浅谈岩体结构对岩体性质的影响
浅谈岩体结构与岩体爆破、装药对块度的影响
浅谈岩体结构与岩体爆破、装药对块度的影响0 前言在港口码头、防波堤等工程施工中,对石料要求较为严格,不同的规格块石需分时段集中供应,还要严格控制并保证大块率。
本文旨在通过大块石爆破方法的探讨,提高大块石的产出率以解决因大块石产出不足,对汉班托塔港项目二期人工岛施工的制约。
1 岩体爆破破碎的损伤理论1.1 岩体爆破破碎机理1.1.1 爆炸荷载作用下岩体破碎原因炸药爆炸作用下岩体的破碎机理促进了爆破技术的发展。
采用高速摄影和数值模拟,对各向异性的岩体进行爆破试验观测和爆破过程中岩体内部发生的应力、应变、破裂、飞散等模拟。
众多学者通过长期的生产实践和经验总结,提出三种理论:⑴冲击波引起的应力波反射破坏理论。
该理论认为爆破时岩体的破坏主要是因自由面上应力波反射转变成的拉应力波造成的。
若反射拉伸应力波超过该处岩体抗拉强度,岩体则因拉坏而破碎。
⑵爆炸气体产物膨胀压力破坏理论。
该理论认为岩体主要是因装药空间内爆炸气体产物的压力作用而破坏的。
当药包附近存在自由面时,在阻力不等的不同方向上,不同质点的位移速度必然引起剪切应力。
如果剪切应力超过该处岩体的抗剪强度,则岩体产生剪切破坏。
岩体的破碎主要是由爆炸气体产物的膨胀压力引起的。
⑶爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论。
其核心观点认为爆破时岩体的破坏是爆炸气体和冲击波共同作用的结果。
综上所述,不同作用性对爆破的不同阶段和不同的岩体所起的作用不同。
1.1.2 爆炸荷载作用下岩体破碎形式(1)爆破的内部作用,在炮孔周围的空间上岩体爆破过程分为三个区域;1)粉碎区由于靠近炮孔周围的爆破脉冲压力大大超过了岩体的抗压强度,岩体产生剧烈的压缩破坏,半径一般为2~3 倍的炮孔直径。
2)裂隙区爆破中,该区是岩体破碎的主要区域。
半径为岩体装药半径的几十倍。
3)震动区该区岩体不产生任何破坏和损伤,只产生弹性振动,可不考虑损伤问题。
(2)爆破的外部作用如果集中药包埋置靠近岩体表面,除产生内部的破坏作用外,还会在岩体表面产生破坏作用,其具体表现为以下两种破坏形式:1)导致岩体表面成片状裂开,片落现象的产生主要同药包的几何形状、药包的大小有关。
第三章 岩体结构控制论
第三章 岩体结构控制论
3.1 概述 3.2 岩体结构的物质基础 3.3 岩体结构 3.4 岩体结构的力学效应
3.1 概述
• 问题:
返回
5、结构面的连通性
• 是指在某一定空间范围内的岩体中,结构面沿走向、 倾向的连通程度 (如下图)。结构面的抗剪强度与 其连通程度有关,连通的结构面其抗剪强度低;而 非连通的短小结构面,抗剪强度大,岩体强度仍受 岩石强度控制。
返回
6、结构面的密集程度
线密集度K:单位长度 上的结构面条数 K=n/L K=1/M1 + 1/M2 结构面间距d:同一组 结构面的平均间距 d=M
பைடு நூலகம்
•结构体:被结构面切割所形成的岩块。
结构体
结构面的类型、特征及分级
一、成因分类: • (1)原生结构面 岩体在成岩过程中形成的结构面。 • a、沉积结构面是沉积岩在沉积和成岩过程中形成的,有 层理面、软弱夹层、沉积间断面和不整合面等。 • b、岩浆结构面是岩浆侵入及冷凝过程中形成的结构面, 包括岩浆岩体与围岩的接触面、各期岩浆岩之间的接触 面和原生冷凝节理等。 • c、变质结构面在变质过程中形成,主要有片理和软弱夹 层。 • (2)构造结构面 是岩体形成后在构造应力作用下形成 的各种破裂面,包括断层、节理、劈理和层间错动面等。 • (3)次生结构面 是岩体形成后在外营力作用下产生的 结构面,包括卸荷裂隙、风化裂隙、次生夹泥层和泥化 夹层等。
•
(3)碎裂状结构 主要为构造影响严重的破 碎岩层;主要结构形状为块状;断层、断 层破碎带、片理、层理及层间结构面较发 育,裂隙结构面间距0.25~0.5m,一般在3 组以上,由许多分离体形成。完整性破坏 较大,整体强度很低,并受断裂等软弱结 构面控制,多呈弹塑性介质,稳定性很差, 可能发生的岩土工程问题为易引起规模较 大的岩体失稳,地下水加剧岩体失稳。
工程地质学-第三章 岩体的工程地质性质与岩体分类-1-结构面特征与结构面类型
