光通信原理与技术第4章1课件
光通信原理与技术第4章1
![光通信原理与技术第4章1](https://img.taocdn.com/s3/m/116bc11348d7c1c708a14581.png)
能
E4
E3
量
E2
E E1
晶体的能带
晶体的能谱在原子能级的基础上按共有化运动的不 同而分裂成若干组,每组中能级彼此靠得很近,组成有 一定宽度的带,称为能带。
把这种形成共价键的价电子所占据的能带称为价带, 而把价带上面邻近的空带(自由电子占据的能带)称为 导带
E:光子能量 H:是普朗克常量
v:是波的频率
携带信息的光波,所具有的能量是E的整数倍。 当光与物质相互作用时,光子的能量作为一个整体被 吸收或者释放的 。
原子的能级和半导体的能带
原子的能级 原子是由原子核和绕原子核旋转的核外电子组成;
原子中的电子只能在一定的量子态中运动 ; 轨道越高, 能量也越高
N2>N1的情况是一种处于非热平衡状态下的反常情 况,称之为粒子数反转分布,或布居反转,必须要有外 界的泵浦才能实现
粒子反转分布
根据量子统计理论,在热平衡状态下,能量为E的能级被 电子占据的概率为费米分布
p(E)
1
1
E exp(
Ef
)
kT
K为波兹曼常数
T为热力学温度
Ef为费米能级,描述半导体中各能级被电子占据的状态
物质与光之间的互作用
光的波粒二象性 光既是一种电磁波一粒二象性。
光在空间中传播的时候主要表现出波动性;当光 与物质相互作用是,表现出粒子性。
光的波动性:解释光的传输特性 光量子学说:1905年,由爱因斯坦提出。认为光是
由光子组成的
E hv
典型应用:半导体激光器
光的吸收和放大 吸收状态
设媒质中低能级E1上的电子密度为N1,高能级E2上 的电子密度为N2 ,当N2<N1时,受激吸收过程占主导 地位,光波经过媒质时强度按指数规律衰减,光波被吸 收
通信原理第四章 (樊昌信第七版)PPT课件
![通信原理第四章 (樊昌信第七版)PPT课件](https://img.taocdn.com/s3/m/68bc23c5dd36a32d737581ed.png)
则接收信号为
2 1
fo(t) = K f(t - 1 ) + K f(t - 2 ) 相对时延差
F o () = K F () e j 1 + K F () e j ( 1 )
信道传输函数
H()F F o(( ))K Keejj 11((1 1 eejj ))
常数衰减因子 确定的传输时延因子 与信号频率有关的复因子
课件
精选课件
1
第4章 信道
通信原理(第7版)
樊昌信 曹丽娜 编著
精选课件
2
本章内容:
第4章 信道
信道分类
信道模型
恒参/随参信道特性对信号传输的影响
信道噪声
信道容量
定义·分类
模型·特性
影响·措施
信道噪声 信道容量
精选课件
3
概述
信道的定义与分类
n 狭义信道:
—传输媒质 有线信道 ——明线、电缆、光纤 无线信道 ——自由空间或大气层
1. 传输特性
H ()H ()ej ()
H() ~ 幅频特性
()~ 相频特性
2. 无失真传输
H()Kejtd
H() K
()td
精选课件
27
n 无失真传输(理想恒参信道)特性曲线:
恒参信道
|H()|
K
() td
td
0
H() K
幅频特性
0
0
()td
()d() d
td
相频特性
群迟延特性
精选课件
28
n 理想恒参信道的冲激响应:
恒参信道
H()Kejtd
h(t)K(ttd)
若输入信号为s(t),则理想恒参信道的输出:
光纤通信2011_第4章 ULH
![光纤通信2011_第4章 ULH](https://img.taocdn.com/s3/m/f561200fff00bed5b9f31dca.png)
光放大器类型光纤放大器掺稀土元素放大器非线性效应放大器特性。
泵浦和增益系数光放大器的能源是由外界泵浦提供的。
根据掺杂物能级结构的不同,泵浦可以分为三能级系统和四能级系统。
在两种系统中,掺杂物都是通过吸收泵浦光子而被激发到较高能态,再快速驰豫到能量较低的激发态,使储存的能量通过受激辐射被释放出来放大光信号。
