电力系统静态安全分析new

合集下载

电力系统静态安全分析综述

电力系统静态安全分析综述

事故。对系统安全性的分析,涉及到系统故 障后的稳态行为和暂态行为,相应地安全 分析也分为静态安令分析和动态安全分析 两个领域。电力系统的静态安全分析仅考 虑事故后稳态运行情况的安全性,它研究 系统中的元件开断引起支路有功潮流及母 线电压越限,如果出现越限,就要采取相应 的校正控制策略消除越限,保证系统的正 常运行。静态安全分析是电力系统调度部 门在调度过程中必须进行的一项重要工 作,其目的是提高系统运行的安全性。在本 文中。我们将重点讨论静态安全分析的问
后果。自20世纪60年代以来,大面积停电事 故时有发生,在经济上造成了巨大的损失, 因此,各国对电力系统的安全性分析,开始 给予了足够的重视,成为七、八十年代非常 活跃的研究领域。特别是2003年8月14日发 生的美加大停电事故,造成的经济损失和 社会影响更加严重,引起了人们对电力系 统安全性的强烈关注。如何提高系统的安 全性,将重点放在了如何对系统进行安全 分析,必须从系统规划、系统调度操作以及 系统维修计划等方面做统一而全面的考 虑,并最终集中体现在系统的运行条件上。 当互连系统运行中发生故障时,保证 对负荷持续供电的能力,即系统保证避免 引起广泛波及性供电中断的能力,这就是 电力系统的安全性问题,它涉及到系统的
本文链接:/Periodical_kjzxdb201030048.aspx
国民经济发展水平的重要标志是电力
工业。现代社会的不断发展,促使用电需求
率供需必须平衡,一类是不等式约束条件, 即系统中的某些变量必须在一定限值以 内,如各节点的电压模值、机组的有功和无 功出力、支路潮流等。同时满足等式和不等 式条件的系统,才可以认为是处于正常状 态。在考虑预想事故集的情况下,根据系统 对以上两类约束条件的满足情况,可将电 力系统分为四种运行状态: (1)安今正常状态-(2)不安全正常状态。 (3)紧急状态,(4)待恢复状态。