1)产状:结构面的产状常用走向、倾向和倾角三要素 表示。 2)连续性:结构面的连续性反映结构面的贯通程度, 常用线连续性系数、迹长和面连续性系数等表示。 3)密度:结构面的密度反映结构面发育的密集程度, 常用线密度、面密度和间距等指标表示Байду номын сангаас 4)张开度与填充胶结特征:结构面的张开度e是结构 面两壁面间的垂直距离(mm) 5)形态:结构面的形态对岩体的力学性质及水力学性 质存在明显的影响。 6)结构面的组合关系:控制着可能滑岩的岩体的几何 边界条件、形态、规模、滑动方向及滑移破坏类型, 它是工程岩体稳定性预测与评价的基础。
1)原生结构面:是岩体在成岩过程中形成的结构面,其特征与 岩体成因密切相关。因此,又可将其分为沉积结构面、岩浆结 构面和变质结构面三类。原生结构面除部分经风化卸荷作用裂 开外,多具有不同程度的连接力和较高的强度。 (1)沉积结构面
沉积岩的层理、层面、沉积间断面及沉积软弱夹层等都属 于沉积结构面。 (2)火成结构面
在岩体的强度性质中,最重要的是抗剪强度。
它是影响工程安全和造价的重要因素,在岩基抗滑稳 定、边坡岩体稳定和地下硐室围岩稳定性分析与近似 中,岩体的抗剪强度参数是必不可少的。
二、岩体的流变特征
蠕变:指在应力一定的条件下,变形随时间的持续而逐 渐增长的现象; 松弛:变形保持一定时,应力随时间的增长而逐渐减 小的现象。 长期强度:出现蠕变破坏的最低应力值
2.结构面的规格和等级 按结构面延伸长度、切割深度、破碎带宽度及其
力学效应,可将结构面划分为如下五级: Ⅰ级:指大断层或区域性断层。 Ⅱ级:指延伸长而宽度不大的区域性地质界面,如较 大的断层、层间错动、不整合面及原生软弱夹层等。 Ⅲ级:指长度为数十米至数百米的断层、区域性节理、 延伸较好的层面及层间错动等。 Ⅳ级:指延伸较差的节理、层面、次生裂隙、小断层 及较发育的片理、剪理面等。其长度一般为数十米至 二三十米,宽度近于零至数厘米不等,是构成岩块的 边界面。 Ⅴ级:又称微结构面,指隐节理、微层面、微裂隙及 不发育的片理、劈理等,其规模小,连续性差,常包 括在岩块内,主要影响沿块的物理力学性质。
地质构造与岩体结构
与水平面就有了一定的倾角,成为具有倾斜构造的岩层。但
不可否认,自然界中有的地层在沉积中就是倾斜的,例如洪
积地层。这样的地层如果在其后的漫长地质岁月中变质成岩,
其产状显然也是倾斜的。除此以外,还有的地层在大的空间
范围内可能属于褶皱构造,是一个背斜或一个向斜的一翼岩
层,但在一定的工程范围内,则表现为单向倾斜的构造形式。
图2-8 构造河谷或冲沟的形成
背、向斜的核部往往构造应力很大,在工程中一旦遇到,应加强 应力和变形测试,减少构造应力对工程的危害。
采矿巷道及地下隧道宜布置在背斜的核部,而尽量避免布置在向 斜的轴部。因为布置在背斜的核部的巷道或其它地下洞室能有效 利用顶板岩体的自然成拱作用,增加洞室的稳定性。而布置在向 斜的核部的巷道或其它地下洞室,一旦两帮岩石下滑,造成顶部 岩石冒落事故,洞室顶部将很难进行进一步维护。
(1)测走向:将罗盘仪的长边(平行南北刻度线的仪器外壳的边缘) 紧靠岩层层面,调整罗盘位置使水准气泡居中,待磁针静止,读指北 针或指南针所指的方位角度数,就是走向的方位。
(2)测倾向:将罗盘仪的短边(如用刻度盘南端)紧靠岩层层面,罗 盘北端则指向岩层倾斜方向,调整罗盘位置使水准气泡居中,待磁针 静止,读指北针所指的方位角度数,就是所测之倾向方位。
二、 地质构造的类型 虽然在地壳运动作用下,地层形态极其复杂多变,但地质构造可
被划归为三种基本类型,一类是褶皱构造,另一类是断裂构造, 第三种是单斜构造。 三、 褶皱构造 原来呈水平或近水平状态的岩层,在受到地壳运动所产生的强大 水平力的挤压后产生柔性弯曲但未失去其连续性,这种弯曲的地 层形态被称为褶皱构造。
许多褶皱组成的巨大向斜称为复向斜。
(10) 断续褶曲:是地壳运动相对稳定地区的典型褶曲类 型,常见的是背斜孤立的隆起于水平岩层之中。最常见的构 造形态是穹窿和构造盆地。
岩石力学-影响岩石力学性质的主要因素
KW
1 2
(吸水率系数);
n1 R1 1 为新鲜岩石的孔隙率、抗压强度、吸水率;
n2 R2 2 为风化岩石的孔隙率、抗压强度、吸水率。
利用 K y 分级如下:
K y 0.1 Ky 0.1 ~ 0.35
Ky 0.35 ~ 0.65
Ky 0.65 ~ 0.90
Ky 0.90 ~ 1.00
三、加载速度对岩石力学性质的影响
做单轴压缩试验时施加荷载的速度对岩石的变形性质和 强度指标有明显影响。加载速率愈快,测得的弹性模量愈大; 反之,愈小。
ISRM(国际岩石力学学会)建议的加载速率为0.5~ 1MPa,一般从开始试验直至试件破坏的时间为5~10分钟。