两种泵浦原理示意图泵浦激光发射放大器增益随输出功率的变化放大器噪声所有光放大器在放大过程中都会把自发辐射(或散射)叠加到信号光上,导致被放大信号的信噪比(低,其降低程度通常用噪声指数式中的SNR 是由光接收机测得的,因此所得n F =铒的吸收和辐射特性EDFA 增益特性增益特性表示了放大器的放大能力,其定义为输出功率与输入功率之比。
EDFA的增益大小与多种因素有关,通常为15~EDFA 噪声特性EDFA的输出光中,除了有信号光外,还有自发辐射光,它们一起被放大,形成了影响信号光的噪声源,的噪声主要有以下四种:①信号光的散粒噪声;②被放大的自发辐射光的散粒噪声;③自发辐射光谱与信号光之间的差拍噪声;④自发辐射光谱间的差拍噪声。
以上四种噪声中,后两种影响最大,尤其是第三种噪EDFA基本结构EDFA的内部按泵浦方式分,有三种基本的结构:即同向泵浦、反向泵浦和双向泵浦。
同向泵浦信号光与泵浦光以同一方向从掺铒光纤的输入端注入的结构,也称为前向泵浦。
反向泵浦泵浦光WDM系统中的增益带宽增益平坦增益特性优化噪声系数和饱和输出功率EDFA对光纤传输系统的影响非线性问题光浪涌问题色散问题光纤线路的长期可靠性问题受激拉曼散射原理FRA工作原理在许多非线性介质中,受激拉曼散射将一小部分入射功率由一光束转移到另一频率下移的光束,频率下移量由介质的振动模式决定,此过程称为受激拉曼效应。
量子力学描述为入射光波的一个光子被一个分子散射成为另一个低频光子,同时分子完成振动态之间的跃迁,入射光作为泵29混合拉曼/掺铒光纤放大器拉曼放大器和掺铒光纤放大器各有其独特的特点,将FRA 和EDFA 结合起来构成混合拉曼大器(HFA ),也是提高拉曼放大器性能的一种重要方法。
光纤通信原理-(全套)PPT课件
![光纤通信原理-(全套)PPT课件](https://img.taocdn.com/s3/m/a2b574c8650e52ea541898c9.png)
为了描述光纤中传输的模式数目,在
此引入一个非常重要的结构参数,即光纤
的归一化频率,一般用V表示,其表达式 如下:
V k 0 n m a2 2 0n m a2 C n m a2
1. 多模光纤
顾明思义,多模光纤就是允许多个模 式在其中传输的光纤,或者说在多模光纤 中允许存在多个分离的传导模。
光纤的作用是为光信号的传送提供传 送媒介(信道),将光信号由一处送到另一 处。
中继器分为电中继器和光中继器(光放 大器)两种,其主要作用就是延长光信号的 传输距离。
1.3.2 光纤通信系统的分类
根据调制信号的类型,光纤通信系统 可以分为模拟光纤通信系统和数字光纤通 信系统。
根据光源的调制方式,光纤通信系统 可以分为直接调制光纤通信系统和间接调 制光纤通信系统。
1.2 光纤通信的主要特性
1.2.1 光纤通信的优点
1. 光纤的容量大
光纤通信是以光纤为传输媒介,光波为载 波的通信系统,其载波—光波具有很高的 频率(约1014Hz)损耗低、中继距离长
目前,实用的光纤通信系统使用的光 纤多为石英光纤,此类光纤在1.55μm波长 区 的 损 耗 可 低 到 0 . 1 8 dB/km, 比 已 知 的 其 他通信线路的损耗都低得多,因此,由其 组成的光纤通信系统的中继距离也较其它 介质构成的系统长得多。
图2.2 光纤的折射率分布
光纤的折射率变化可以用折射率 沿半径的分布函数n(r)来表示。
n r n n 1 2
r a r a
2. 按传输模式的数量分类
按光纤中传输的模式数量,可以将光 纤分为多模光纤(Multi-Mode Fiber,MMF) 和单模光纤(Single Mode Fiber,SMF)。
光纤通信原理及基础知识ppt课件
![光纤通信原理及基础知识ppt课件](https://img.taocdn.com/s3/m/01e44da7e45c3b3566ec8b7c.png)
编辑版pppt
0
光纤的通信原理及基础知识
第一章 光纤通信的基本原理 第二章 光纤的基本结构和分类 第三章 光纤的基本参数 第四章 光纤的制造方法
编辑版pppt
1
第一章 光纤、光缆的基本知识
§1.1 光纤通信的基本原理
信号 处理
发送端
光波导
信号 处理
接收端
编辑版pppt
2
光纤通信的基本原理
1.0
1,600 km
100 km
6km
0.5
6,400 km
400 km
25km
0.2
40,000 km 2,500 km 156km
• 当比特率大于10Gb/s, 偏振模色散必须考虑.
