第九届小学“希望杯”全国数学邀请赛六年级第1试 答案
希望杯第4-10届小学六年级全国数学竞赛题及解答
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
2011 第九届小学“希望杯”全国数学邀请赛六年级 第一试 详细解析
第九届小学“希望杯”全国数学邀请赛六年级 第I 试1.计算: 831-5.75+316-7.625 =___________. 解析:分数和小数的简便混合运算。
原式325=316-5.75+1.375-7.625= 2.计算: .513.963.54.32118.2949.642⨯⨯+⨯⨯⨯⨯+⨯⨯=__________. 解析:分数巧算。
原式742271.54.321819.642333.54.321.54.3212229.6429.642=+⨯⨯⨯+⨯⨯⨯=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯=)()( 3.对于任意两个数x, y 定义新运算,运算规则如下:x ♦ y=x ×y –x ÷2,x y =x+y÷2,按此规则计算,3.6 ♦ 2=_________,∙∙21.0♦ (7.5 4.8) = __________.解析:定义新运算和循环小数与分数的互化。
3.6 ♦ 2=3.6×2-3.6÷2=5.4,∙∙21.0=9912;7.5 4.8=7.5+4.8÷2=9.9,∙∙21.0♦ (7.5 4.8)= 9912♦9.9 9912♦9.9=16523116510-165331332-.212334-.99334===÷⨯ 4.在方框里分别填入两个相邻的自然数,使下式成立。
解析:极限法估算求值1501×50<1501103110211011++++ <1001×50 即1<31501103110211011⨯++++)( <23 所以方框内填1和2.5.在循环小数∙∙923456781.0中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是__________.解析:循环小数。
易想新循环小数的循环节的末位是9,第2011位上的数字是6,则第2012位上的数字是7,第2013位上的数字是8,2014位上的数字是9。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)
2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=.2.计算:=.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2=,0.♦(7.5⊕4.8)=.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子颗.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是.8.根据图计算,每块巧克力元(□内是一位数字).9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是cm2.(π取3.14)10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于cm2.11.图中一共有个长方形.(不包含正方形)12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过次对换可使全部的黑棋子彼此不相邻.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是号.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了小时.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有种.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供只鸭子吃21天.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家千米.2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=5.【解答】解:7.625﹣6+5.75﹣1=﹣+5﹣1,=7﹣1+5﹣,=6+﹣6,=12﹣6,=5.2.计算:=.【解答】解:=====.故答案为:.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2= 5.4 ,0.♦(7.5⊕4.8)=.【解答】解:(1)3.6♦2=3.6×2﹣3.6÷2=7.2﹣1.8=5.4,(2)7.5⊕4.8=7.5+4.8÷2=7.5+2.4=9.9,0.♦(7.5⊕4.8),=0.×9.9﹣0.÷2,=0.×9.4,=×9.4,=故答案为:5.4,.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□【解答】解:,,,…,,所以,×3<3<×3,整理,得这个值在1和1.5之间,所以填入的两个相邻的自然数是1和2.故答案为:1,2.5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是0.1234678.【解答】解:当循环小数为:0.1234678时,不循环的小数位数有4位,循环节的位数有5位,(2011﹣4)÷5=401…2,余数2表示循环节的第2位上的数字,即6,所以当循环小数为0.1234678时,小数点后第2011位上的数字是6.