四、围岩对岩石力学性质的影响
侧向压力(围压)对岩石的变形有很大的影响, 由三轴压缩试验可知:岩石的脆性和塑性并非岩石 固有的性质,它与受力状态有关,随着受力状态的 改变,其脆性和塑性是可以相互转化的。
岩石的风化程度可以通过室内岩石物理力学 性质指标评定的方法,也可以用声波及超声波的 方法。
1964年以来,水电部成都勘察设计研究院科 研所提出用岩石风化程度系数( Ky )来评定岩石 的风化程度。
Ky
1 3
(
K
n
KR
Байду номын сангаас
KW
)
(1-46)
式中:
Kn
n1 n2
(孔隙率系数)
KR
R1 R2
(强度系数)
剧风化 强风化 弱风化 微风化 新鲜岩石
用上述分级法与地质上肉眼判断等级进 行对比,大多数是吻合的,所以采用以地质 定性评价为基础,再用定量分级加以补充, 可以消除认为的误差。
岩体力学第二章 岩块、结构面及岩体的地质特征
第二章 岩块和岩体的地质特征
二、岩块的结构、构造特征
胶结方式:是指胶结物与碎屑颗粒之间的联结 方式,胶结方式主要有: 基底式胶结-在岩石中胶结物的数量多,颗粒 与颗粒之间互不接触,颗粒散布在胶结物之中。 孔隙式胶结-当胶结物不多时,碎屑颗粒相互 接触,胶结物充填在颗粒之间的孔隙中。 接触式胶结-胶结物不多,只在颗粒之间的接 触处才有,颗粒之间的孔隙仍是空洞。
2 断续充填(不连续,厚度小于h).结构面的力学性质与充 填物性质、壁岩性质及结构面的形态有关。 3 连续充填(连续,厚度大于h)结构面力学性质取决充填物性质。 4 厚层充填(充填物厚度远大于h)结构面的力学性质很差,主
要取决于充填物性质,岩体往往易于沿这种结构面滑移而失稳。
五 密度
•结构面的密度反映结构面发育的密集程度。 •1、线密度(Kd)是指结构面法线方向单位测线长 度上交切结构面的条数(条/m)。 •2、间距(d)则是指同一组结构面法线方向上两相 邻结构面的平均距离。 Kd与d互为倒数关系 •如果测线是水平布置的,且与结构面法线的夹角 为α ,结构面的倾角为β 时:
RQD 100e
0.1kd
(0.1k d 1)
岩体质量指标RQD:长度大于10cm的岩心
长度之和与钻孔总进尺的百分比。
长度大于 cm的岩心长度之和 10 RQD 100% 钻孔总进尺
第二章 岩块、结构面和岩体的地质特征
六 张开度
结构面的张开度是指结构面两壁面间的垂直距离。 结构面两壁面一般不是紧密接触,这就使结构面实际接触 面积减少,导致结构面粘聚力降低和渗透性增大。
Ⅲ级 指长度数十米至数百米的断层、区域性节理、延伸较好 的层面及层间错动等。控制工程岩体稳定
岩体力学岩体结构面性质
岩体力学岩体结构面性质岩体力学是研究岩石和地壳构造中岩石体的力学性质以及其变形、破裂和破碎特性的一门学科。
岩体结构面是岩石中天然的或由于应力作用而形成的裂隙或断裂面。
通过对岩体结构面性质的研究,可以更好地了解和预测岩体的力学行为,对岩石工程和地质灾害等领域具有重要的实际应用价值。
岩体结构面性质可以分为以下几个方面来进行描述和研究:1.结构面的存在形式:岩体中的结构面有多种形式,如裂隙、节理、层理等。
裂隙是岩石中的一种空隙或线裂缝,不同类型的裂隙对岩体的力学性质有不同的影响。
节理是岩层中的一种局部平行于岩层面的裂隙,节理的存在对岩石体的强度和变形特性有重要影响。
而层理则是沉积岩中分层承载着特定的结构面,影响岩石体的力学行为。
2.结构面的排列方式:结构面通常有一定的排列方式,包括平行、正交、斜交等。
不同排列方式下的结构面对岩体的强度和变形特性会有不同的影响。
比如,平行结构面会导致相对容易的岩层剥离,而正交结构面则会使岩体更容易发生坍塌。
3.结构面的纹理特征:结构面通常会具有一定的纹理特征,如面状、短柱状、笔直等。
不同的纹理特征会影响结构面的强度和破裂特性。
比如,面状结构面相对较脆弱,容易发生破裂和断裂。
4.结构面的物理性质:结构面的物理性质包括强度、硬度、粗糙度等。
强度是结构面所能承受的最大应力,硬度则是结构面的抗切割能力。
粗糙度则是指结构面表面的粗糙程度,对岩体的摩擦力和稳定性有重要影响。
5.结构面的扩展性和连通性:结构面的扩展性指的是结构面在空间上的延伸范围,连通性指的是结构面之间的连通程度。
结构面的扩展性决定了岩体的整体稳定性,连通性则影响了结构面的水和气体的扩散性。
综上所述,岩体结构面性质对于岩体力学行为的研究有着重要的作用。
了解岩体结构面性质的特点,可以帮助我们更好地预测和控制岩体的力学行为,为岩石工程和地质灾害防治提供科学的依据。
