初中数学·分式知识点归纳总结
初中数学分式知识点总结(通用19篇)
![初中数学分式知识点总结(通用19篇)](https://img.taocdn.com/s3/m/3418ef41178884868762caaedd3383c4bb4cb46b.png)
初中数学分式知识点总结(通用19篇)初中数学分式知识点总结篇11.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于0。
3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2)异分母分式加减法则:异分母的.分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd 4)分式的除法法则:(1)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2)除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。
分式知识点归纳总结
![分式知识点归纳总结](https://img.taocdn.com/s3/m/a41e1f436c175f0e7cd137e0.png)
《分式》知识点回顾及考点透视一、知识总览本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.二、考点解读考点1:分式的意义例1.(1)(2006年南平市)当x 时,分式11+x 有意义. 分析:要使分式有意义,只要分母不为0即可当x ≠-1时,分式11+x 有意义. (2)(2006年浙江省义乌市)已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式A B在什么情况下有意义、无意义和值为0的问题。
当B ≠0时,分式A B 有意义;当B=0时,分式A B无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形例2.(2006年山西省)下列各式与x y x y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.考点3:分式的化简分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面例2.(2006年临安市)化简:x -1x ÷(x -1x). 分析:本题要先解决括号里面的,然后再进行计算解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 11+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.考点4:分式的求值例4.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必须使分式有意义).解:化简得:21x +,取x=0时,原式=1;评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这是不行的,因为它们不能使分式有意义.考点5:解分式方程例5.(2006年陕西省)解分式方程:22322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为72=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!考点6:分式方程的应用例6.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,25.120220xx =- 解得x = 2经检验x = 2是原方程的解。
分式知识点总结及复习汇总
![分式知识点总结及复习汇总](https://img.taocdn.com/s3/m/495699b5f71fb7360b4c2e3f5727a5e9856a2783.png)
分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。
分式可以表示一个数,也可以表示一个运算过程。
分式可以进行四则运算,包括加减乘除。
分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。
分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。
分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。
二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。
2.减法:两个分式相减,分母相同,分子相减。
3.乘法:两个分式相乘,分子相乘,分母相乘。
4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。
三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。
2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。