Power System Contingency Analysis电力系统静态安全分析

Power System Contingency Analysis电力系统静态安全分析

Power System Contingency Analysis: A Study of Nigeria’s 330KVTransmission GridNnonyelu, Chibuzo Joseph Department of Electrical Engineering University of Nigeria, Nsukkachibuzo.nnonyelu@.ngProf. Theophilus C. MaduemeDepartment of Electrical EngineeringUniversity of Nigeria, Nsukka AbstractsAs new sources of power are added to the Nigeria’s power system, an over-riding factor in the operation of the power system is the desire to maintain security and expectable reliability level in all sectors –generation, transmission, and distribution. System security can be assessed using contingency analysis. In this paper, contingency analysis and reliability evaluation of Nigeria power system will be performed using the load flow method. The result of this analysis will be used to determine the security level of the Nigeria power system and suggestions will also be made on the level of protection to be applied on the Nigeria power system with aim of improving system security.Keywords: Contingency Analysis, Contingency, Power System Security, Overload Index1.INTRODUCTIONPower system protection is an important factor of consideration in all sectors of a power system during both planning and operation stages. This is because any loss of component leads to transient instability of the system and can be checked immediately by the help of protective devices put in place. As we propose and source new sources of power in order to meet up the Nigeria energy demand, it is important to access the security level of the existing grid in order to devise a more defensive approach of operation.Currently, the Transmission Company of Nigeria (TCM), projected to have the capacity to deliver about 12,500 MW in 2013, has the capacity of delivering 4800 MW of electricity. Nigeria has a generating capacity of 5,228 MW but with peak production of 4500 MW against a peak demand forecast of 10,200MW. This shows that if the generation sector is to run at full production, the transmission grid will not have the capacity to handle the produced power reliably [7]. This goes a long way to tell that the 330 KV transmission system is not running effectively as expected. Therefore to maintain and ensure a secure operation of this delicate system, the need for contingency analysis cannot be over emphasized.Contingencies are defined as potentially harmful disturbances that occur during the steady state operation of a power system [1] Contingencies can lead to some abnormalities such as over voltage at some buses, over loading on the lines, which if are unchecked, can lead to total system collapse.Power system engineers use contingency analysis to predict the effect of any component failure. Periodically, maintenance operation are carried out on generating units or transmission lines. During this, a unit is taken offline for servicing. The effect of this forced outage on other parts of the system can be observed using contingency analysis.As demand for power increases, more generating units are installed in Nigeria with no corresponding increase in transmission capacity. This makes the transmission lines run at their maximum power capacity which is very dangerous as there is too much power in the system at any moment. This power will be shifted to any available portion of the transmission system in case of any contingency thereby overloading the available portion. This effect can be analysed by the calculation of Line Outage Distribution Factor (LODF). Also, the overloading index of the remaining lines will can be obtained equally.2.POWER SYSTEM SECURITYOne of the most important factors in the operation of any power system is the desire to maintain system availability and reliability. This ensures a secure operation of the system and improved economic operation. Power system security is the ability of the system to withstand one or more component outages with the minimal disruption of service or its quality. System security involves practices designed to keep the system operating in emergency state when components fail and to restore it to its preventive state. For instance, a generating unit may break down or have to be taken off-line for maintenance purposes. This leads to frequency and voltage instability as the available generating unit experiences more loads than usual, hence frequency drops and bus voltages lowers. If this is not foreseen and defensively prevented by use of protective devices such as relays for load shading, it can lead to the collapse of the concerned system. Therefore the control objective in the emergency state is to relieve system stress by appropriate actions while economic consideration becomes of secondary.2.1CONTINGENCY ANALYSISContingency analysis is the study of the outage of elements such as transmission lines, transformers and generators, and investigation of the resulting effects on line power flows and bus voltages of the remaining system. It represents an important tool to study the effect of elements outages in power system security during operation and planning. Contingencies referring to disturbances such as transmission element outages or generator outages may cause sudden and large changes in both the configuration and the state of the system. Contingencies may result in severe violations of the operating constraints. Consequently, planning for contingencies forms an important aspect of secure operation [2].There are various methods of contingency analysis which include the following:a.AC Load flow methodb.DC Load flow methodc.Z-Matrix methodd.Performance Index methodOf all the above listed methods, methods based on AC power flow calculations are considered to be deterministic methods which are accurate compared to DC power flow methods. In deterministic methods line outages are simulated by actual removal of lines instead of modelling. AC power flow methods are accurate but they are computationally expensive and excessively demanding of computational time. Because contingency analysis is the only toolfor detecting possible overloading conditions requiring the study by the power system planner computational speed and ease of detection are paramount considerations. [1]Results of contingency analysis are usually ranked based on some indices calculated during the analysis. The choice of performance index to calculate depends on the engineer. In a deregulated power system, a discernibly purely profit driven, economic operation is of utmost importance hence Available Transfer Capability (ATC) is normally calculated to ascertain the available transfer capability of the system in case of any contingency. Other Indices include Voltage Stability Index (VSI), Active Power Loading Performance Index (APLPI), Line Outage Distribution Factor (LODF), Line loadability, etc.Generally, once the current working state of a system is known, contingency analysis can be broken down into the following steps:a.Contingency definitionb.Contingency selectionc.Contingency evaluationContingency definition involves preparing a list of probable contingencies. This typically includes line outages and generator outages.Contingency selection process consists of selecting the set of most probable contingencies; they need to be evaluated in terms of potential risk to the system. Usually, fast power flow solution techniques such as DC power flow are used to quickly evaluate the risks associated with each contingency. But in this work, the Newton-Raphson load flow method will be used to ensure higher accuracy.Finally, the selected contingencies are ranked in order of their security, till no violation of operating limits is observed.The algorithm for a typical contingency analysis is shown in Figure 1.Figure 1: Algorithm of a typical contingency analysis2.2 LINE LOADABILITYLine Loadability can be defined as Transmission-line voltages decrease when heavily loaded and increase when lightly loaded. When voltages on EHV lines are maintained within ±5% of rated voltage, corresponding to about 10% voltage regulation, unusual operating problems are not encountered. Ten percent voltage regulation for lower voltage lines including transformer-voltage drops is also considered good operating practice.In addition to voltage regulation, line loadability is an important issue. Three major line-loading limits are:a.the thermal limit,b.the voltage-drop limit, andc.the steady-state stability limit.The maximum temperature of a conductor determines its thermal limit. Conductor temperature affects the conductor sag between towers and the loss of conductor tensile strength due to annealing. If the temperature is too high, prescribed conductor-to-ground clearances may not be met, or the elastic limit of the conductor may be exceeded such that it cannot shrink to its original length when cooled.Conductor temperature depends on the current magnitude and its time duration, as well as on ambient temperature, wind velocity, and conductor surface conditions.The loadability of short transmission lines (less than 80 km in length) is usually determined by the conductor thermal limit or by ratings of line terminal equipment such as circuit breakers.For longer line lengths (up to 300 km), line loadability is often determined by the voltage-drop limit. Although more severe voltage drops may be tolerated in some cases, a heavily loaded line with V R/V S ≥ 0.95 is usually considered safe operating practice. For line lengths over 300 km, steady-state stability becomes a limiting factor [4].3.METHODOLOGYIn this paper, the AC load flow method of contingency analysis was adopted. The Newton-Raphson load flow algorithm, an algorithm under the AC load flow method, was used to solve the power flow problems during the analysis using MATLAB. This is because the NRLF method has more accuracy than other AC Load flow methods and converges faster. Newton-Raphon’s Load flow method is discussed more in [3, 4].3.1 Calculating System Line Overload Index (SLOI)To obtain the overall system overload index, a new performance index was proposed and calculated based on the Line Loadability discussed in Section 2.2. As stated, for safe operation, the ratio of the receiving end voltage and the sending end voltage must be greater than 0.95. This newly proposed index relies on this to calculate the system line overload index. It helps tell the system designer at a glance, the lines that should be given utmost attention in terms of protection. SLOI is computed by equation (1):SLOI=1− [min(V RV S )]k(1)whereV R, V S are the receiving end and sending end voltages respectively, andk the number of lines whose V R/V S < 0.95The Nigerian transmission grid is shown in Figure 2 with the single line diagram shown in Figure 3.Figure 2: the Nigerian power system. Blue lines indicate the 330-KV lines(Source: Nigeria System Operator)Figure 3: one-line diagram of the Nigeria 330-KV transmission gridThe network parameters – generator data, load data, and line & transformer data, of the Nigeria power system as used in this work were collated from [8, 9, 10] and are shown in tables 1, 2, and 3 respectively.Table 1: Generator data3.1 Simulation of Line OutageSimulation of transmission line outage is carried out by the formulation of the corresponding admittance matrix [5]. For instance, after outage of a line connecting bus ‘a’and ‘b’, the components of the Y bus that will be affected are Y aa, Y bb, Y ab, and Y ba. For a ‘π-modelled’transmission line, the admittance values after this outage is obtained by subtracting the admittance of the line a-b and the shunt susceptance jb ab/2 and jb ba/2 from Y aa and Y bb.Line outages was simulated by simply removing the line information from the line data matrix. This is similar to the line not existing initially as the information no longer exists.3.2 Simulation of Generator OutageThis simulates mainly outage of one unit (or more) in a power station. Let the total generation for the station at bus ‘m’ be P gm, and assume that there exist identical (g) units, then [6]:)(2) P gm′=P gm−n(P gmgwhereP’gm: Active power generated at bus m after the outageP gm: Active power generated at bus m before the outagen: Number of outage generation units in the stationP gm/g: Active power generated at bus m per generator unitIn this work, generator outages were not simulated as only the effect of line outages were desired.4.Results and DiscussionThe results of the analysis (the SLOI) is shown in Table 4 ordered by the SLOI from the most critical to the least critical.The result as shown in Table 4 contains the SLOI values of the different lines for line outages. It has been organised in the order in descending order.This shows that the outage of line 11 to 14 (Oshogbo to Aiyede) will have the most critical effect on the system followed by 11 – 15, 16 – 20, 20 – 24, 25 – 16. These lines have been shown to pose serious danger on the system stability if they fail, and therefore should be secured defensively to avoid the level of system instability caused by the outage of any of the lines.5.ConclusionFrom this study, it is has been shown with values, the importance of operating the transmission system defensively to avoid system collapse due to overloading. Also, the writer suggests that the Transmission Company of Nigeria (TCN) should adopts the (Flexible AC Transmission), FACT devices as they can improve the lines active power capability in any contingency event as have faster switching than the traditional compensation devices. Also additional lines should be used to connect Oshogbo to Aiyede through different routes to create more links for power to be transmitted through to Lagos area in order to reduce the SLOI value of Oshogbo to Aiyede line.References[1] Chary, D. M., “Contingency Analysis in Power Systems, Transfer CapabilityComputation and Enhancement Using Facts Devices in Deregulated Power System.”Ph.D. diss., Jawaharlal Nehru Technological University, 2011[2] Wood, A. J.; Wallenberg, B. F., “Power Generation, Operation and Control”. 2nd ed.,New York/USA: John Wiley& Sons, 1996, pp. 410-432.][3] Saadat, H., Power System Analysis, New Delhi: McGraw Hill, 2002, pp 189 – 256.[4] Glover, J. D., Sarma, M. S., Overbye, T. J., Power System Analysis and Design, 5h ed.Stamford: Cengage Learning, 2012.[5] Nara, K.,Tanaka,K., Kodama, H., Shoults, R. R., Chen, M. S., Olinda, P. V. andBertagnolli, D., “On-Line Contingency Selection for voltage Security Anal ysis”, ibid, Vol.PAS – 104, pp. 847-856, April 1985.[6] Mohamed, S. E. G., Mohamed, A. Y., and Abdelrahim, Y. H., “Power SystemContingency Analysis to detect Network Weaknesses”, Zaytoonah UniversityInternational Engineering Conference on Design and Innovation in Infrastructure, Amman, Jordan, pp. I3-4 Jun., 2012.[7] “Nigeria's Power Generation hits 5,228 Mega Watt”, Nigeria Compass, May 4, 2013.[Online]. Available: /index.php/special-desk/business-news/12769-nigerias-power-generation-hits-5228-megawatts [Accessed July 15, 2013]. [8] Ogbuefi, U. C., “A Powerflow Analysis of Niegria Power System with Compensation onSome Buses”,PhD thesis, University of Nigeria, Nsukka, Nigeria, 2013.[9] Nigeria System Operator, “Profile of Transmission”, 2011. [Online]. Available:/spread/profile/ [Accessed: July 15, 2013].[10] Onohaebi, O. S., “Power Outages in Nigeria Transmission Grid,” Research Journal ofApplied Science, vol. 4, Issue 1, pp 1- 9, 2009.。