故答案为:0.1234678.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子90 颗.【解答】解:红珠子的数量是2,4,6,8,10这样的规律增加;它们的和在100之内求解.若有9组红珠子,它们的和是:2+4+…+16+18=90(颗);中间补上9个白珠子,正好是99颗珠子;所以红珠子有90颗.故答案为:90.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是145 .【解答】解,由分析知:a和b其中一个是140,一个是5,所以:a+b的最大值就是5+140=145;故答案为:145.8.根据图计算,每块巧克力 5.11 元(□内是一位数字).【解答】解:72×5.11=367.92(元),故答案为:5.11.9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是157 cm2.(π取3.14)【解答】解:大圆的半径为:20÷2=10(厘米),小圆的半径为:10÷2=5(厘米),3.14×102﹣2×3.14×52,=314﹣175,=157(平方厘米),答:阴影部分的面积为157平方厘米.10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于60 cm2.【解答】解:根据题干分析可得:(11×4+8×2)×1×1=60(平方厘米),答:这个立方体的表面积是60平方厘米.故答案为:60.11.图中一共有58 个长方形.(不包含正方形)【解答】解:因为图中长边有5个分点(包括端点),所以长边上不同的线段有:1+2+3+4=10(条);又因为宽边有4个分点(包括端点),所以宽边上不同的线段有:1+2+3=6(条),因此图中一共有长方形:10×6=60(个).由图知正方形个数只有边长为1和3两个,所以长方形个数60﹣2=58(个)答:图中一共有58个长方形(不包含正方形).故答案为:58.12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是 3 .【解答】解:假设“杯”所代表的数字是a,每个小三角形三个顶点上的数字之和相等为k,由已知列式为:6k=12×2+4a,k==4+,k必须是自然数,a为1~9中一个自然数.当a=1、2、4、5、7、8时k都无解;a=6和9时,则7个数字和会大于12,所以不行.只有当a=3时,k=4+2=6;1+2+3=6,1+2+1+2+1+2+3=12,符合题意;答:则“杯”所代表的数字是 3.故答案为:3.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过50 次对换可使全部的黑棋子彼此不相邻.【解答】解:从黑白珠子相交的地方为起点,分别数白棋子和黑棋子,只要交换偶数位置的棋子就可以;这样就需要交换:100÷2=50(次);故答案为:50.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是14 .【解答】解:由40的约数可知,三个孤的年龄及相加的和为:40=1×1×40,1+1+40=42;40=1×2×20,1+2+20=23;40=1×4×10,1+4+10=15;40=1×5×8,1+5+8=14;40=2×2×10,2+2+10=14;40=2×4×5,2+4+5=11;通过这些因数的和可以发现,同时等于14的有两种情况.王阿姨家的门牌号普查员是知道的,但还是不能确定几个孩子的年龄,说明这几个孩子的年龄和有两种情况,并且和都等于门牌号.所以,此题的答案是14.答:王阿姨家的门牌号是14.故答案为:14.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是128 号.【解答】解:据题意可知,剩下的同学的新编号就是上一次的编号除以2,因此含2因数最多的编号就是最后剩下的,196内的数中,27=128含因数2最多,所以这位同学的编号是128.故答案为:128.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了 3.6 小时.【解答】解:甲乙两人的速度比是6:4=3:2;把全程看作10份,甲走了9份,则乙要走6份;9×4÷10,=36÷10,=3.6(小时).答:他们已经出发了3.6小时.故答案为:3.6.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有840 种.【解答】解:据题意可知,最高位为5一种情况;分钟和秒的十位数,只可能是0、1、2、3、4这几种情况,而且还不能相同,共有5×4=20种情况;分钟和秒的个位数,有7×6=42种情况,所以,此题的结论是:20×42=840(种).故答案为:840.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食42 粒.【解答】解:①甲乙丙的效率之比是:(﹣):()=12:7:8;②24÷(12﹣8)×7,=6×7,=42(粒).答:蚂蚁乙搬运粮食42粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供 5 只鸭子吃21天.