因此,对于岩体结构面性质的研究是岩体力学领域的重要研究方向之一。
岩石力学与工程岩体力学性质
岩石力学与工程岩体力学性质
2021/3/6
8
四、结构面对岩体强度的影响
结构面是通过结构面的产状、形态、延展尺度 等几何特征参数和密集度与充填物等状态,来 描述对岩体强度和工程稳定性影响的。
1.结构面的产状对岩体是否沿某一结构面滑动 起控制作用。
2.结构面形态决定结构面抗滑力的大小,当结 构面的粗糙度越高,其抗滑力就越大。
3.结构面的延展尺度在工程岩体范围内,延展 尺度大的结构面程岩体力学性质
2021/3/6
9
三、岩体破碎程度的指标(补充)
1.裂隙度
(1)定义 裂隙度K是指沿着取样线方向,单位长度上节理 的数量。
(2)计算
1)设某节理取样线长度为L,沿L内出现节理的数 量为n,则 Kn L
2021/3/6
岩石力学与工程岩体力学性质
划分依据 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构呈块状 原生岩体结构呈层状 原生岩体结构特征已消失 原生岩体结构特征已消失
7
2)沿取样方向节理的平均间距d为
d 1 L Kn
岩石力学与工程岩体力学性质
2021/3/6
10
2.切割度
(1)切割度
是指岩体被节理割裂、分离的程度。
(2)计算
1)仅含一个节理面的平直断面,节理面面积 a,平
直断面面积A,其切割度 X e 为
Xe
a A
2)当岩体被完全切割时,Xe 1 ;未被切割时,
级 序 结构类型
划分依据
Ⅰ Ⅰ1 块裂结构 多数软弱结构面切割,块 状结构体
Ⅰ2 板裂结构 一组软弱结构面切割,板 状结构体
地下工程岩爆岩体结构对岩爆的影响
地下工程岩爆岩体结构对岩爆的影响摘要:地下工程岩爆是造成工程事故和人员伤亡的主要原因之一。
岩爆的出现往往会受到岩体结构的影响。
岩体结构的异常、缺陷等都可能成为岩爆的核心因素。
一般通过分析岩体结构对岩爆的影响,揭示岩体结构与岩爆之间的内在联系。
本文主要从岩体构造类型、岩体结构特征、应力状态等方面出发,对影响岩爆的关键因素进行较为深入的探讨。
结合实际工程案例,提出了相应的岩爆预防和控制措施。
该研究可为地下工程岩爆的防治提供技术支持和决策参考。
最后本文对各种结构类型的岩体岩爆灾害进行了分析,探究了在地下工程建设中预防岩体爆裂的岩体结构优化和稳定支护措施。
关键词:岩体结构;地下工程;岩体爆裂;岩爆现象;稳定支护0 引言地下工程岩体岩爆是指在地下开挖、挖掘、爆破等工程中,在短时间内由于炸药等因素引发的高强度能量释放,导致岩石体瞬间崩裂的现象。
这一现象在地下工程中十分普遍,给工程施工和工人安全带来了极大威胁。
在岩体岩爆过程中,岩体结构的稳定性和强度会直接影响到岩体岩爆的危险程度和发生概率。
因此,提高地下工程建设中岩体结构对岩体岩爆的预测及其稳定性控制,对于保证工程的安全性具有重要意义。
岩爆是由多种因素引起的,如地质构造、岩石物理、应力状态等。
在岩爆的不同阶段,岩体结构的变化会引起不同的影响。
因此,了解不同类型岩体的结构对岩爆的影响非常重要。
经过对煤矿、隧道等地下工程岩爆的研究,发现岩体结构对岩爆的影响主要来自以下两个方面:首先,岩体结构对岩爆的离散破裂点的位置和数量有着重要的影响。
岩体结构越不规则,破裂点就会越难以预测和控制。
因此,在预测和控制岩爆方面,建立规律的岩体结构能够更好地减少岩爆发生的概率。
其次,岩体结构的变化会影响岩石的物理性质。
例如,岩石的压缩强度和裂纹扩展的速度等参数会因不同的岩体结构而有所不同。
因此,在岩爆的防范中,要对不同类型岩体的结构特征有深入的了解,以便采取适当的措施。
总之,地下工程建设时存在着各种各样的问题,其中之一就是岩爆,它是地下工程中最为常见的问题之一,也是一种需要高度关注和防范的地质灾害。
岩石的主要物理性质和力学性质
)
干密度是指岩石孔隙中的液体全部被蒸发后单位体积 岩石的质量,相应的重度即为干重度。
Ws d V
(g/cm3) (kN /m3)
d d g
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3); g——重力加速度。
3、饱和密度(ρ )和饱和重度(γ w)
饱和密度就是饱水状态下岩石试件的密度。
八、 岩石的变形特性
弹性:指物体在外力作用下发生变形,当外力撤出后变形
能够恢复的性质。