现代电力系统分析静态安全分析

现代电力系统分析静态安全分析

基于物联网的安全分析技术
定义:基于物联 网的安全分析技 术是一种实时监 测和预警系统, 通过传感器网络 采集电力系统的 运行数据,并进 行安全评估和预
警。
特点:能够实现 远程监控和实时 预警,提高电力 系统的安全性和
稳定性。
应用场景:广泛 应用于智能电网、 风力发电、太阳 能发电等领域的 电力系统安全监
电力系统安全预警与控制案例
案例名称:某地区电网安全预警系统
案例简介:该系统通过实时监测电网运行状态,运用静态安全分析方法,实现对电网 安全风险的预警和控制。
案例效果:有效降低了电网运行风险,提高了电网稳定性和可靠性。
案例应用:适用于各类电力系统,尤其适用于复杂电网的安全预警与控制。
06
现代电力系统静态安全 分析发展趋势与挑战
现代电力系统分析静 态安全分析
,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
现代电力系统 静态安全分析 技术
02
现代电力系统 概述
05
现代电力系统 静态安全分析 应用案例03Leabharlann 静态安全分析 方法06
现代电力系统 静态安全分析 发展趋势与挑 战
01 添加章节标题
02 现代电力系统概述
电力系统组成
云计算技术在静态安全分析中的发展前景
云计算技术为电力系统静态安全分析提供了强大的计算能力和存储资源,提高了分析效 率和准确性。
云计算技术可以实现实时数据采集、处理和分析,为预防性维护和故障预测提供了有力 支持。
云计算技术可以降低电力系统静态安全分析的成本,提高经济效益。
云计算技术可以促进电力系统静态安全分析的标准化和规范化,提高分析结果的可靠性 和可重复性。