• 降低光纤偏振模色散值:
– 改进光纤的几何形状
• 导致裸纤的旋转
编辑版pppt
31
光纤的基本参数
偏振模色散 光纤的光学及传输特性参数之一------
8
1 非色散位移光纤 2 色散位移光纤 3 色散平坦光纤 4 非零色散位移光纤
1
4
2
4
3
0 1200
1400 1500 1600 1700 1800 nm
-4
色散D(ps/(nm•km))
-8
波长(nm)
编辑版pppt
28
光纤的基本参数
偏振模色散 光纤的光学及传输特性参数之一------
定义:
基模包含两个正交的矢量,这两个偏振矢量在传播过 程中会产生时延,从而引入偏振模色散
928km
1550nm (G.655)
4528km
1310nm (G.652)
通信原理课件——第四章
![通信原理课件——第四章](https://img.taocdn.com/s3/m/434d7d0ffd0a79563d1e7246.png)
τ 宽为无穷大。
如上所述,脉冲宽度τ越大,自然抽样信号的带宽越小, 这有利于信号的传输。但增大τ会导致时分复用的路数减小, 显然考虑τ的大小时,要兼顾带宽和复用路数这两个互相矛 盾的要求。
二、平顶抽样
平顶抽样又称为瞬时抽样,从波形上看,它与自然抽样 的不同之处在于抽样信号中的脉冲均具有相同的形状— —顶部平坦的矩形脉冲,矩形脉冲的幅度即为瞬时抽样 值,如图4-11(a)所示。在实际应用中,平顶抽样信号 采用脉冲形成电路(也称为“抽样保持电路”)来实现, 得到顶部平坦的矩形脉冲。
图4-25 PCM系统的原理图
4.5.2 PCM
[例4.5.1]
4.5.3 PCM系统的抗噪声性能分析
4.6 语音压缩编码
4.6.1语音压缩编码技术的概念
通常,人们把话路速率低于64kb/s的语音编码方 法,称为语音压缩编码技术。常见的语音压缩编 码有差值脉冲编码调制(DPCM)、自适应差值脉 冲编码调制(ADPCM)、增量调制(DM或M)、自 适应增量调制(ADM)、参量编码、子带编码 (SBC)等。
第四章 模拟信号的数字传输
4.1 引言 4.2 抽样 4.3 量化 4.4 编码 4.5 脉冲编码调制系统 4.6 语音压缩编码 4.7 图像压缩编码
4.1 引言
图4-1 PCM通信系统原理图
图4-2 PCM信号形成过程示意图
4.2 抽样
所谓抽样是把时间上连续的模拟信号变成 一系列时间上离散的样值序列的过程,如 图4-3所示。
4.3 量化
图4-13 量化的输入和输出
4.3.1均匀量化
图4-14 量化过程及量化误差
[例4.3.1]
通信原理与通信技术(第三版)第4章增量调制
![通信原理与通信技术(第三版)第4章增量调制](https://img.taocdn.com/s3/m/987fc8760812a21614791711cc7931b765ce7b32.png)
05
增量调制的改进与发展
增量调制算法的优化
动态阈值设定
01
根据信号的动态变化,自适应调整阈值,提高信号的识别精度。
抗噪声性能增强
02
通过改进算法,降低噪声对增量调制的影响,提高信号的抗干
扰能力。
降低误码率
03
优化算法,减少误码率,提高信号传输的可靠性。
增量调制与其他调制方式的结合
增量调制与脉冲编码调制结合
动态范围是指通信系统在接收信号时能够承受的最大和最 小信号强度之间的范围。
增量调制动态范围原理
增量调制系统通过比较相邻抽样点的幅度差来传输信息,因此 其对信号幅度的变化较为敏感,具有较小的动态范围。
动态范围性能分析