四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。
2.整式转化为分式:将一个整数写成分子,分母为1的形式。
五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。
2.部分与整体的关系:可以用分式表示部分与整体的关系。
3.商业问题:例如打折、利润等问题,可以用分式来表示计算。
4.几何问题:例如面积、体积等问题,可以用分式来表示计算。
六、分式的简化步骤:1.因式分解。
2.分子、分母约去最大公约数。
3.整理化简结果。
七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。
初二分式知识点总结
![初二分式知识点总结](https://img.taocdn.com/s3/m/c948331d3d1ec5da50e2524de518964bcf84d2dc.png)
初二分式知识点总结一、分式的概念分式是指分母为非零数的两个整数的比值。
在分式中,分子和分母分别表示为a和b,通常表示为a/b。
其中,分子表示为被分的数,分母表示为分的数。
分子分母在分式中扮演着不同的角色,分子代表了分子数量,分母代表了分母数量。
二、分式的性质1. 分数的一般形式分数通常写成a/b的形式,a称为分子,b称为分母。
这里要求b≠0。
2. 相反数分式若a/b≠0,则分式-a/b=(-a)/b。
3. 分式的倒数若a/b≠0,则分式1/(a/b)=b/a。
4. 分式的乘法若a/b、c/d均存在,则a/b✖c/d=(a✖c)/(b✖d)。
5. 分式的除法若a/b、c/d均存在,则a/b÷c/d=(a/b)✖(d/c)。
6. 分式的加法和减法若a/b、c/d均存在,则a/b±c/d=(ad±bc)/(bd)。
7. 分式的消去若分式a/b与c/d相等,且b≠0,d≠0,则ad=bc。
三、分式的化简与扩展分式化简就是把分式用最简形式表示,化简分式有两个问题要关心:①分子,分母是不是能约分;②能约分,约去的公因式是什么。
分式的扩展是指通过乘法将分子或分母扩大到某一倍数。
四、分式的概念1. 添加相同数的分数若分子相同而分母不同,或分子不同而分母相同,则两个分数相加或相减时,只需将他们的分子相加或相减,同时将他们的分母保持不变。
2. 乘法的运算律分数相乘还是原分数,只是分子与分母分别相乘。
3. 除法的运算律分数相除,乘以倒数。
五、分式的应用1. 充分利用分式解决问题2. 通过实例理解分式的意义分式的应用不仅仅是在数学中,还可以应用到日常生活中。
比如在工作中计算利润分配问题、在生活中计算食材比例等。
初中分式知识点总结到此结束,希望对大家有所帮助。
分式主要知识点总结
![分式主要知识点总结](https://img.taocdn.com/s3/m/70259e1bac02de80d4d8d15abe23482fb4da02eb.png)
分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。
分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。
例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。
分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。
二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。
化简分式的目的是为了使得分式变得更简单,更易于处理。
例如,对于分式6/8,可以约分得到3/4。
当然,有时候还需要对分式进行扩分。
化简分式的过程就是一个约分和扩分的过程。
三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。
具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。
例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。
2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。
3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。
四、分式方程的求解分式方程是指方程中含有分式的方程。
它的解法与一般方程类似,但是需要更多的化简和约分操作。
对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。
例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。
五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。
它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。
分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。
初二数学分式知识点
![初二数学分式知识点](https://img.taocdn.com/s3/m/4512c47f2bf90242a8956bec0975f46527d3a73e.png)