电力系统静态安全分析方法研究

电力系统静态安全分析方法研究

电力系统静态安全分析方法研究电力系统是现代社会的基础设施之一,它不仅提供了电力服务,同时也对工业生产、商业发展、社会稳定起着至关重要的作用。

因此,保障电力系统的安全是非常重要的任务。

在电力系统运行中,静态安全分析是一项重要的工作。

本文将介绍电力系统静态安全分析的方法,分析其优缺点,并探讨未来的发展方向。

一、静态安全分析方法静态安全分析是指在电力系统正常运行状态下,研究其稳定性、断电容忍能力、电压控制能力等,从而保证电源的可靠性和稳定性。

静态安全分析的主要方法包括潮流分析、潮流限制分析、电压稳定裕度分析、可靠性评估等。

1、潮流分析潮流分析是电力系统静态安全分析的基础工具,它是用来计算电力系统各节点的电压、电流、功率等技术参数的一种数学方法。

潮流分析可以用来确定输电线的负载率、测量变压器的功率损耗、计划电力系统的运行条件等。

它不仅可以满足工程实际操作需要,还可以提供对电力系统的可靠性和稳定性的静态分析。

2、潮流限制分析潮流限制分析,指通过模拟各种故障和异常情况,评估电力系统在这些情况下的运行能力。

通过潮流限制分析,可以确定电力系统的最大电流、最大功率、最大负荷量等。

它可以帮助工程师找出电力系统中的故障点,并在紧急情况下制定合适的应对措施。

3、电压稳定裕度分析电压稳定裕度分析是指评估电力系统在负荷变化和扰动情况下的电压稳定性。

其分析结果可以用来指导电力系统的电压控制策略,以确保电力系统在正常工作条件下保持稳定和动态响应。

电压稳定裕度分析使电力系统管理人员能够更好地预测故障,并采取必要的措施,来避免电力系统的运行中断和不稳定因素的发生。

4、可靠性评估可靠性评估一般用来评价电力系统的负荷容量、发电机的使用年限、元件的可靠性、维护成本、电源的备用容量等问题。

可靠性评估可以从实践中获得足够的数据来确定电力系统的设计和运行要求,制定适当的运行和维护计划。

它在电力系统的长期规划和设计方面起着至关重要的作用,可对系统性能进行独立评估,从而优化可靠性、稳定性、安全性和经济性。

电力系统静态安全分析

电力系统静态安全分析
演讲人
01.
02.
03.
04.
目录
静态安全分析概述
静态安全分析方法
静态安全分析的应用
静态安全分析的发展趋势
静态安全分析的定义
静态安全分析是一种对电力系统进行安全评估的方法
主要关注电力系统在正常运行条件下的稳定性和可靠性
通过对电力系统的拓扑结构、参数和运行状态进行分析,评估系统在故障情况下的稳定性和恢复能力
潮流计算可以分析电力系统的稳定性、可靠性和效率,为电力系统的规划、设计和运行提供依据。
潮流计算主要包括节点电压计算和支路电流计算,通过求解网络方程得到各节点的电压和各支路的电流。
潮流计算还可以用于分析电力系统的故障情况,为故障诊断和恢复提供支持。
灵敏度分析
灵敏度分析的定义:研究系统参数变化对系统安全性能的影响
应用效果:提高电力系统运行效率,减少故障损失,保障电力系统安全稳定运行
04
考虑动态因素的静态安全分析
动态因素的影响:电力系统运行过程中,负荷、发电、输电等参数会发生变化,需要考虑这些动态因素对系统安全的影响。
01
动态安全分析方法:传统的静态安全分析方法无法考虑动态因素的影响,需要采用新的分析方法,如动态潮流计算、状态估计等。
03
静态安全分析的未来发展方向:与物联网、大数据、人工智能等技术的深度融合,实现电网的智能化、精细化管理。
04
评估指标:包括电压稳定裕度、频率稳定裕度、功角稳定裕度等
评估步骤:首先确定系统的运行状态,然后计算系统的静态安全裕度,最后分析系统的稳定性和可靠性
电网规划设计
1
静态安全分析在电网规划设计中的应用
2
静态安全分析在电网规划设计中的作用
3

电力系统静态安全分析

电力系统静态安全分析

Zij Iij Ij-Iij
网络
U1(0) Ui
(0)
I1 Ii Ij In
(a)
网络
U1(1) Ui
(1)
0 Iij -Iij 0
Uj(0) Un (b)
(0)
Uj(1) Un (c)
(1)
图3-6

对于线性网络,可以应用迭加原理把图3-6(a)分成两个网络即 . 图3-6(b)和3-6(c)。这时待求的节点电压 U 也可看成两个部 . . . ( 0) (1) 分
式中: U 相当于没有追加支路情况下的各节点电压,这个向量可 以用原网络的因子表求出,即:
. (0)
U U U
(46)

U
. (0)
Y 1 I
. (0)
(47)

I 时求出的,其值为 U 是向原网络注入电流向量 . . (48) U (1) Y 1 I (1)
. (1)
. (1)
©版权所有
补偿法

补偿法:将支路开断视为该支路未被断开,而在其两端节点 处引入某一待求的补偿电流,以此来模拟支路开断的影响。

特点:不必修改导纳矩阵,可以用原来的因子表来解算网络 的状态。
以单一支路开断为例说明补偿法的物理概念

当网络节点i、j之间发生支路开断,可以等效地认为在i、j节点间并 联了一个追加的支路阻抗Zij,其数值等于被断开支路阻抗的负值。 这时流入原网络的注入电流将由 I
Zij
. Iij
ZT Zij Zij
(53)
. 图3-7 用等效发电机原理求Iij的等值电路图
支路开断后的节点电压向量