【解答】解:设1只鸭子每天吃饲料x,1只鸡每天吃饲料y,根据题干可得:(10x+15y)×6=(12x+6y)×7,60x+90y=84x+42y,24x=48y,x=2y,把2y=x代入:(12x+6y)×7=(12x+3x)×7=105x,105x÷21x=5(只),答:这批饲料可供5只鸭子吃21天.故答案为:5.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家36 千米.【解答】解:设小明的爸爸行驶了x小时,可得方程:12×(2.5﹣0.5+x)=36x,24+12x=36x,24x=24,x=1;则小明家距奶奶家:36×1=36(千米).答:小明家距离奶奶家36千米.故答案为:36.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:49:27;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
第六届小学“希望杯”全国数学邀请赛六年级第一试及答案
第六届小学“希望杯”全国数学邀请赛六年级第1试以下每题6分,共120分。
1、若3 A = 4B = 5 C ,那么A :B :C = ( )2、在其中填上“+”或 “—”使等式成立:11□10□9□8□7□6□5□4□3□2□1=13、如图1△ABC 被分成四个小三角形,请在每个小三角里各填入一个数,满足下面两个要求:(1)任何两个有公共边的三角形里的数都互为倒数(如:32和23是互为倒数);(2)四个小三角形里的数字的乘积等于225。
则中间小角形里的数是( )4、春节期间,原价100元/件的某商品按以下两种方式促销: 第一种方式:减价20元后再打八折; 第二种方式:打八折后再减价20元。
那么,能使消费者少花钱的方式是第( )种。
5、一项工程,甲队单独完成需40天,若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。
如果乙队单独完成此工程,则需( )天。
6、幼儿园的王阿姨今年的年龄是小华今年年龄的8倍,是小华3年后年龄的4倍,则小华今年( )岁。
7、若3a+2b=24,则43a -5 +21b 的值是( )8、如图2,由小正方形构成的长方形网格中共有线段( )条。
9、购买3斤苹果,2斤桔子需6.90元;购8斤苹果,9斤桔子22.80元,那么桔子、苹果各买一斤需( )元。
10、如图3,边长为4的正方形ABCD 和边长为6的正方形BEFG 并排放在一起,O 1和O 2分别是两个正方形的中心(正方形对角线的交点),则阴影部分的面积是( )。
11、16点16分这个时刻,钟表盘面上分针和时针的 夹角是( )度。
12、20721+650091=A1 则A=( )。
13、把2008个小球分放在5个盒子里,使每个盒子里的小球的个数彼此不同,且都有数字“6”,那么这5个盒子里的小球的个数可以是610,560,630,162,46。
如果每个盒子里的小球的个数彼此不同,且都有数字“8”, 那么这5个盒子里的小球的个数分别是( )。
第5—10届六年级希望杯试题
第五届小学“希望杯”全国数学邀请赛六年级第1试(附答案)亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。
1.已知2.3.在下面的算式□中填入四个运算符号、、、、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的三个数的和相等。
那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。
6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。
由图可知,我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。
7.小红和小明帮刘老师修补一批破损图书。
根据图3中信息计算,小红和小时一共修补图书______本。
8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,三人合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。
完成这项工程共用______天。
9.甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的1/3多50千米时,与乙车相遇.A、B两地相距______千米。
10.今年儿子的年龄是父亲年龄的1/4,15年后,儿子的年龄父亲年龄的5/11。
今年儿子______岁。
11.假设地球有两颗卫星A、B在各自固定的轨道上环绕地球运行,卫星A环绕地球一周用1.8小时,每过144小时,卫星A比卫星B多环绕地球35周。
卫星B环绕地球一周用_______小时。
12.三个数P,P+1,P+3都是质数,它们的倒数和的倒数是_______。
(2020年编辑)希望杯数学竞赛第一届至十历届四年级全部试题与答案打