初二数学分式知识点一、引言分式是初中数学中的重要概念,它在代数运算、方程求解以及后续的高中数学学习中都扮演着关键角色。
本文旨在总结初二数学中分式的基本概念、性质、运算规则以及应用实例,帮助学生掌握分式相关知识点。
二、分式的定义1. 分式:形如 \(\frac{a}{b}\) 的代数式,其中 \(a\) 称为分子,\(b\) 称为分母,\(b \neq 0\)。
2. 条件:分母不能为零,因为除以零没有定义。
三、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。
2. 符号规则:分式的符号由分子和分母的符号决定,分子分母同号结果为正,异号结果为负。
3. 约分:通过找出分子和分母的最大公约数并约去,简化分式。
4. 通分:将多个分式转化为具有相同分母的分式,便于进行加减运算。
四、分式的运算规则1. 加减法:- 同分母分式相加减:分子相加减,分母不变。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 乘法:- 分式的乘法:分子乘分子,分母乘分母。
3. 除法:- 分式的除法:将除数的分式取倒数,然后进行乘法运算。
4. 乘方:- 分式的乘方:分子和分母分别取方。
五、分式的解方程1. 一元一次方程:通过移项和化简分式,求解未知数。
2. 一元二次方程:在解一元二次方程时,要注意分式的化简和检验根。
六、分式的应用题1. 比例问题:利用分式表示比例关系,解决实际问题。
2. 工作问题:通过分式方程解决工作效率和工作时间的问题。
3. 浓度问题:使用分式计算溶液的稀释和浓缩。
七、常见题型与解题技巧1. 化简求值:熟练掌握分式的化简方法,准确求出分式的值。
2. 分式方程:注意检验解的有效性,避免出现除以零的情况。
3. 应用题:理解题意,找出等量关系,建立分式方程求解。
八、总结分式是初中数学的重要内容,掌握分式的性质和运算规则对于提高数学成绩至关重要。
通过不断的练习和应用,可以加深对分式概念的理解,提高解题能力。
初中数学分式知识点归纳
![初中数学分式知识点归纳](https://img.taocdn.com/s3/m/b7d1a05a793e0912a21614791711cc7930b77867.png)
初中数学分式知识点归纳分式是初中数学中的一个重要内容,分式的概念和运算在解决实际问题中有着广泛的应用。
在这篇文章中,我将对初中数学中常见的分式知识点进行归纳,帮助学生更好地理解和掌握分式。
一、分式的定义和基本性质分式可以表示为a/b的形式,其中a称为分子,b称为分母。
分式的值可以为整数、小数或无理数。
在分式中,分子和分母都可以是整数、代数式或其他形式。
1.1 分式的定义分式是用一个数的算式表示另一个数。
1.2 分式的基本性质(1)两个分数相等的充要条件是分子与分母分别相等。
(2)分子分母的积是一个确定的数,即a/b * b/a = 1。
(3)一个分数乘以或除以一个非零数,其值不变,即a/b * c = ac/b,a/b ÷ c = a/b * 1/c。
(4)分子分母同时乘(或除)以同一个非零数,不改变分数的值,即a/b = a * c /b * c,a/b = a ÷ c /b ÷ c。
二、分式的基本运算分式的运算包括加法、减法、乘法和除法四种基本运算,下面将逐一介绍这些运算的具体方法。
2.1 分式的加法和减法(1)同分母的分式相加(减):保持分母不变,分子相加(减),结果的分子写在分数线上,分母不变。
(2)异分母的分式相加(减):找到它们的公倍数作为新的分母,然后将分子按照原来的分母和新分母的比例相加(减),得到的结果即为最简分数,如果需要化简,在得到的结果上进行约分。
2.2 分式的乘法分式的乘法中,将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,并将结果化简为最简分数。
2.3 分式的除法分式的除法可以转化为分式的乘法,即将除号转化为乘号,同时将除数的分子与被除数的分母相乘作为新的分子,将除数的分母与被除数的分子相乘作为新的分母,并将结果化简为最简分数。
三、分式的化简和分式方程的解法化简分式的目的是将分式转化为最简分数的形式,使得分子和分母互质。
化简分式的方法包括约分和转换为连分数等。
分式知识点归纳
![分式知识点归纳](https://img.taocdn.com/s3/m/f46c2517302b3169a45177232f60ddccdb38e653.png)
分式知识点归纳分式,是数学中的一种数学表达方式,用于表示一个数除以另一个数的结果。
分式是由分子和分母组成的,分子表示被除数,分母表示除数。
在分式中,分子上方有一条水平线,分母在水平线下方。
一、分式的基本形式分式的基本形式为a/b,其中a为分子,b为分母。
a和b可以是整数、小数或者其他形式的算式。
二、分式的简化与约分1. 分式的简化:将分式的分子与分母同时乘以一个数,化简成一个与原分式等价的分式,可以简化计算过程。
2. 分式的约分:分式的分子和分母能够同时被一个数整除,去除它们的公因数,将其化简为最简分式。
三、分式的运算1. 分式的加减:对于两个分式a/b和c/d的加减运算,先找到它们的通分分母,然后统一分子进行运算。