通过等值电路络 ZT . E

电力系统静态稳定分析

电力系统静态稳定分析
δ
δ a ↓ ⇒ Pe ↓ ⇒ w ↑ ⇒ δ ↑
P 不变 m w−1p0
δa
δb δb
1800
δ
b点: 不稳定
δ b ↑⇒ Pe ↓⇒ w ↑⇒ δ ↑
滑向深渊
δ b ↓⇒ Pe ↑⇒ w ↓⇒ δ ↓
t
滑向a点
2.静态稳定判据 2.静态稳定判据
决定。 两点有何不同? δ、ω都由 Pe 决定。a、b两点有何不同?
P 0
均可提高系统的静态稳定性。 均可提高系统的静态稳定性。
具体措施: 具体措施:
采用自动调节励磁装置 减小元件电抗 改善系统的结构 采用中间补偿设备
采用自动调节励磁装置
发电机电势与励磁调节情况有关。 发电机电势与励磁调节情况有关。通过装设无 失灵区或者无时滞的比例型励磁调节器以及强力励 磁调节器,可以实现所谓的人工稳定区, 磁调节器,可以实现所谓的人工稳定区,即调节发 电机的功角 δ ,使之满足稳定要求。 使之满足稳定要求。
′ xd → xd → 0
减小元件阻抗 ——减小线路电抗 ——减小线路电抗
•采用分裂导线 采用分裂导线 • 提高线路额定电压等级 (可以等值地看作是减小线路电抗) 可以等值地看作是减小线路电抗) • 采用串联电容补偿 (在线路上串联电容器以补偿线路的电抗) 在线路上串联电容器以补偿线路的电抗)
串联电容补偿
二、电力系统静态稳定分析的小干扰法
所谓小干扰法, 所谓小干扰法,就是首先列出描述系统运动 的数学模型(通常是非线性的微分方程组), 的数学模型(通常是非线性的微分方程组), 然后将它们线性化,得出近似的线性微分方 然后将它们线性化, 程组, 程组,再根据其特征方程式根的性质判断系 统的稳定性。 统的稳定性。

电力系统静态安全分析2——杜晓风 (2)

电力系统静态安全分析2——杜晓风 (2)


以预想事故相邻级确定权重因子

预想事故自动筛选算法原理图
入口 取第一个预想事故 安全 自动选择 不安全 安全评估
行为指标计算及排队顺序 取下一个预想事故 否 是 输出预想事故一览表 出口
预想事故是否已经作完
图1 预想事故自动筛选算法的原理图
电力系统静态安全域

保证电力系统静态安全运行的条件是在当前网 络结构下,不但要保证正常运行状态,而且在 因偶然事故导致故障元件切除后的运行状态下, 仍然要保证发电机功率和负荷需求功率的平衡, 同时各设备运行在安全限值约束之内。 前面介绍的方法均为逐点法——在给定的运行 状态下,对预想事故集的所有预想事故逐一求 解潮流方程,以此来确定系统是否运行在安全 约束范围内。
-0.6
-0.8
接线图
例题
解: P B
0
1 1 0.6 0.25 0.2 0.8 1 0.2
1 9 5 2 0.2 2 15 3 1 1 3 5 2 0.4 0.2

潮流模型及安全约束条件
电力系统的安全运行,就是保证系统的功率平衡,同时 各设备运行在安全限值之内
潮流模型——保证功率平衡由功率平衡方程实现,即等式
约束条件
安全约束条件——设备运行在安全限值之内

若系统节点数为n,第n个节点为参考节点,负荷节 点编号为1~nL (共nL个),发电机节点编号为nL +1~n-1(共包括参考节点共Ng个),支路数为m。此外 其潮流模型一般可采用P-Q分解潮流模型
概念

预想事故的自动筛选:在静态安全分析中,先 用简化潮流的计算方法对预想事故集中的每一 个预想事故进行近似计算,剔除明显不会引起 安全问题的预想事故,且按事故的严重性进行 排序,组成预想事故一览表,然后用更精确的 潮流算法去对表中的事故依次进行分析。

ems-3.3电力系统静态安全分析

ems-3.3电力系统静态安全分析
电力系统调度自动化及EMS
任课教师:王守相
天津大学电气与自动化工程学院
2013年
1
电力系统调度自动化及EMS
简单回顾
电力系统的运行状态的分类及其转化关系:
安全正常状态 预防控制 不安全正常状态(警戒状态) 校正控制 恢复控制 紧急状态 紧急控制源自系统崩溃(瓦 解、解列)状态
恢复状态
2
电力系统调度自动化及EMS
(4)静态等值的方法 ☆Ward等值法 ☆REI等值法; 任何一种将外部系统简化成外部等值 的方法必须保证:当研究系统区内运行条 件发生变化(例如出现预想事故),其等值 网的分析结果应与未简化前由全系统计算 分析的结果相近。
11
电力系统调度自动化及EMS
3、预想事故分析 (1)什么是预想事故分析 所谓预想事故分析指的是针对预先设 定的电力系统元件(如线路、变压器、发电 机、负荷和母线等)的故障及其组合,确定 它们对电力系统安全运行产生的影响。
4
电力系统调度自动化及EMS
3、分类 静态安全性和暂态安全性(动态安全 评估)。 静态安全性判断系统针对一组预想事 故集合(通常是支路开断、负荷变动等小 的扰动),是否出现线路过负荷或电压越 限; 暂态安全性判断系统针对一组预想事 故集合(通常是母线短路等大的扰动)是 否失稳。
5
电力系统调度自动化及EMS
采用将非线性的电力系统问题在运行点附近线性化的方 法,从而得到控制量与被控制量之间的线性关系,不需运算 迭代、无收敛性问题,运行速度快。
20
电力系统调度自动化及EMS
安全约束调度: (1)目标函数 minf = cP (2)控制变量 P = [P1,P2,…, Pm ]T (3)等式和不等式约束 功率平衡等式约束。 机组功率不等式约束和支路潮流不等式约束。