教育精品资料目录1.第一届小学“希望杯”全国数学邀请赛(第1试) (2)2. 第一届小学“希望杯”全国数学邀请赛(第2试) (5)3. 第二届小学“希望杯”全国数学邀请赛(第1试) (7)4. 第二届小学“希望杯”全国数学邀请赛(第2试) (10)5. 第三届小学“希望杯”全国数学邀请赛(第1试) (13)6. 第三届小学“希望杯”全国数学邀请赛(第2试) (16)7. 第四届小学“希望杯”全国数学邀请赛(第1试) (18)8. 第四届小学“希望杯”全国数学邀请赛(第2试) (21)9. 第五届小学“希望杯”全国数学邀请赛(第1试) (23)10. 第五届小学“希望杯”全国数学邀请赛(第2试) (26)11. 第六届小学“希望杯”全国数学邀请赛(第1试) (28)12. 第六届小学“希望杯”全国数学邀请赛(第2试) (30)13. 第七届小学“希望杯”全国数学邀请赛(第1试) (32)14. 第七届小学“希望杯”全国数学邀请赛(第2试) (36)15. 第八届小学“希望杯”全国数学邀请赛(第1试) (39)16. 第八届小学“希望杯”全国数学邀请赛(第2试) (41)17. 第九届小学“希望杯”全国数学邀请赛(第1试) (44)18. 第九届小学“希望杯”全国数学邀请赛(第2试) (46)19. 第十届小学“希望杯”全国数学邀请赛(第1试) (48)20. 第十届小学“希望杯”全国数学邀请赛(第2试) (50)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
第九届希望杯数学竞赛六年级二试试题及答案
2011年第九届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题 5分,共60分)。
4 1.计算:3.625 0.45-1=。
112.对于任意两个数 x 和y ,定义新运算和:,规则如下:2x + y x y =—x +2y2 122=12 2。
1由此计算,0.36 (4 • 1丄)= _______2成的图形中,若最下面一层有 15个正方形,则需火柴 _____________ 根。
4.若自然数N 可以表示3个连续自然数的和,也可以表示成 11个连续自然数的和,还可以表示成 12个连续自然数的和,则 N 的最小值是 ____________ 。
(最小的自然数是 0)5.十进制计数法,是逢 10 进 1,如:24(10 二 2 10 4 1 , 365(10)= 3 102 6 10 5 1 ;计算机使用的是二进制计数法,是逢2进1 ,如:7(10)= 1 22 1 2 1 1 =111(2, 12(10)= 1 23 122 0 2 0 1 =1100(2;如果一个自然数可以写成 m 进制数45(m ),也可以写成n 进制数54(n ),那么最小的m= ____________ , n= __________。
(注:a n =a a a …a )n 个a6. 我国除了用 公历纪年夕卜,还采用 干支纪年。
将天干的10个汉字与 地支的12个汉字对应排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳…… 同一列上下对应的两个汉字就是一个干支年年号。
现在知道公历2011年是辛卯年,公历 2010年是庚寅年,那么,公历1949年,按干支纪年法是如:13.用4根火柴,在桌面上可以拼成一个正方形;用 13根火柴,可以拼成四个正方形;…如图所示,拼_____________年。
7. 盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球。
第九届小学“希望杯”全国数学邀请赛四年级第1试+答案
第九届小学“希望杯”全国数学邀请赛四年级 第1试2011年3月13日 上午8:30至10:00 得分____________亲爱的小朋友,欢迎你参加第九届小学”希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数学天地,将会留下一个难忘的经历……以下每题6分,共120分。
1. 计算:(7777+8888)÷5—(888—777)×3= . 2. 计算:1+11+21+…+1991+2001+2011= .3. 在小于30的质数中,加3以后是4的倍数的是 .4. 小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 倍. 5. 既是6的倍数又是8的倍数的所有两位数的和是 .6. 四年级一班2个小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这两个小组中既不会打乒乓球又不会下象棋的有 人. 7. 按照左侧四个图中数的规律,在第五个图中填上适当的数:6135241642534253161642538. 已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200.则这两个被改动的数以外的7个数的乘积是 .9. 如图1,△ABC 的面积为36,点D 在AB 上,BD=2AD ,点E 在DC 上,DE=2EC ,则△BEC 的面积是 .EDCBAO60︒20︒ED C BAFB图1 图2 图310.今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大 岁.11.某次考试,A 、B 、C 、D 、E 五人的平均分是90分.若A 、B 、C 的平均分是86分,B 、D 、E 的平均分是95分,则B 的得分是 .12.如图2,已知直线AB 和CD 交于点O ,若∠AOC=20°,∠EOD=60°,则∠AOE= °,∠BOC= °.13.如图3,四边形ABCD 与CEFG 是边长相等的正方形,且B 、C 、G 在一条直线上,则图中共有 个正方形, 个等腰直角三角形.14.一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 千克,桶重 千克.15.某个两位数的个位数字和十位数字的和是12,个位数字和十位数字交换后所得两位数比原数小36,则原数是 .16.