2. 分式的乘法:将两个分式相乘,分子与分子相乘,分母与分母相乘,得到一个新的分式。
3. 分式的除法:将一个分式除以另一个分式,将除法转化为乘法,即将被除数的分子乘以除数的倒数的分式形式。
四、分式的应用1. 比例问题:比例是指两个或多个分量之间的相对关系。
当涉及到比例问题时,可以使用分式来进行计算。
2. 百分数问题:百分数是将一个数表示为百分之几的形式,可以使用分式来计算。
3. 金额分配:当需要将一定数额的金额按照比例分配给不同的人或者不同的项目时,可以使用分式来计算每个人或者每个项目的分配金额。
五、分式的注意事项1. 分式中的分母不能为0,因为除数不能为0。
2. 在进行分式运算时,若出现小数,则需将小数化成分数形式再进行计算。
3. 在解分式的应用问题时,需根据实际情境将题目中的问题转化成分式运算来求解。
以上是关于分式的知识点的简要归纳。
通过掌握分式的基本形式、简化与约分、运算法则、应用等内容,可以更好地理解和应用分式,并在数学问题中灵活运用分式知识。
希望本文能为您的学习提供帮助。
初中数学知识总结大全 第六章 分式 (编辑:靳军强)
![初中数学知识总结大全 第六章 分式 (编辑:靳军强)](https://img.taocdn.com/s3/m/68b568e7998fcc22bcd10da1.png)
第六章 分式知识大全6.1 知识概念 1、分式:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式(fraction)。
其中 A 叫做分式的分子,B 叫做分式的分母 有理式:整式和分式统称有理式。
2、分式有意义的条件:分母不等于03、约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
4、通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
5、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6、最简公分母:各分式的分母所有因式的最高次幂的积。
6.2 分式的基本性质及四则运算(1)、基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:b a =m b m a ⨯⨯(用于通分)=mb m a ÷÷(用于约分)(m ≠0) (2)、四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:cb ac b c a ±=± 2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:bdbc ad d c b a ±=±3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为: bdac d c b a =∙4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:bcad d c d a =÷ (3)、除以一个分式,等于乘以这个分式的倒数:cd b a d c b a ∙=÷ 与分数类似,根据分式的基本性,可以对分式进行约分和通分. 6.3 分式知识点总结知识要点总结注意问题 题型分式的概念及有意义的条件BA的形式且B 中有字母 分母0≠B ,分式BA才有意义 1π 不是分式已知当x 为何值时,分式有意义? 当x 为何值时,分式无意义?分式值为0的条件分子等于0,分母不等于0二者必须同时满足,缺一不可当x 为何值时,分式的值为零? (4)当x= - 3时,分式的值是多少?分式的基本性质MB M A M B M A B A ÷÷=∙∙= 0,0≠≠B M ,且M B A ,,均表示的是整式不改变分式的值,使下列各式的分子或分母中最高次项的系数都是正数.分式的符号法则B-A B A -B -A --B A -===--=----=或BA B A B A B AA ,B 或BA 二者同时改变其中两个的符号,分式的值不变 分式约分确定公因式约分把分式中的分子、分母的公因式约去的变形过程叫约分 约分是一个恒等变形。
七年级下册数学分式
![七年级下册数学分式](https://img.taocdn.com/s3/m/20994c209a6648d7c1c708a1284ac850ad0204dc.png)
七年级下册数学分式知识点
1. 分式的基本概念:
- 分式的定义:分式是一个有分子和分母组成的表达式,分子和分母都是代数式。
- 分式的组成部分:分子、分母、分数线。
- 真分式与假分式:分子的绝对值小于分母的绝对值时,为真分式;否则为假分式。
2. 分式的化简与约分:
- 化简分式:将分子和分母的公因式约去,使分子和分母无公因式。
- 约分分式:将分子和分母的最大公因式约去,使分式为最简形式。
3. 分式的运算:
- 分式的加减运算:分母相同,直接计算分子的和差,并保持分母不变。
- 分式的乘除运算:将分式相乘或相除时,分子与分子相乘,分母与分母相乘,并进行化简。
- 分式的混合运算:根据运算顺序,先进行括号内的计算,再进行乘除运算,最后进行加减运算。
4. 分式的应用:
- 比例问题:利用分式的比例性质,解决与比例相关的问题。
- 水合物问题:利用分式的比例性质,解决与水合物相关的问题。