现代电力系统分析静态安全分析

现代电力系统分析静态安全分析
静态安全分析在电力系统维护中的应用:帮助维护人员及时发现和解决电力系统存在的问题,确保电力系统的安全稳定运行。
电力系统故障分析
静态安全分析:用于分析电力系统在故障状态下的稳定性和可靠性
故障类型:包括线路故障、设备故障、负荷故障等
故障影响:可能导致电力系统电压崩溃、频率崩溃、系统解列等
故障处理:通过静态安全分析,制定故障处理方案,确保电力系统安全稳定运行
评估电力系统的可靠性和稳定性
制定电力系统的发展规划和政策
电力系统运行
静态安全分析在电力系统运行中的作用:评估电力系统在正常和故障情况下的稳定性和可靠性。
静态安全分析在电力系统调度中的应用:帮助调度员制定合理的调度方案,确保电力系统的安全稳定运行。
静态安全分析在电力系统规划中的应用:为电力系统规划提供依据,确保规划方案满足电力系统安全稳定运行的要求。
静态安全分析:根据网络模型和状态估计,分析电力系统的安全性
安全裕度:计算电力系统的安全裕度,判断高电力系统的安全性和稳定性
仿真验证:通过仿真验证静态安全分析方法的有效性和准确性
2
静态安全分析的应用
电力系统规划
5%
55%
30%
10%
确定电力系统的规模和结构
优化电力系统的投资和运营成本
现代电力系统分析静态安全分析
演讲人
01.
静态安全分析概述
02.
03.
目录
静态安全分析的应用
静态安全分析的挑战与展望
1
静态安全分析概述
静态安全分析的定义
1
静态安全分析是一种对电力系统进行安全评估的方法
2
主要关注电力系统的静态特性,如拓扑结构、参数等
3
通过分析电力系统的静态特性,评估系统在正常和故障情况下的安全性

毕业论文电力系统静态稳定性分析

毕业论文电力系统静态稳定性分析

电力系统静态稳定性分析摘要近几年,电力系统的规模日益增大,系统的稳定问题越来越严重地威胁着电网的安全稳定运行,对电力系统的静态稳定分析也成为一个十分重要的问题。

为提高和保证电力系统的稳定运行,本文主要阐述了电力系统静态稳定性的基本概念,对小干扰法的基本原理做了研究,并利用小干扰法对简单的单机电力系统进行了简要的分析。

且为了理解调节励磁对电力系统稳定性的影响,本文做了简要要研究,并以单机系统为实例,进行了简单地分析。

本文通过搜集相关资料,整理了保证和提高电力系统静态稳定性的措施。

关键词:电力系统,静态稳定,小干扰分析法 ,励磁调节ABSTRACTIn recent years, the scale of power system is increasing,so system stability problem is increasingly serious threat to the safe and stable operation of power grid,and power system static stability analysis has become a very important problem.In order to improve and ensure the stable operation of electric power system, this paper mainly expounds the basic concept of the static stability of power system,using the small disturbance method basic principle to do the research, and the use of small disturbance method for simple stand-alone power system undertook brief analysis. And in order to understand the regulation of excitation effects on the power system stability, this paper makes a brief to research, and single system as an example, undertook simple analysis.In this paper, by collecting relevant information, organize the guarantee and improve the power system static stability measures.Key words power system , static stability, small signal analysis method of excitation regulator目录摘要IABSTRACTII第1章绪论11.1 研究电力系统静态稳定性的目的以与原则11.2 本文采用的解决电力系统静态稳定性问题的方法11.3 课题研究的成果和意义1第2章电力系统静态稳定性简析22.1 电力系统的基本概念22.11电力系统的定义22.12电力系统的运行特点和要求22.2电力系统静态稳定性的基本概念22.21电力系统静态稳定性的定义22.22电力系统静态稳定性的分类32.23 电力系统静态稳定性的定性分析7第3章小扰动法分析简单系统的静态稳定性113.1 小扰动法基本原理113.2小扰动法分析简单电力系统静态稳定性12第四章调节励磁对电力系统静态稳定性的影响164.1 不连续调节励磁对静态稳定性的影响164.2 实例分析励磁调节对稳定性的影响17第5章提高电力系统静态稳定性的措施205.1提高静态稳定性的一般原则205.2 改善电力系统基本元件的特性和参数215.21 改善系统电抗215.22改善发电机与其励磁调节系统的特性215.23 采用直流输电225.3 采用附加装置提高电力系统的静态稳定性225.31 输电线路采用串联电容补偿225.32 励磁系统采用电力系统稳定器PSS 装置23 第6章结论24辞25参考文献26第1章 绪论1.1 研究电力系统静态稳定性的目的以与原则电力系统是一个复杂的大规模的非线性动态系统,其稳定性分析是是电力系统规划和运行的最重要也是最复杂的任务之一。

电力系统静态安全分析

电力系统静态安全分析

4
静态安全域分析:确定 系统在给定运行状态下 的安全域范围
5
静态安全约束分析:分 析系统在给定运行状态 下的安全约束条件
6
静态安全优化分析:优 化系统运行方式以提高 系统静态安全水平
静态安全分析在电力系统中的应用
电力系统规划:评估电力系统在不同场景下 的安全性,为规划提供依据
电力系统运行:实时监控电力系统的运行状 态,及时发现并处理安全隐患
演讲人
电力系统静态安全分析
目录
01. 静态安全分析概述 02. 静态安全分析的关键技术 03. 静态安全分析的应用案例 04. 静态安全分析的发展趋势
静态安全分析概述
基本概念
01
02
03
04
静态安全分析:对 电力系统在给定运 行条件下的安全性
进行分析的方法
运行条件:包括负 荷、电压、频率等
系统参数
分析、概率风险评估
2
等方法进行安全裕度
评估。
3
评估指标:安全裕度
评估的主要指标包括
裕度系数、裕度范围、
裕度等级等。
静态安全分析的应用案例
电网规划与设计
01
确定电力系统 的规模和结构
02
评估电力系统 的可靠性和稳
定性
03
优化电力系统 的运行方式和
控制策略
04
评估电力系统 的投资效益和
环保效益
电网运行与控制
04
网络模型优化:根据实际需 求,对模型进行优化,提高 分析效率和准确性
故障模拟与分析
故障模拟: 通过计算机 仿真技术, 模拟电力系 统可能出现 的故障场景
故障分析: 对模拟的故 障场景进行 深入分析, 找出可能导 致系统故障 的原因