王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么他来回都坐车,则需 分钟.17.图4中“C ”形图形的周长是 厘米.图418.如图5,从1,2,3,4,5,6,中选出5个数填在图中的空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有 种不同的填法.图519.三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是 .20.甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D ,第五名是E .” 乙:“第二名是A ,第四名是C .” 丙:“第三名是D ,第四名是A .” 丁:“第一名是C ,第三名是B .” 戊:“第二名是C ,第四名是B .”若每个人都只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是 .7第九届小学“希望杯”全国数学邀请赛答案四年级第1试1.30002.3.5,13,17,294. 25.2406. 27.8.109.810.2811.9312.100;16013.3;2214.3;415.8416.3017.3218.3019.148820.C、A、D、B、E。
第九届小学“希望杯”全国数学邀请赛六年级第1试+答案
第九届小学“希望杯”全国数学邀请赛六年级 第1试2011年3月13日 上午8:30至10:00 得分____________亲爱的小朋友,欢迎你参加第九届小学”希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数学天地,将会留下一个难忘的经历……以下每题6分,共120分。
1、计算:7.625-613+5.75-138=_______________。
2、计算:2 4.6949.2181 2.3 4.53 6.913.5⨯⨯+⨯⨯⨯⨯+⨯⨯=_______________。
3、对于任意两个数x ,y 定义新运算,运算规则如下:x ♦y =x ×y -x ÷2,x ⊕y =x +y÷2。
按此规则计算:3.6♦2=____________, 0.12g g♦(7.5⊕4.8)=____________。
4、在方框里分别填入两个相邻的自然数,使下式成立。
□<1111101102103150⎛⎫+++⋅⋅⋅⋅⋅⋅+ ⎪⎝⎭×3<□ 5、在循环小数0.1g 23456789g中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是___________。
6、一条项链上共串有99颗珠子,如图1,其中第1颗珠子是白色的,第2、3颗珠子是红色的,第4颗珠子是白色的,第5、6、7、8颗珠子是红色的,第9颗珠子是白色的,……。
则这条项链中共有红色珠子___________颗。
图17、自然数a 和b 的最小公倍数是140,最大公约数是5,则a +b 的最大值是___________。
8、根据图2计算,每块巧克力___________元。
(□内是一位数字)9、手工课上,小红用一张直径是20㎝的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是___________cm 2。
(π取3.14)10、用若干个棱长为1 cm 的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面积)等11、图5中一共有________个长方形(不包含正方形)。
完整word版,六年级“希望杯”全国数学邀请赛答案详细解析
第十五届小学六年级“希望杯”全国数学邀请赛1.计算:=+⨯20161201620152017( ) 2.计算:=⨯-⨯321128574.03.6742851.0&&&&( ) 3.定义:a ☆b=b 1a -,则2☆(3☆4)=( ) 4.如图1所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有( )个点① ② ③④5.已知A 是B 的21,B 是C 的43。
若A+C=55,则A=( )6.如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如195793.1&&,357919.3&&。
在所有这样只有一位整数的循环小数中,最大的是( )7.甲,乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5。
两人共有的邮票张数是( )张8.从1,2,3,........,2016中任意取出n 个数,若取出的数中至少有两个数互质,则n的最小是( )9.等腰∆ABC 中,有两个内角的度数比是1:2,则∆ABC 的内角中,角度最大的可以是( )度10.能被5和6整除,并且数字中至少有一个6的三位数有( )个11.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的415与每支钢笔的售价相等,则一支钢笔的售价是( )元12.已知x 是最简真分数,若它的分子加a ,化简得31,若它的分母加a ,化简得41,则x=( )13.a ,b ,c 是三个互不相等的自然数,且a+b+c=48,那么a ,b ,c 的乘积最大是( )14.小丽做一份希望杯练习题,第一小时做完了全部的51,第二小时做完了余下的41,第三小时做完了余下的31,这时,余下24题没有做,则这份练习题共有( )道15.