- 几何问题:利用分式的比例性质,解决与几何相关的问题。
以上是七年级下册数学中关于分式的主要知识点。
在学习这些知识点时,建议学生掌握分式的基本概念和性质,熟练进行分式的化简与约分,掌握分式的加减乘除运算法则,灵活运用分式解决实际问题。
通过大量的练习和实践,加深对分式知识的理解和应用能力。
分式知识点归纳总结
![分式知识点归纳总结](https://img.taocdn.com/s3/m/8445f78cab00b52acfc789eb172ded630b1c9887.png)
分式知识点归纳总结一、基本概念1. 分式的定义分式是由分子和分母组成的表达式,分子和分母都是整式。
通常写作a/b的形式,其中a为分子,b为分母,b不为0。
例如:3/4,7x/5y等都是分式。
2. 分式的分类根据分子和分母的形式,分式可以分为以下几类:a) 真分式:分子的次数小于分母的次数,例如:2/3。
b) 假分式:分子的次数大于或等于分母的次数,例如:x^2+1/x。
c) 反比例函数:分子和分母中都含有变量,例如:x/y。
3. 分式的性质a) 若分子和分母互换位置,分式的值不变,这就是分式的对称性质。
b) 分式的值只有在分母不为0时才有定义,即分式的定义域是除了分母为0的所有实数。
二、分式的化简1. 分子分母的最小公因式分式的化简首先要找出分子分母的最小公因式,然后进行约分。
例如:将分式6x^2y/9xy化简为2x/3。
2. 分式的通分当分母不同时,可以通过通分将分母变为相同的多项式,从而进行比较、运算。
例如:将1/2+2/3进行通分,得到3/6+4/6=7/6。
3. 整式转化为分式可以将整式转化为分式,只需将分子为整式,分母为1的形式即可。
例如:将5x^2+3x+1转化为分式为(5x^2+3x+1)/1。
三、分式的运算1. 分式的加减法分式的加减法需要先进行通分,然后对分子进行加减,最后合并分子。
例如:(2/3)+(3/4),首先通分为8/12+9/12=17/12。
2. 分式的乘法分式的乘法是将分子乘以分子,分母乘以分母,然后进行约分。
例如:(2/3)*(3/4)=6/12=1/2。
3. 分式的除法分式的除法需要将除号改为乘以被除数的倒数,然后进行乘法运算。
例如:(3/4)÷(2/3)=(3/4)*(3/2)=9/8。
四、分式的应用1. 分式的实际问题在实际问题中,分式常用于解决各种比例、速度、浓度等问题,可以帮助我们解决生活中的实际问题。
2. 分式与方程分式的化简与运算经常用于解决各种方程,需要将方程中的分式进行合并、化简、求值等操作。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/be9aef9577a20029bd64783e0912a21614797f32.png)
分式知识点总结分式是数学中的一个重要概念,它在实际应用中十分常见。
本文将对分式的定义、基本性质以及常见的操作进行总结和讲解。
一、分式的定义分式由分子和分母组成,通常形式为a/b,其中a和b为整数,b不等于0。
分子表示了被分割的数量,分母表示了每份的份数。
二、分式的基本性质1. 分式的值是一个有理数,可以是正数、负数或零。
2. 分式的值可以是一个整数、真分数或带分数。
3. 分式可以化简,即将分子和分母同时除以一个公因数,得到一个等价的分式。
4. 分式可以相互比较大小,分子相乘,分母相乘,得到的积的大小关系不变。
三、分式的运算1. 分式的加法和减法:- 分式加法:将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相加,分母保持不变。
- 分式减法:与分式加法类似,将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相减,分母保持不变。
2. 分式的乘法和除法:- 分式乘法:将两个分式的分子相乘,分母相乘,得到的分子作为新分数的分子,得到的分母作为新分数的分母。
- 分式除法:将第一个分式的分子与第二个分式的分母相乘,作为新分数的分子;将第一个分式的分母与第二个分式的分子相乘,作为新分数的分母。
3. 分式的化简:- 将分式的分子和分母同时除以一个公因数,直到分子和分母没有公因数为止,得到一个等价的分式。
四、分式的应用场景1. 比例和比例分配问题:比例可以用分式来表示,通过求解分式可以解决比例分配问题。
2. 股票涨跌问题:利用分式可以计算股票的涨跌幅度。
3. 质量问题:分式可以用来表示物体的质量与体积之间的关系,解决质量问题。
通过以上对分式的定义、基本性质以及常见的操作进行总结和讲解,相信读者对分式的概念及其应用有了更深入的理解。
在实际问题中,对分式的灵活运用可以帮助我们更好地解决各种计算和应用问题。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/e99713095b8102d276a20029bd64783e08127d7d.png)
分式知识点总结分式(Fraction),也称为有理数,是数学中的一个重要概念。
它由两个数,即分子和分母,构成一个比值关系。
本文将对分式的基本概念、运算规则以及相关应用进行总结和讲解。
一、基本概念1. 分式的定义分式是由一个整数分子和一个非零整数分母构成的有理数表达式,通常表示为a/b,其中a为分子,b为分母,b ≠ 0。