通过仿真和实验等方法,可以分析增量调制系统在不同动态范 围下的性能表现,从而评估其在各种实际应用场景中的适用性
利用增量调制对信号进行初步压缩,再通过脉冲编码调制进行进一步压缩,提高 传输效率。
增量调制与正交幅度调制结合
将增量调制与正交幅度调制相结合,实现信号的多路复用,提高频谱利用率。
增量调制在无线通信中的应用
01
02
03
无线语音传输
利用增量调制传输语音信 号,实现无线通信中的语 音传输。
无线数据传输
将增量调制应用于无线数 据传输,实现数据的高效 传输。
增量调制的基本原理是利用信 号的微小变化来编码信息。
增量调制的特点
增量调制具有较低的编码速率,因为它只利用信号的微 小变化来编码信息。
它适用于传输连续的模拟信号,如语音信号。
由于其简单性,增量调制在早期的通信系统中得到了广 泛应用。
增量调制对噪声和失真具有较强的鲁棒性。
增量调制的应用场景
光纤通信第4章
![光纤通信第4章](https://img.taocdn.com/s3/m/33000db5fd0a79563c1e72d7.png)
I1
I0 t= 0 t=T
电 流 脉冲
光脉冲
图 4.11 结发热效应
2. 自动温度控制
温度控制的必要性:半导体光源的输出特性受温度影响很大, 特别是长波长半导体激光器对温度更加敏感。为保证输出特性 的稳定,对激光器进行温度控制是十分必要的.
缺点: 动态范围小,功耗较大。
LD
Ib
V1
V2
Uin
Io
电流 源
-UE
图 4.7 射极耦合LD驱动电路图
改进后的LD驱动电路:
改进原因:由于温度变化和工作时间加长,LD的输出光功率 会发生变化。为保证输出光功率的稳定, 必须改进电路设计。
工作原理:
PLD→UPD→(UPD+U in+UR)→UA1→Ib→PLD
PD
LD
-+A1
Uin
V1
V2
信号参考
-A +
2
-U 直流参考
图 4.9 APC电路原理
Ib
-+A3
V3
-U
4.1.4温度特性和自动温度控制
1. 激光器的温度特性 回顾:激光器的温度特性: 1,激光器输出光功率随温度而变化有两个原因: (1)激光器的阈值电流Ith随温度升高而增大。 (2)外微分量子效率ηd随温度升高而减小。 直接导致后果:输出光脉冲幅度下降。
+U
LD Ib
PD 检测 器
输出 监测
Uin
V1
UB1 V3
V2
UA1
A1
- +
通信原理第4章-傅立叶变换
![通信原理第4章-傅立叶变换](https://img.taocdn.com/s3/m/e8d33451fe00bed5b9f3f90f76c66137ee064f02.png)
在调制过程中,原始信号的频谱被搬移到载波的频率上,形成调制信号的频谱。 调制方式的不同会导致频谱形状和带宽的变化。
解调过程
在解调过程中,调制信号的频谱被还原为原始信号的频谱。解调方式的不同会 影响还原的准确性和信噪比。
滤波器设计与应用
滤波器类型
滤波器应用
根据滤波器的频率响应特性,可分为 低通、高通、带通和带阻滤波器等类 型。
滤波器在通信系统中具有广泛的应用, 如去除噪声、分离信号、实现特定频 带内的信号传输等。
滤波器设计
滤波器设计需要考虑滤波器的类型、 截止频率、通带波纹、阻带衰减等参 数,可采用窗函数法、频率采样法等 方法进行设计。
PART 03
离散时间信号傅立叶变换
离散时间信号频谱分析
频谱概念
频谱是频率域中对信号进行描述 的一种方式,表示信号在不同频
数字滤波器设计与应用
数字滤波器类型