塑性:指物体在外力作用下发生变形,当外力撤出后变形 不能恢复的性质。 脆性:物体在外力作用下变形很小时就发生破坏的性质。 延性:物体能够承受较大的塑性变形而不丧失其承载能力
的性质。
线弹性变形 弹性变形 变形 塑性变形 非线弹性变形
岩石构造的影响
岩石的构造——指岩石中不同矿物集合体之间或矿物 集合体与其他组成部分之间的排列方式及充填方式。 岩浆岩:颗粒排列无一定的方向,形成块状构造; 沉积岩:层理构造、页片状构造; 变质岩:板状构造、片理构造、片麻理构造。 层理、片理、板理和流面构造等统称为层状构造。 宏观上,块状构造的岩石多具有各向同性特征,而层 状构造岩石具有各向异性特征。
W 1 1 100 % Ws
岩石的吸水率的大小,取决于岩石所含孔隙、裂隙 的数量、大小、开闭程度及其分布情况,并且还与试验 条件(整体和碎块,浸水时间等)有关。
(2)岩石的饱水率(ω 2)
岩石的饱水率指在高压(150 个大气压)或真空
条件下,岩石吸入水的重量Wω 2与岩石干重量Ws之比,
十、
影响岩石力学性质的因素
(1)矿物成分对岩石力学性质的影响
矿物硬度大,岩石的弹性越明显,强度越高。
02-岩体的基本性质
2 岩体的基本性质通常把在地质历史过程中形成的,具有一定的岩石成分和一定结构,并赋存于一定地应力状态的地质环境中的地质体,称为岩体。
岩体在形成过程中,长期经受着建造和改造两大地质作用,生成了各种不同类型的结构面,如断层、节理、层理、片理等。
受其影响,岩体往往表现出明显的不连续、非均质和各向异性,具有一定的结构是岩体的显著特征之一,它决定了岩体的工程特性及其在外力作用下的变形破坏机理。
因此,从抽象的、典型化的概念来说,可以把岩体看作是由结构面和受它包围的结构体共同组成的。
所谓“结构面”,是指在地质发展历史中,尤其是地质构造变形过程中形成的,具有一定方向、延展较大、厚度较小的二维面状地质界面,它包括岩石物质的分界面和不连续面,如岩体中存在的层面、节理、断层、软弱夹层等,可统称为结构面。
结构面是岩体的重要组成单元,由于受结构面的切割,岩体的物理力学性质与岩石有很大的差别。
岩体的物理力学性质取决于结构面和结构体两部分的组合情况,尤其在工程上,岩体的工程力学稳定性质主要取决于岩体内结构面的数量、空间大小、空间组合情况、结构面特征以及充填介质的性质等。
所谓结构体是指由结构面切割而成的岩石块体。
结构体的四周都被结构面包围,常见的结构体大都是有棱角的多面体,如立方体、长方体、柱状体、板状体、菱形体、梯形体、楔形体、锥形体等。
结构体也是岩体的重要组成部分,它本身的物质组成和排列组合方式也影响到岩体的力学性质。
总之,岩体是由结构面和结构体两部分组成的,这也决定了其物理力学性质不是单纯取决定于某一方面的结果,而是二者共同作用和表现的结果,这在岩体力学分析和研究时是十分重要的。
在上一章开始时曾简单介绍过岩石和岩体二者之间的关系,指出工程上的岩石可视为岩体中的结构体(岩块),在无特殊说明的情况下,工程中的岩石均是指岩体中的结构体即岩块而言的。
从力学角度来看,岩体与岩石有许多区别,其中较明显的特征可归纳为以下几点:1)岩体的非均质性岩体可以由一种或几种岩石组成,而且以后者居多。
2.5 岩石影响强度的因素
a
5
b
6
2、岩石构造的影响 岩石的构造——指岩石中不同矿物集合体之间或矿物 岩石的构造 指岩石中不同矿物集合体之间或矿物 集合体与其他组成部分之间的排列方式及充填方式。 集合体与其他组成部分之间的排列方式及充填方式。 岩浆岩:颗粒排列无一定的方向,形成块状构造; 岩浆岩:颗粒排列无一定的方向,形成块状构造; 沉积岩:层理构造、页片状构造; 沉积岩:层理构造、页片状构造; 变质岩:板状构造、片理构造、片麻理构造。 变质岩:板状构造、片理构造、片麻理构造。 层理、片理、板理和流面构造等统称为层状构造。 层理、片理、板理和流面构造等统称为层状构造。 宏观上,块状构造的岩石多具有各向同性特征, 宏观上 , 块状构造的岩石多具有各向同性特征 , 而层 状构造岩石具有各向异性特征。 状构造岩石具有各向异性特征。
16
c. 边坡失稳降雨的诱发因素 2001年该地区出现几十年未遇的特大旱情,由于大旱后 被砂粘土层覆盖的风化壳型边坡, 经过强烈蒸发后, 地下 水位出现不同程度的降低, 形成深厚的非饱和区, 使坡体 内的地下水位对表水进入反应敏感。2002年4 月, 当地 出现连续暴雨, 雨势急猛, 月降雨量高达500~ 600mm, 大量雨水汇集浸入坡体, 边坡剪出口出水量亦随之增大、 混浊。经取样试验(见表1) , 大荒田边坡大旱降雨 后, 内摩擦角平均降低了31.1%, c 值平均降低了 45.0%, 通过计算知, 2001年10月大旱时边坡的稳定系数 为1.07, 而在2002年4月降雨后则剧降至0.89。