2. 真分数、假分数和整数当分子小于分母时,分式被称为真分数;当分子大于等于分母时,分式被称为假分数;当分子能整除分母时,分式可以化简为整数。
3. 近似数与分数的关系分数可以表示一个近似数,例如2/3 ≈ 0.6667(保留四位小数)。
二、分式的运算规则1. 分式的加减法相同分母的分式可以直接加减分子,分母保持不变,如1/3 +2/3 = 3/3 = 1。
不同分母的分式需要找到其最小公倍数作为通分的分母,再进行加减运算,如1/2 + 1/3 = 3/6 + 2/6 = 5/6。
2. 分式的乘法分式的乘法只需要将分子相乘,分母相乘,如1/2 × 3/4 = 3/8。
3. 分式的除法分式的除法可以转化为乘法,即将除法转化为多个分数的乘法,如1/2 ÷ 3/4 = 1/2 × 4/3 = 4/6 = 2/3。
4. 分式的约分可以将分子和分母同时除以一个数,使分子和分母的最大公约数为1,从而得到分式的最简形式。
5. 分式的化简可以将一个分式化简为它的最简分式,即分子和分母没有公因数的约分形式。
三、分式的应用1. 比例比例是分式在实际应用中的一种常见形式,常用于表示两个量之间的关系。
例如,某商品打折,原价100元,现价为80元,则折扣为80/100 = 4/5。
2. 面积和体积在计算面积或体积时,分式常常被用来表示不完整的单位。
例如,一个矩形的长为2/3米,宽为1/2米,那么它的面积为(2/3)×(1/2)= 1/3平方米。
3. 比率比率是两个具有相同单位的量之间的分数,通常以冒号或分数形式表示。
分式知识点总结初二
![分式知识点总结初二](https://img.taocdn.com/s3/m/53f7a3002f3f5727a5e9856a561252d381eb205f.png)
分式知识点总结初二1. 分式的定义分式是用分数形式表示的代数式,它是一个分子和一个分母组成的表达式。
分数的分母不能为0。
2. 分式的简化对于分式进行简化是分式运算中的一项基本操作。
分式简化就是使分子和分母的公约数尽可能地消去,使分子和分母没有公因数。
分式简化的方法,就是找到分子与分母的最大公约数,并将分子与分母同时除以最大公约数。
3. 分式的乘法分式的乘法是指将一个分式乘以另一个分式的运算。
对于分式的乘法,它的运算规则是将两个分式的分子相乘,分母相乘,然后进行约分。
即(a/b)×(c/d)=(a×c)/(b×d)4. 分式的除法分式的除法是指将一个分式除以另一个分式的运算。
对于分式的除法,它的运算规则是将两个分式的乘数作为除数,然后再将第一个分式的分子与第二个分式的分母相乘,分母与分子相乘,得到的新分式即为所求结果。
即(a/b)÷(c/d) = (a×d)/(b×c)5. 分式的加法和减法分式的加法和减法是分式运算中的两个基本操作。
分式的加法和减法需要先将两个分式的分母化为相同数,然后再将分子相加或相减,得到新的分式。
这两种运算较为复杂,需要学生灵活掌握。
6. 分式的运算法则a. 分式乘除法的规则是:分式的乘法就是把分子相乘作为新分子,分母相乘作为新分母;分式的除法就是把除数倒过来,再进行乘法运算。
b. 分式的加减法的规则是:分式的加减法要先把两个分式化为公分母的分式,然后再将分子相加或相减作为新的分子。
7. 分式的乘方与除方分式的乘方与除方是分式运算的两种特殊形式。
对于分式的乘方,即是将分子和分母分别进行乘方运算;对于分式的除方,即是将分子和分母分别进行除法运算。
8. 分式的应用分式在代数中有广泛的应用,特别是在方程式的求解、数学建模等方面的应用比较多。
在日常生活中,也有很多实际问题都可以用分式来进行表达和解决,比如分配问题、比值问题等。
八年级数学《分式》知识点
![八年级数学《分式》知识点](https://img.taocdn.com/s3/m/677eb3b04bfe04a1b0717fd5360cba1aa8118cde.png)
八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。
其中 A 叫做分子,B 叫做分母。
理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。
例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。
2、分母的值不能为 0。
如果分母 B 的值为 0,那么分式就没有意义。
3、分式是两个整式相除的商,其中分子是被除式,分母是除式。
4、整式和分式统称为有理式。
二、分式有意义的条件分式有意义的条件是分母不等于 0。
即:对于分式 A/B,当B≠0 时,分式有意义。
例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。
三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。
2、分母不等于 0,即B≠0。
例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。
由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。
利用分式的基本性质,可以进行分式的约分和通分。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。