包括低通、高通、带通和带阻滤波器等,不同类型的滤波器具有不 同的频谱特性。
数字滤波器设计方法
基于窗函数法、频率采样法和优化算法等进行设计,实现所需的滤 波功能。
数字滤波器应用
在通信系统中用于滤除噪声和干扰,提高信号质量;在图像处理中用 于平滑图像和锐化边缘等;在音频处理中用于实现音效和降噪等。
实验目的和要求
01
02
03
04
掌握傅立叶变换的基本原理和 性质;
熟悉傅立叶变换在通信原理中 的应用;
学会使用相关设备和软件进行 傅立叶变换实验;
分析实验结果,加深对傅立叶 变换的理解。
实验环境和设备配置
01
02
03
04
计算机
配置有MATLAB或Python等 数学计算软件;
《光通信原理》课件
![《光通信原理》课件](https://img.taocdn.com/s3/m/06dfca4853ea551810a6f524ccbff121dc36c559.png)
BIG DATA EMPOWERS TO CREATE A NEWERA
目录
CONTENTS
光通信概述光波的传播原理光通信系统原理光通信的关键技术光通信的发展趋势光通信的应用案例
BIG DATA EMPOWERS TO CREATE A NEWERA
光通信概述
激光器的发明为光通信奠定了基础。
应用场景
大容量光通信技术广泛应用于骨干网、城域网、海底光缆等领域,为全球信息高速公路的建设提供了强有力的支撑。
01
02
03
04
总结词
新型光器件是实现超高速和大容量光通信的关键,包括光调制器、光放大器、光检测器等。
发展趋势
新型光器件不断发展,性能不断提升。未来,随着新材料、新工艺的研发和应用,新型光器件的性能还有望进一步提升。
03
02
01
光波在真空中传播,不受介质限制,传播速度最快。
自由空间传播
光波在介质中传播时,会受到介质的折射、反射和散射等作用,传播路径和速度会发生改变。
介质中的传播
光纤是一种特殊介质,光波在其中传播时能量损耗较小,传输距离远,是现代光通信的主要传输方式。
光纤中的传播
BIG DATA EMPOWERS TO CREATE A NEWERA
总结词
大容量光通信技术是实现大规模信息传输的关键技术,通过多通道、多波长等方式提升通信容量。
详细描述
随着信息社会的不断发展,通信网络需要传输的数据量越来越大,传统的单通道光通信技术已经无法满足需求。大容量光通信技术通过多通道、多波长等方式,实现了通信容量的大幅提升。
发展趋势
大容量光通信技术不断发展,通道数和波长数不断增加。未来,随着光学器件和信号处理技术的进步,大容量光通信技术的通信容量还有望进一步提升。
通工专业-光纤通信技术-第四章-光探测器与光接收机
![通工专业-光纤通信技术-第四章-光探测器与光接收机](https://img.taocdn.com/s3/m/eda8b1cd5122aaea998fcc22bcd126fff7055d78.png)
光纤通信系统对光探测器的要求
(1)灵敏度高:灵敏度高表示探测器把 光功率转变为电流的效率高。在实际的光接 收机中,光纤传来的信号极其微弱,有时只 有1nw左右。为了得到较大的信号电流,人 们希望灵敏度尽可能的高。
(2)响应速度快:指射入光信号后,马上就有 电信号输出;光信号一停,电信号也停止输出, 不要延迟。这样才能重现入射信号。实际上电信 号完全不延迟是不可能的,但是应该限制在一个 范围之内。随着光纤通信系统的传输速率的不断 提高,超高速的传输对光电检测器的响应速度的 要求越来越高,对其制造技术提出了更高的要求。