水楔作用的两种结果: 一是岩石体积膨胀, 水楔作用的两种结果 : 一是岩石体积膨胀 , 产生膨 胀压力;二是水胶连结代替胶体及可溶盐连结, 胀压力 ; 二是水胶连结代替胶体及可溶盐连结 , 产生润 滑作用,岩石强度降低。 滑作用,岩石强度降低。
沉积结构面对岩体力学性质的影响
沉积结构面对岩体力学性质的影响结构面是决定岩体力学性质的重要因素。
岩体的力学性质一方面受岩石材料性质的影响,另一方面受结构特征(结构面方向、性质、密度(间距)和组合方式等)和赋存条件(地应力、地下水和温度等)的控制。
在探索影响岩体力学性质各因素力学效应方面,前人对构造结构面做了大量的观测和模拟试验研究,取得了不少成果。
沉积结构面是在沉积作用过程中形成的,其与成岩后所形成的构造结构面是有区别的,对岩体力学性质的影响也各不相同。
沉积结构面分布广,延展好,通常是具有高度贯通性的结构面,岩体强度相对较低。
沉积结构面的存在削弱了岩体的力学强度,控制着岩体的变形和破坏规律。
布克林斯基用衰减函数描述了岩体内部移动等值线。
当考虑岩体分层性时,计算出的移动等值线不是平滑的,而是出现折线形状,线的转折发生在两个岩性不同的接触面处应用一种实验模型计算了组合层状岩体的强度。
Gerrard C.M. (1982)给出了以复合材料为基础的混合层数学模型。
潭学术(1994)探讨了层状复合岩体的宏观强度及其当量物理力学性质,对不同岩石组成的层状岩体,在假设层内均质条件下,给出了三维应力状态最大应力理论的强度条件表达式邓喀中(1993)在现场实测、相似模拟试验和计算机模拟基础上,获得了层面滑移规律,分析了层面对岩层及地表移动的影响。
过去,在分析岩体工程地质问题时往往忽视了原始沉积作用这个主要因素,使对解决问题的认识受到局限。
到目前为止,对沉积结构面的几何形态和力学性质的描述依然十分粗糙,沉积结构面对岩体力学性质影响尚缺乏可靠的实验依据。
因此,有必要从沉积结构面的成因类型入手,研究沉积结构面对岩体力学性质的影响,获取符合实际的工程岩体力学参数,建立可靠的沉积岩体结构力学理论和方法,已成为当前沉积岩体力学研究的重要课题,这将使得复杂的地下工程设计与施工决策更趋于合理与可靠。
一、沉积结构面的成因类型沉积结构面是在沉积建造阶段,即在沉积过程中、成岩作用结束之前所形成的构造。
岩体结构是影响岩石承载力的决定因素
岩体软弱结构面倾角对岩体强度的影响研究
岩体软弱结构面倾角对岩体强度的影响研究岩体当中经常会有软弱结构面存在,不同的软弱结构面倾角会对岩体的强度产生重要而直接的影响,进而影响工程结构的安全与稳定。
文章对常用研究方法进行了对比分析,通过模型试验的方法对岩体软弱结构面的不同倾角对岩体的强度进行了研究,根据试验结果总结规律,并对工程建设当中如何减少或者消除软弱结构面倾角对岩体强度的影响提出了建议。
标签:岩体;软弱结构面;倾角;模型试验一、前言工程建设中经常会遇到不同的岩体,这些岩体都可以视为由结构体和结构面组成。
结构体指岩体中被结构面切割而产生的单个岩石块体,结构面是指存在于岩体中的各种不同成因、不同特征的地质构造界面,比如层理、解理、节理、断层等,强度较低的结构面称为软弱结构面。
结构面对岩体的强度等工程性质有非常不利的影响,特别是软弱结构面的存在,将使岩体的强度显著降低,对岩体的不利影响尤其巨大,进而影响到工程结构的安全与稳定。
软弱结构面的组数、密度、长度、走向、倾向和倾角都会对岩体的强度产生重要影响,软弱结构面的倾角对岩体强度具有明显的影响。
对于边坡工程,当岩体软弱结构面的倾角大于边坡倾角时,边坡极易发生顺层滑坡,影响建设工程的安全与稳定。
因此,在国家标准《建筑边坡工程技术规范》(GB50330-2013)中对岩质边坡的破坏形式和岩质边坡岩体稳定性分类时,都特别考虑了软弱结构面对岩体强度的影响。
对于基础工程,软弱结构面倾角将直接影响岩体的强度和破坏形式,比如,当软弱结构面倾角成90°时,如果软弱结构面宽度较窄,其对地基岩体的不利影响将很小,而当软弱结构面倾角为45°时,岩质地基容易产生滑移剪切破坏。
在地下工程中,由于洞室的开挖将增加地下岩体的临空面,进而改变软弱结构面的受力状态,洞室围岩很容易因为软弱结构面自身的软弱和倾角的不利影响而导致塌方。
从以上分析可以看出,软弱结构面倾角对岩体强度具有重要影响,进而对工程岩体的工程性质产生不利影响。