电力系统博士入学考试必备---静态安全分析

电力系统博士入学考试必备---静态安全分析

静态安全分析的定义电力系统各种运行状态的定义及其相互转换关系安全性和可靠性的区别和联系电力系统安全分析的内容和流程各种静态等值的原理和特点故障组的定义预想事故分析的步骤从安全角度来看,电力系统运行的五种状态是什么?简述每种状态的特点。

(03A)电力系统的可靠性、安全性和稳定性各有什么含义?简述各自的主要研究内容.(03A、05A)什么是电力系统的可靠性?有哪些研究内容?(05B)什么是静态安全分析和动态安全分析?安全分析是指应用潮流计算方法,对运行中的网络或某一研究下的网络,按N—1原则,研究一个个运行元件因故障退出运行后,网络的安全性及安全裕度。

静态安全分析是研究元件有无过负荷及母线电压水平是否符合要求,有无越限,以检验电网结构强度和运行方式是否满足安全运行的要求。

动态安全分析是研究线路功率是否超稳定极限。

安全分析从功能上课分为两大模块:一块为故障排序,即按N-1故障严重程度自动排序,另一块为阿娜全评估。

对静态安全分析而言,也就是进行潮流计算,动态安全分析则要进行稳定计算分析。

安全分析(上题)的内容和流程:安全分析的功能就是应用计算机使运行人员及时获得实时数据并对下一时刻中可能出现的事故进行快速而详尽的计算分析,从而得出较完整而准确的结论。

电力系统的可靠性、安全性和稳定性各有什么含义?简述各自的主要研究内容。

(可靠性和安全性的区别与联系)可靠性:(安全性见第一题)为保证供电的持续性,也就是说,要求系统安全、可靠,首先应明确安全性(security)和可靠性(reliability)的定义。

在早期的文献中,这两个术语有时混用。

大体上说有两种定义方法,方法一:1)在系统规划设计或历史统计方面,系统保证对负荷持续供电的能力,称为可靠性。

它涉及到较长的时间段,是一个长时期持续供电的平均值概念,为此必须考虑众多可能的运行状态及各种故障;2)在系统运行方面,当系统发生故障时,保证对负荷持续供电的能力,称为安全性.它涉及到系统的当前现状和突然发生的故障,因此是一个时变的或瞬时性的问题。

电力系统静态安全分析

电力系统静态安全分析
不安全正常状态:处于正常状态的电力系统,在 承受规定预想事故集的扰动过程中,只要有一个 预想事故是系统不满足运行约束条件时系统的状 态。
紧急状态:当系统运行在不满足不等式约束条件 下时的状态。
待恢复状态:当整个系统处于瓦解或崩溃时的状 态。
27.06.2020
7
第一节 预想事故评定
预想事故评定(又称预想事故分析),是根据系统 中全部可能扰动集合中的某一子集------预想事 故集,来评定系统的安全性。
27.06.2020
19
所以,当节点i和节点j上加上待求的注入功率增量后,将由下
式给出网络中其他节点电压的相应变化:
0
Pi
0
V
S
P
j
0
Q
i
0
Q
j
0
[S]是初始状态潮 一流 次解 迭最 代 Ja后 下 c矩 o的 b阵 i 之逆
于是支路开断后,系统
最终状态下的状态变量
将为:
在静态安全评定中,预想事故集至少应包括下 列扰动: 线路(支路)开断(line outage); 发电机开断(generator outage)。
27.06.2020
8
一、支路开断模拟
在网络的基本情况(既未发生预想事故 的情况)潮流解求得之后,对于支路开断模 拟,通常采用的方法有:
1、直流法; 2、分布系数法; 3、与Newton潮流算法结合的直接法; 4、与快速解耦潮流算法结合的直接法; 5、补偿法。
2 Z km
。 I km
则在支路 km 开断的情况下,其它支 路中的电流模值变化为
I ij
Vi V j x ij
其中, xij 支路 ij 的电抗值。
( 5) :

电力系统静态安全分析

电力系统静态安全分析

为无穷大,
k
因此,应用直流潮流模型可以方便地找出
网络中那些开断后引起系统解列的线路,
对于这些线路不能直接进行断线分析。
例:三节点电力系统,节点1 为平衡节点,
其支路和节点参数(标幺值)如下:
X12=0.25,X13=0.4, X23=0.2;P2=-0.6,
P3=-0.8。用直流法求解: (1)基态时各支路有功潮流分布; (2)采用直流法求支路1-2 开断后各支路潮 流分布。
直流潮流数学模型
P B0θ
写成另一种形式
XP
其中
X
B' 1 0
Pij Bijij i j xij
第三节 支路开断模拟
• 直流潮流的断线模型 应用直流潮流模型求解输电系统的状
态和支路有功潮流非常简单。而且,由于 模型是线性的,故可以快速进行追加和开 断线路后的潮流计算。
原理:原网络直流潮流公式: XP 当支路(或追加)开断后,而注入功率
X
式中:
'
X
k
Xek ekT
X
(3-67) (3-68)
k 1 xk ekT Xek
由式(3-67)可知节点阻抗矩阵的修正
量为 X X ' X Xe eT
2)状态量的变化
第三节 支路开断模拟
在节点注入功率不变的情况下,可以直接
得到追加线路 k 后状态向量的增量
XP Xe eT XP Xe eT (3-71)
k
kk
k
kk
3)追加线路后的状态向量
' Xe eT
k
kk
第三节 支路开断模拟
当网络断开支路 k 时只要将 xk 换为 xk,
以上公式同样适用。必须指出,当网络开