2、字母:取分子和分母相同字母的最低次幂。
例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。
分式章节知识点总结
![分式章节知识点总结](https://img.taocdn.com/s3/m/46d22821571252d380eb6294dd88d0d233d43cd6.png)
分式章节知识点总结一、分式的定义分式是指两个整数或者多项式,中间用横线隔开的表达形式,例如a/b(a、b为整数,b不等于0),a称为分子,b称为分母。
二、分式的类型1. 简单分式:分子、分母都是整数的分式。
例如3/4、5/6等。
2. 复合分式:分子或分母中包含有代数式的分式。
例如2/(x+1)、(x-1)/(x+2)等。
3. 多项式分式:分子或分母中包含有多项式的分式。
例如(x^2+3)/(x-4)、2x/(x^2+1)等。
三、分式的性质1. 分式的值:分式的值是指分子除以分母的结果,也可以看作带有未知数的一种式子。
2. 分式的约分:分式可以进行约分,即将分子和分母同时除以一个数,得到一个新的分式,值不变。
3. 分式的通分:分式可以进行通分,即寻找一个公共分母,使得分式的分母相同,然后进行运算。
四、分式的运算1. 分式的加减法:分式的加减法是将分式化成相同分母的形式,然后分别对分子进行加减运算,最后将结果化简。
2. 分式的乘法:分式的乘法是将分子分别相乘,分母分别相乘,然后化简得到最简分式。
3. 分式的除法:分式的除法是将除数的分子、分母对调位置,再乘上被除数的倒数,然后化简得到最简分式。
五、分式的应用1. 分式在方程中的应用:分式通常出现在方程的解中,需要对分式进行加减和乘除等运算,找到未知数的值。
2. 分式在不等式中的应用:分式在不等式的求解中应用广泛,通过对分式进行化简和变形,找到不等式的解集。
3. 分式在函数中的应用:分式常常用来表示函数的定义域、值域和零点等性质,在函数的运算和变形中起着重要作用。
分式作为代数中重要的一部分,需要掌握其定义、类型、性质和运算方法,灵活运用于方程、不等式和函数等各种问题的求解中。
同时,分式的深入研究还可以延伸到多项式、变量和函数的理论及实际应用中,是代数学习中的重要内容之一。
分式知识点总结
![分式知识点总结](https://img.taocdn.com/s3/m/a142c37da22d7375a417866fb84ae45c3b35c2ff.png)
分式知识点总结一、分式的定义分式是一种用分数形式表示的数,它由分子和分母两部分组成,分式一般形式为a/b,式中a为分子,b为分母,b≠0。
分子和分母可以是整数,也可以是含有未知数的代数式,如x、y等。
例如:3/4、1/x、2x/3等都是分式。
二、分式的性质1. 分式的值:分式的值是由分子除以分母所得到的数值,例如3/4的值为0.75,1/2的值为0.5。
2. 分式的大小比较:当两个分式的分母相同,分子大小比较;当分母不同,可以通过通分后比较分子大小来比较分式的大小。
三、分式的运算1. 分式的加减法分式的加减法:通分后将分子相加(或相减),分母不变,再化简得到最简分式。
2. 分式的乘法分式的乘法:将两个分式的分子相乘,分母相乘,化简得到最简分式。
3. 分式的除法分式的除法:将一个分式除以另一个分式相当于将第一个分式乘以第二个分式的倒数,化简得到最简分数。
四、分式的化简化简分式:将分子与分母的公因式约去得到最简分式,例如6/9可化简为2/3。
五、分式的应用分式在数学中有很多应用,在实际生活中也有很多应用。
例如:比例问题、分数运算、容积、质量等问题都可以用分式来表示和计算。
另外,在代数方程式的解题过程中,也会用到分式。
在教学中,我们应该注重培养学生的分式意识和分式运算能力,让学生掌握分式的定义、性质、运算规律、化简方法和应用技巧,提高学生的数学运算能力和解决问题的能力。
我们可以通过具体的问题来引导学生学习,通过让学生参与讨论、举一些实际例子来让学生理解分式的应用,激发学生的学习兴趣。
总之,分式是数学中一个重要的内容,它在数学学习中有着广泛的应用。
通过系统的总结分式的相关知识点,希望可以帮助学生更好地理解和掌握分式,提高数学学习的效果和兴趣。
初中数学 知识点最全汇总
![初中数学 知识点最全汇总](https://img.taocdn.com/s3/m/714e31d06aec0975f46527d3240c844769eaa003.png)
初中数学知识点最全汇总分式的概念及性质1.分式的概念一般地,如果a、b(b不等于零)表示两个整式,且b中含有字母,那么式子a/b 就叫做分式,其中a称为分子,b称为分母。
2.分式的条件①分式有意义条件:分母不为0。
②分式值为0条件:分子为0且分母不为0。
③分式值为正(负)数条件:分子分母同号得正,异号得负。
④分式值为1的条件:分子=分母≠0。
⑤分式值为-1的条件:分子分母互为相反数,且都不为0。
3.分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:其中a,b,c为整式,且b、c≠0。
分式的约分1.分式的约分根据分式基本性质,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