岩体软弱结构面倾角对岩体强度的影响研究
岩体软弱结构面倾角对岩体强度的影响研究作者:罗定伦来源:《求知导刊》2017年第21期摘要:岩体当中经常会有软弱结构面存在,不同的软弱结构面倾角会对岩体的强度产生重要而直接的影响,进而影响工程结构的安全与稳定。
文章对常用研究方法进行了对比分析,通过模型试验的方法对岩体软弱结构面的不同倾角对岩体的强度进行了研究,根据试验结果总结规律,并对工程建设当中如何减少或者消除软弱结构面倾角对岩体强度的影响提出了建议。
关键词:岩体;软弱结构面;倾角;模型试验中图分类号:U455.4 文献标识码:A一、前言工程建设中经常会遇到不同的岩体,这些岩体都可以视为由结构体和结构面组成。
结构体指岩体中被结构面切割而产生的单个岩石块体,结构面是指存在于岩体中的各种不同成因、不同特征的地质构造界面,比如层理、解理、节理、断层等,强度较低的结构面称为软弱结构面。
结构面对岩体的强度等工程性质有非常不利的影响,特别是软弱结构面的存在,将使岩体的强度显著降低,对岩体的不利影响尤其巨大,进而影响到工程结构的安全与稳定。
软弱结构面的组数、密度、长度、走向、倾向和倾角都会对岩体的强度产生重要影响,软弱结构面的倾角对岩体强度具有明显的影响。
对于边坡工程,当岩体软弱结构面的倾角大于边坡倾角时,边坡极易发生顺层滑坡,影响建设工程的安全与稳定。
因此,在国家标准《建筑边坡工程技术规范》(GB50330-2013)中对岩质边坡的破坏形式和岩质边坡岩体稳定性分类时,都特别考虑了软弱结构面对岩体强度的影响。
对于基础工程,软弱结构面倾角将直接影响岩体的强度和破坏形式,比如,当软弱结构面倾角成90°时,如果软弱结构面宽度较窄,其对地基岩体的不利影响将很小,而当软弱结构面倾角为45°时,岩质地基容易产生滑移剪切破坏。
在地下工程中,由于洞室的开挖将增加地下岩体的临空面,进而改变软弱结构面的受力状态,洞室围岩很容易因为软弱结构面自身的软弱和倾角的不利影响而导致塌方。
2.5 岩石影响强度的因素
8
三、水对岩石力学性能的影响 岩石中的水 结合水(连结、润滑、水楔作用) 结合水(连结、润滑、水楔作用) 重力水( 自由水) 孔隙压力、 重力水 ( 自由水 ) ( 孔隙压力 、 溶 蚀及潜蚀作用) 蚀及潜蚀作用)。 水对岩石力学性质的影响与岩石的孔隙性 和 水对岩石力学性质的影响与岩石的 孔隙性和 水理性 孔隙性 (吸水性、软化性、崩解性、膨胀性、抗冻性)有关。 吸水性、软化性、崩解性、膨胀性、抗冻性)有关。 水对岩石力学性质的影响主要体现在5个方面: 水对岩石力学性质的影响主要体现在5个方面: 连结作用、润滑作用、水楔作用、孔隙压力作用、 连结作用、润滑作用、水楔作用、孔隙压力作用、溶 蚀及潜蚀作用。 蚀及潜蚀作用。
10
水楔作用:当两个矿物颗粒靠得很近, 3、水楔作用:当两个矿物颗粒靠得很近,有水分子补 充到矿物表面时, 充到矿物表面时 , 矿物颗粒利用其表面吸引力将水分子 拉到自己周围, 拉到自己周围 , 在颗粒接触处由于吸引力作用使水分子 向两个矿物颗粒之间的缝隙内挤入, 向两个矿物颗粒之间的缝隙内挤入 , 这种现象称为水楔 作用。 作用。
19
六、 受力状态对岩石力学性能的影响
岩石的脆性和塑性并非 岩石固有的性质, 岩石固有的性质 , 而与岩石 的受力状态有关, 的受力状态有关 , 随着受力 状态的变化, 状态的变化 , 其脆性和塑性 时可以相互转化的。 时可以相互转化的。 例如坚硬的花岗岩在很高 的地应力条件下, 的地应力条件下 , 表现出明 显的塑性变形。 显的塑性变形 。 这与试验结 果吻合。 果吻合。
16
c. 边坡失稳降雨的诱发因素 2001年该地区出现几十年未遇的特大旱情,由于大旱后 被砂粘土层覆盖的风化壳型边坡, 经过强烈蒸发后, 地下 水位出现不同程度的降低, 形成深厚的非饱和区, 使坡体 内的地下水位对表水进入反应敏感。2002年4 月, 当地 出现连续暴雨, 雨势急猛, 月降雨量高达500~ 600mm, 大量雨水汇集浸入坡体, 边坡剪出口出水量亦随之增大、 混浊。经取样试验(见表1) , 大荒田边坡大旱降雨 后, 内摩擦角平均降低了31.1%, c 值平均降低了 45.0%, 通过计算知, 2001年10月大旱时边坡的稳定系数 为1.07, 而在2002年4月降雨后则剧降至0.89。
岩石性质影响因素
例如:虽然黑色矿物的强度较浅色矿物的强
度为低,但新鲜的基性和超基性岩石(黑色 矿物含量高)比酸性岩石的强度高。