RC 2.2RT CT (4.6)
式中,CT为电路的总电容,RT为电路的总电阻。
考虑上述三个因素的影响,总的上升时间为
(
2 RC
2 d
2 i
)1/ 2
PIN-PD特性参数(3)噪声
•噪声
噪声直接影响光接收机的灵敏度。
散粒噪声(信号电流和暗电流产生)
暗电流是器件在反偏压0.9UB条件下,没有入射光时 产生的反向电流,与光电二极管的材料和结构有关
I层较厚,几乎占据了整个耗 尽区。绝大部分的入射光在I层 内被吸收并产生大量的电子-空 穴对。在I层两侧是掺杂浓度很 高的P型和N型半导体,P层和 N层很薄,吸收入射光的比例 很小。因而光产生电流中漂移 分量占了主导地位,这就大大 加快了响应速度。另外,可通 过控制耗尽层的宽度w,来改 变器件的响应速度。
4.1 光探测器
4.1.1光电检测原理——PN结的光电效应
光电二极管(PD)把光信号转换为电信号的功能, 是由半导 体PN结的光电效应实现的。
当光照射到光电二极管的光敏面 上时,能量大于或等于带隙能量 Eg的光子将激励价带上的电子吸 收光子的能量而跃迁到导带上 (受激吸收),可以产生自由电 子-空穴对(称为光生载流子)。 在耗尽层,由于内部电场的作用, 电子向N区运动,空穴向P区运动, 形成漂移电流。
《通信原理》第4章-50页PPT文档资料
![《通信原理》第4章-50页PPT文档资料](https://img.taocdn.com/s3/m/23dfb2ff26fff705cd170a2e.png)
V (t)
X
2 c
(t
)
X
2 s
(t
)
-接收信号的相位
(t) tan 1 X s (t)
X c (t)
23
第4章 信 道 所以,接收信号可以看作是一个包络和相位随机缓慢变化的窄带信号:
结论:发射信号为单频恒幅正弦波时,接收信号因多径效应变成包络 起伏的窄带信号。 这种包络起伏称为快衰落 - 衰落周期和码元周期可以相比。 另外一种衰落:慢衰落 - 由传播条件引起的。
0.7
0.9
1.1
1.3
1.5
1.7
光波波长(m)
图4-12光纤损耗与波长的关系
• 损耗最小点:1.31与1.55 m
12
第4章 信 道 • 4.3 信道的数学模型 • 信道模型的分类: • 调制信道 • 编码信道
信 息 源
信 源 编
码
加 密
信 道 编
码
数
字 调
信道
制
数 字 解 调
信 道 译
码
• 频率失真 波形畸变 码间串扰
• 解决办法:线性网络补偿
• 相位失真:相位~频率特性不良引起的
• 对语音影响不大,对数字信号影响大
• 解决办法:同上
• 非线性失真:
• 可能存在于恒参信道中
• 定义:
输
输入电压~输出电压关系
出
电
是非线性的。
压
• 其他失真:
频率偏移、相位抖动…
直线关系
非线性关系
频率 - 30 ~ 60 MHz 距离 - 1000 km以上 • 对流层散射 机理 - 由对流层不均匀性(湍流)引起
频率 - 100 ~ 4000 MHz 最大距离 < 600 km
通信原理第4章信道1
![通信原理第4章信道1](https://img.taocdn.com/s3/m/3a468a57312b3169a451a49c.png)
外套
绝缘
包层 纤维芯
27
根据光纤传输数据模式的不同,它可分为多 模光纤和单模光纤两种。 多模光纤指光在光纤中可能有多条不同角度 入射的光线在一条光纤中同时传播,如图 (a) 所示。这种光纤所含纤芯的直径较粗。
吸收护套
(a) 多模 纤芯 包层
28