电力系统静态稳定性分析

电力系统静态稳定性分析

电力系统静态稳定性分析一、电力系统静态稳定性的概念静态稳定性是指电力系统在外部扰动(如大负荷突然失去或电网连锁故障等)下,维持基本工作状态的能力。

电力系统静态稳定性分析主要研究系统的平衡和不平衡工作状态,以及在系统发生扰动后的响应过程。

主要包括潮流分析、电力系统潮流控制、稳定裕度分析等。

二、电力系统静态稳定性分析方法1.潮流分析潮流分析是电力系统静态稳定性分析的基础。

通过潮流分析可以确定系统各个节点的电压、电流、功率等参数,以及线路、变压器的负载情况。

潮流计算方法主要包括高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和直接潮流法等。

通过对潮流分析的结果进行评估和判断,可以得出系统的稳定性状况。

2.电力系统潮流控制电力系统潮流控制主要通过调整发电出力和负荷的分配来实现。

常用的方法包括静态无功补偿装置的投入和退出、变压器调压控制、发电机调压控制、风电和光伏发电等分布式电源的接入控制等。

通过潮流控制,可以有效控制系统的电压、无功功率等参数,从而提高系统的稳定性。

3.稳定裕度分析稳定裕度分析是针对电力系统可能发生的故障和异常情况进行评估和分析,以判断系统在不同工况下的稳定性水平。

常见的稳定裕度指标包括暂态稳定裕度、稳定边界等。

通过稳定裕度分析,可以识别和解决系统的潜在稳定问题,保证系统的稳定运行。

三、电力系统静态稳定性常见问题1.电压稳定问题:电力系统电压的稳定性是影响系统静态稳定性的重要因素。

过高或过低的电压都会导致系统稳定性下降,甚至发生电压失稳。

通过控制无功功率的输出、调整电网结构等措施,可以有效解决电压稳定问题。

2.功率平衡问题:系统内的功率平衡是保证系统稳定运行的基础。

发电出力和负荷之间的失衡会导致系统频率的变化,进而影响系统的稳定性。

通过合理调整发电出力和负荷分配,保持功率平衡,可以提高系统的静态稳定性。

3.事故短路问题:电力系统中的事故短路是可能引起系统瞬态稳定失稳的重要因素。

当发生事故短路时,会导致系统的电压下降、频率波动等现象,进一步影响系统的稳定性。

电力系统静态安全分析基本理论.ppt

电力系统静态安全分析基本理论.ppt



预防控制:使系统从不安全正常状态转变到安全正 常状态的控制手段。
电力系统运行状态(5)

电力系统安全分析就是应用预想事故分析的方法来 预见知道系统是否存在隐患,即处于不安全正常状 态,采取相应的措施使之恢复到安全正常状态。 静态安全分析:用来判断在发生预想事故后系统是 否会发生过负荷或电压越限。
电力系统静态安全分析 基本理论
内容提要

概述 电力系统静态等值 基本节点与基本支路 支路开断模拟 发电机开断模拟 预想事故的自动选择
一、概述

随着系统总容量的增加,网络的不断扩大,系统出现故障的 可能性也日趋增加,最终导致用户供电中断。 为保证供电持续性,要求系统安全可靠。

.
.
I R S R (
k 1
.
n
Sk Uk


)
如何确定REI网络中的各个导纳yn的数值 而
yR I R (U R U G )
.
.
.
式(10)中的UG是任意的,通常取为0。于是REI网络的 构造就变成了唯一的。此时
Sk yk . . 2 . Uk (U G U k ) U k SR yR . . 2 . (U R U G ) U R U R IR

必须从系统规划、系统调度操作、系统维修等 方面统一考虑,最终体现在系统运行条件上。

电力系统在运行过程中必须满足两类条件:

等式约束条件
不等式约束条件
电力系统运行状态(1) 等式约束条件

对安全的解释,在实用中更确切地用正常供电情况 下,是否能保持潮流及电压模值等在允许的范围以 内表示。 等式的约束形式:g(x)=0. 式中:x为系统运行的状态量。可以认为是功率平 衡。

电力系统静态安全分析new

电力系统静态安全分析new


互联系统的第一种划分
边界母线 联络线 内部系统I 外部系 统E

研究系统ST 互联系统PS
拟予等值的系统E

互联系统的第二种划分
Ward 等值(1)

互联系统可用下列一组线性方程组表示
YU I

.
.
( 1)
如将电网节点分为三类:以子集I表示内部系统节点集合,子 集B为边界节点集合,子集E为外部系统节点集合。式(1)可写成

S * * 1 I . diag (U ) S U *
. .

*
则(3)可写成
1 YBB YBEYEE YEB YIB
. S B . . U B YBI U B . YII U I





式中: gij+jbij为与边界节点i相连的联络线或等值支路导纳。 θij0表示边界节点i和相邻节点j之间的电压相角差。 gio+jbio为支路i侧的对地支路导纳;jωi表示节点j与i相邻。

优点:在实时情况下,外部系统运行状态变化不知,而内部和边 界节点复电压和联络线潮流,可以随时由状态估计器提供。
YEE Y BE 0
YEB YBB YIB
. . U E I E 0 . . YBI U B I B (2) . . YII U I I I
Ward 等值(2)


外部等值方法必须保证,当研究系统内运行条件发生变化,其等 值网络分析结果应与未简化前由全系统计算分析的结果相近。
互联电力系统的划分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档