黑色矿物——橄榄石、辉石、角闪石、黑云母等 浅色矿物——基性斜长石、酸性斜长石、钾长石、石英等
2.碎屑沉积岩胶结物的成分对其强度的
影响(硅质—铁质—钙质—泥质)
3.粘土矿物的种类和含量对岩石强度, 尤其是对岩体中结构面填充物强度有 极大影响。
结构的影响
颗粒间的牢固联结是岩石的一种重要结构特征。从工程地 质观点,岩石颗粒间的联结特征包括——
联结性质 联结质量——吸引力的大小,主 胶结物成分 要取决于相邻质点的距离和吸引
力的特性
胶结类型 联结程度
联结数量——联结面积的大小, 颗粒大小,形状,胶结类型。例 如细粒岩石的力学性能总是高于 由粗粒组成的风化程度相同的同 类岩石
围压
岩石力 时间 学性质 温度
孔隙 流体
弹性变形 :岩石在外力作用下发 生变形,当外力解除后,又完全 恢复到变形前的状态,该变形称 为弹性变形 。特点:应力和应变 成正比,符合虎克定律。
σ=Ee
E—弹性模量/杨氏模量
塑性变形:随着外力继续增加, 变形继续增大,当应力超过岩石 的弹性极限后,再将应力撤去, 变形岩石已不能完全恢复原来的 形状,保留一定的永久变形,该 变形称为塑性变形 。
岩石力学性质及影响因素
岩石力学性质主要是指岩石的变形特征及岩石的强度。
影响岩体力学性质的主要因素
岩体的内在特点—— 岩体的
矿物成分和结构
外部条件——水的影响、作用
力的特点、温度、地应力等因素
对任何工程现象来说,只有将某些因素影响下的岩 石力学性质逐一进行研究,才能认识到哪些是主要影响 因素,哪些是次要因素。从而得出某些参数,建立岩石 的本构方程和破坏准则,为进一步研究分析提供一定模 式与依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈岩体结构对岩体性质的影响
学生:彭敏
班级:水工1班学号:2014141482159 授课教师:肖明砾成绩
摘要影响岩体岩石力学性质和物理性质的三个重要因素有:矿物、结构、构造,其中岩体构造对岩体的性质影响尤为重要,控制着岩体的工程性质以及稳定性。
岩体由结构面和结构体组成,其结构特性是岩体力学行为、变形和破坏形式的主要控制因素。
关键词结构性质结构面软弱夹层
1.结构面的类型与自然特性
1.1概述
结构面指岩体中不连续面,切割岩体的各种地质界面,包括各种物质分异面、破裂面及软弱夹层, 在其变形、破坏过程中所起的作用, 取决于结构面的成因和自然特性, 这种特性直接影响着岩体的物理力学性质。
1.2分类
1.2.1地质成因分类
可以分为原生结构面、构造结构面以及次生结构面三种,其特征如图1所示。
图1
1.2.2结构面的规模
①Ⅰ级:指大断层或区域性断层。
控制工程建设地区的地壳稳定性,直接影响工程岩体稳定性。
②Ⅱ级:指延伸长而宽度不大的区域性地质界面。
③Ⅲ级:指长度数十米至数百米的断层、区域性节理、延伸较好的层面及层间错动等。
④Ⅳ级:指延伸较差的节理、层面、次生裂隙、小断层及较发育的片理、劈理面等。
是构成岩块的边界面,破坏岩体的完整性,影响岩体的物理力学性质及应力分布状态。
⑤Ⅴ级:又称微结构面。
常包含在岩块内,主要影响岩块的物理力学性质,控制岩块的力学性质。
1.3结构面特性
结构面是控制岩体工程地质性质的重要因素,而结构面的特性则影响着结构面的强度与其他性能,进而影响岩体的强度与性质。
①产状:结构面与最大主应力间的关系控制着岩体的破坏机理与强度。
②连通性:结构面的连通性反映结构面的贯通程度
③密度:反映结构面发育的密集程度和岩体完整程度。
④胶结及填充情况:结构面胶结后力学性质有所增强,Fe质胶结的强度最高,泥质与易溶盐类胶结的结构面强度最低。
⑤形态:结构面平整光滑程度不同,抗剪强度不同。
1.4软弱结构面
软弱夹层是控制岩体稳定的极端重要的因素,泥化层是岩石工程性质最差的结构面。
力学强度低,含碳量高,遇水易软化,延伸较长,厚度较薄。
2.岩体结构分类及特性
岩体的结构特征指岩体中结构面、结构体的规模、形状、性质、相互组合关系,岩体的结构特征基本决定了岩体的破坏方式。
2.1岩体结构类型
①整体与块状结构:整体性高,结构面互相牵制,岩体稳定。
②
层状结构:变形与强度特征受层面及岩层
组合控制,稳定性较差
碎裂结构:完整性破坏较大,整体强度很低,并受断裂等软弱结构面控制,多呈弹塑性介质,稳定性很差。
③散体结构:完整性遭到极大破坏,稳定性极差,岩体属性接近松散体介质
3参考文献
[1]杜荣根,陈建荣. 岩体结构控制论的研究和应用[J]. 中国水运(理论版),2006,08:73-74.。