单模光纤指光在光纤中的传播没有反射,而 吸收护套 沿直线传播,如图(b)所示。这种光纤的直径非 常细,就像一根波导那样,可使光线一直向前 (a) 多模 纤芯 包层 传播。
绝缘体
芯 芯 芯 6 芯 5 芯 4 1 芯 2 芯 3 芯 7 芯 6 芯 5 芯 4 芯 8 1 芯 2 芯 3
(b)
24
优点:与外界相互干扰小,(外导体接地
起屏 蔽作用),带宽大。
缺点:成本较高(与对称电缆相比)。 应用:比较广泛。如电视电缆(75Ω), 实验室仪器用的信号电缆(50 Ω)
25
无线电视距中继是指工作频率在超短波和微波 波段时,电磁波基本上是沿视线传播,通信距 离依靠中继方式延伸的无线电电路。相邻中继 站之间的距离一般在40~50公里。
图4-4 无线电中继
13
优点:传输容量大,发射功率小,通信稳定
可靠,节省有色金属。 缺点:每隔50km左右设置一个中继站(微波 为直线传播,而地球为球体)。 应用:主要用于长途干线、移动通信网及某 些数据收集系统。
42
相位-频率畸变
指相位-频率特性偏离线性关系所引起的畸变。
1、理想相频特性是一直线
群延迟-频率特性
( ) td
(a) O (b) td
d ( ) ( ) d
H( )|
O (c)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子的能级和半导体的能带
原子的能级
原子是由原子核和绕原子核旋转的核外电子组成; 原子中的电子只能在一定的量子态中运动 ; 轨道越高, 能量也越高 当电子在每一个这样的轨道上运动时,原子具有确 定的能量,称为原子的一个能级 能 量 E E4 E3 E2 E1
晶体的能带
晶体的能谱在原子能级的基础上按共有化运动的不 同而分裂成若干组,每组中能级彼此靠得很近,组成有 一定宽度的带,称为能带。
半导体光源: 分类:半导体激光器(LD)和半导体发光二极管(LED) 半导体光源的优点: 体积小、重量轻、寿命长、功耗低、可集成和高可靠性 易择波:半导体光源的物理基础决定了只要选择合适的 光电材料就可以制成适用于光纤中不同低损耗窗口的光 源器件; 易辐射:容易获得足够高的输出光功率和足够窄的光谱 宽度; 易调制:改变注入电流就可以改变输出光强,能够直接 进行强度调制; 易耦合:发光面积可以与光纤芯径相比拟,从而具有较 高的耦合效率
特点: 发射光子的频率为:v ( E1 E2 ) / h E g=E2-E1 h=E2-E1 无外界作用,自发光跃迁; 独立、自发发射,非相干光 典型应用:发光二极管
受激吸收
E2 h = E2-E1 E1 E1 E2
特点: 外来光子能量应等于电子跃迁的能级之差; 消耗外来光能,产生电子-空穴对。 典型应用:光电二极管
工作寿命长 光纤通信要求其光源器件长期连续工作,因此光 源器件的工作寿命越长越好。光源器件寿命的终结并不 是我们所想象的完全损坏,而是其发光功率降低到初始 值的一半或者其阈值电流增大到其初始值的二倍以上。 目前工作寿命近百万小时(约100 年)的半导体激光 器已经商用化。 体积小重量轻 光源器件要安装在光发送机或光中继器内,为使这 些设备小型化,光源器件必须体积小、重量轻。
把这种形成共价键的价电子所占据的能带称为价带, 而把价带上面邻近的空带(自由电子占据的能带)称为 导带
禁带 不能为电子所占据的能 量状态。 禁带的宽度又称为带隙 能量
Eg
光与物质相互作用的基本过程 自发辐射、受激吸收和受激辐射
自发辐射
E2 E1 E2 E1 h=E2-E1
