbh?
应取As=rminbh。
fyAs
s'sA's
第六章 受压构件
N Nu fcbx f yAs f y As
⑵A's为已知时
N
e
fcbx
f yAs
fy
x
xb
As
N
e
fcbx(h0
x) 2
f yAs (h0
a)
⑴若x <(2 xb),则将x 代入求得A's。 ⑵若x >(2 xb),ss= -fy',基本公式转As f yAs
第六章 受压构件
6.4 矩形截面正截面承载力计算
一、不对称配筋截面设计
1、大偏心受压(受拉破坏)
已知:截面尺寸(b×h)、材料强度( fc、fy,f'y )、构件长细比
(l0/h)以及轴力N和弯矩M设计值,
若ei>eib.min=0.3h0, 一般可先按大偏心受压情况计算
e
ei N
N Nu fcbx f yAs f y As