如图3,将正方形纸片ABCD 折叠,使点A 、B 重合于O 点,则EFO ∠=( )度16.如图4,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是( )平方厘米17.如图5,将一根10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是( )立方分米18.将浓度为40%的100克糖水倒入浓度为20%的a 克糖水中,得到的浓度为25%的糖水,则a=( )19.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110度;回家时还未到7点,此时时针和分针的夹角仍是110度,则张强外出锻炼身体用了( )分钟20.甲、乙两人分别从A 、B 两地同时出发,相向而行,在c 点相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x♦ y=x× y-x÷2, x⊕ y= x+ y÷ 2。
按此规则计算:3.6♦2=____________,
0. 12 ♦(7.5⊕4.8)=____________。
g g
4、在方框里分别填入两个相邻的自然数,使下式成立。 □<
1 1 1 1 ×3<□ 150 101 102 103
ห้องสมุดไป่ตู้
19、一批饲料可供 10 只鸭子和 10 只鸡共吃 6 天,或供 12 只鸭子和 6 只鸡共吃 7 天,则这批饲料可供 _________只鸭子吃 21 天。 20、小明从家出发去奶奶家,骑自行车每小时行 12 千米,他走后 2.5 小时,爸爸发现小明忘带作业,便 骑摩托车以每小时 36 千米的速度去追,结果小明到奶奶家后半小时爸爸就赶到了。小明家距离奶奶 家___________千米。
g
5、 在循环小数 0. 1 2345678 9 中, 将表示循环节的圆点移动到新的位置, 使新的循环小数的小数点后第 2011 位上的数字是 6,则新的循环小数是___________。 6、一条项链上共串有 99 颗珠子,如图 1,其中第 1 颗珠子是白色的,第 2、3 颗珠子是红色的,第 4 颗珠 子是白色的,第 5、6、7、8 颗珠子是红色的,第 9 颗珠子是白色的,„„。则这条项链中共有红色珠 子___________颗。
1
11、图 5 中一共有________个长方形(不包含正方形)。
12、图 6 中,每个圆圈内的汉字代表 1~9 中的一个数字,汉字不同,数字也不同,每个小三角形三个顶 点上的数字之和相等。若 7 个数字之和等于 12,则“杯”所代表的数字是____________。 13、如图 7,沿着圆周放置黑、白棋子各 100 枚,并且各自相邻排列。若将圆周上任意两枚棋子换位一次 称为一次交换,则最少经过____________次对换可使全部的黑棋子彼此不相邻。 14、人口普查员站在王阿姨门前问王阿姨:“您的年龄是 40 岁,您收养的三个孤儿的年龄各是多少岁?” 王阿姨说: “他们年龄的乘积等于我的年龄,他们年龄的和等于我家的门牌号。”普查员看了看门牌, 说:“我还是不能确定他们的年龄。”那么,王阿姨家的门牌号是____________。 15、196 名学生按编号从 1 到 196 顺次排成一列。令奇数号位(1,3,5…)上的同学离队,余下的同学顺 序不变,重新自 1 从小到大编号,再令新编号中奇数位上的同学离队,依次重复上面的做法,最后留 下一位同学。这位同学开始的编号是___________号。 16、 甲、 乙两人同时从 A 地出发到 B 地, 若两人都匀速行进,甲用 4 小时走完全程, 乙用 6 小时走完全程。 则当乙所剩路程是甲所剩路程的 4 倍时,他们已经出发了___________小时。 17、某电子表在 6 时 20 分 25 秒时,显示 6:20:25,那么从 5 时到 6 时这 1 个小时里,此表显示的 5 个 数字都不相同的情况共有__________种。 18、有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞。根据图 8 中的信息计算,若甲、乙、丙三只蚂蚁 共同搬运这堆粮食,那么,蚂蚁乙搬运粮食__________粒。
第九届小学“希望杯”全国数学邀请赛 六年级 第 1 试
2011 年 3 月 13 日 上午 8:30 至 10:00 得分____________
亲爱的小朋友,欢迎你参加第九届小学”希望杯”全国数学邀请赛! 你将进入一个新颖、有趣、有挑战性的数学天地,将会留下一个难忘的经历„„
以下每题 6 分,共 120 分。
2
3
4
1 3 1、计算:7.625-6 +5.75-1 =_______________。 3 8
2、计算:
2 4.6 9 4 9.2 18 =_______________。 1 2.3 4.5 3 6.9 13.5
3、对于任意两个数 x,y 定义新运算,运算规则如下:
g
图1 7、自然数 a 和 b 的最小公倍数是 140,最大公约数是 5,则 a+b 的最大值是___________。 8、根据图 2 计算,每块巧克力___________元。(□内是一位数字)
9、手工课上,小红用一张直径是 20 ㎝的圆形纸片剪出如图 3 所示的风车图案(空白部分),则被剪掉的 纸片(阴影部分)的面积是___________cm2 。(π 取 3.14) 10、用若干个棱长为 1 cm 的小正方体码放成如图 4 所示的立体,则这个立体的表面积(含下底面积)等 于___________ cm2 。