温度特性好 光源器件的输出特性如发光波长与发射光功率大 小等,一般来讲随温度变化而变化,尤其是在较高温度 下其性能容易劣化。在光纤通信的初期与中期,经常需 要对半导体激光器加致冷器和自动温控电路,而目前一 些性能优良的激光器可以不需要任何温度保护措施。 发光谱宽窄 光源器件发射出来的光的谱线宽度应该越窄越好。 因为若其谱线过宽,会增大光纤的色散,减少了光纤的 传输容量与传输距离(色散受限制时)。例如对于长距 离、大容量的光纤通信系统,其光源的谱线宽度 应该 小于2nm。
激射的一般基本条件
放大状态 若媒质中N2>N1 ,则受激辐射占主导地位,光波经 过媒质时强度按指数规律增大,光波被放大。 N2>N1的情况是一种处于非热平衡状态下的反常情 况,称之为粒子数反转分布,或布居反转,必须要有外 界的泵浦才能实现
粒子反转分布
根据量子统计理论,在热平衡状态下,能量为E的能级被 电子占据的概率为费米分布 1 p( E ) E Ef 1 exp( ) kT
K为波兹曼常数 T为热力学温度 Ef为费米能级,描述半导体中各能级被电子占据的状态 在费米能级,各能级被电子和被空穴占据的概率相同
势垒
Ef
零偏压时PN结的能带图
正向偏压下PN结的能带图
半导体激光器
基本原理 半导体激光器是一种PN结构成的二极管结构,通 过向PN结注入正向电流,当注入电流达到一定的阈值 后,实现粒子数反转分布,产生受激辐射,再利用谐振 腔的正反馈,实现光放大而产生激光震荡。实现粒子数 反转分布的区域被称为有源区,半导体激光器的光激射 就发生在这个区域
光在空间中传播的时候主要表现出波动性;当光 与物质相互作用是,表现出粒子性。
光的波动性:解释光的传输特性 光量子学说:1905年,由爱因斯坦提出。认为光是 由光子组成的
E hv
E:光子能量 H:是普朗克常量
v:是波的频率
携带信息的光波,所具有的能量是E的整数倍。 当光与物质相互作用时,光子的能量作为一个整体被 吸收或者释放的 。
受激辐射
E2 h = E2-E1 E1 E1 E2 h = E2-E1
特点:外来光子能量应等于电子跃迁的能级之差,产生的 光子与感应光子是相干的,为全同光子;光得到放大。 典型应用:半导体激光器
光的吸收和放大
吸收状态 设媒质中低能级E1上的电子密度为N1,高能级E2上 的电子密度为N2 ,当N2<N1时,受激吸收过程占主导 地位,光波经过媒质时强度按指数规律衰减,光波被吸 收
光通信原理与技术
光源和光发送机
李玉权、朱勇、王江平编著
物质与光之间的互作用 半导体激光器 半导体发光二极管 光源的调制原要求 发射光波长适中 光源器件发射光波的波长,必须落在光纤呈现低衰 耗的0.85μm、1.31μm和1.55μm 附近。 发射光功率足够大 光源器件一定要能在室温下连续工作,而且其入纤 光功率足够大,最少也应有数百微瓦,当然达到一毫瓦 以上更好。在这里我们强调的是入纤光功率而不指单纯 的发光功率。因为只有进入光纤后的光功率才有实际意 义,由于光纤的几何尺寸极小(单模光纤的芯径不足 10 微米),所以要求光源器件要具有与光纤较高的耦 合效率。
LD的优点:输出功率高、调制频带宽、发光谱线窄 LED的优点:线性好,使用寿命长,成本低 LED的缺点:谱线宽度宽,调制速率较低,与光纤的耦 合效率低
LD适用于长距离、大容量的传输系统 LED适用于短距离、小容量的传输系统
物质与光之间的互作用
光的波粒二象性 光既是一种电磁波又是一种粒子流,对光的波动 和粒子的双重性质称为波一粒二象性。