注:约分的关键是确定分式中分子与分母的公因式。
2.公因式的提取方法系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
3.最简分式一个分式的分子和分母没有公因式时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
分式的通分1.分式的通分把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。
注:分式通分的关键是,确定各分式的最简公分母。
2.最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
分式的运算1.分式的加减法则①同分母分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
用字母表示为:②异分母分式的加减法则:异分母的分式相加减,先通分,化为同分母的分式,再按照同分母分式的加减法则进行计算。
用字母表示为:2.分式的乘法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:3.分式的除法法则两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
用字母表示为:4.分式的乘方法则分子乘方做分子,分母乘方做分母,可以约分的约分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式知识点归纳
一、分式的定义:
一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子
B A 叫做分式,A 为分子,B 为分母。
二、与分式有关的条件
①分式有意义:分母不为0(0B ≠)
②分式无意义:分母为0(0B =)
③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0
0B A )
④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩
⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨
⎧<>00B A 或⎩⎨⎧><00B A )
⑥分式值为1:分子分母值相等(A=B )
⑦分式值为-1:分子分母值互为相反数(A+B=0)
三、分式的基本性质
(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,C
B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:B
B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意
C ≠0这个限制条件和隐含条件B ≠0。
四、分式的约分
1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约
去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:
1)系数取分子、分母系数的最大公约数作为公因式的系数.
2)取各个公因式的最低次幂作为公因式的因式.
3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.
五、分式的通分
1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)
2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
◆通分时,最简公分母的确定方法:
1.系数取各个分母系数的最小公倍数作为最简公分母的系数.
2.取各个公因式的最高次幂作为最简公分母的因式.
3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.
3.“两大类三类型”
通分“两大类”指的是:一是分母是单项式;二是分母是多项式
“两大类”下的“三类型” :“二、三”型,“二,四”型,“四、六”型
1)“二、三”型:指几个分母之间没有关系,最简公分母就是他们的乘积;
2)“二,四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母;
3)“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母既要有独特的因式,
也应包括相同的因式
4.通分的方法:先观察分母是单项式还是多项式,如果是分母单项式,那就继续考虑是什么类型,找出最简公分母,进行通分;如果分母是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。
六、分式的四则运算与分式的乘方
① 分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:
d
b c a d c b a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为:c c ••=•=÷b d a d b a d c b a ② 分式的乘方:把分子、分母分别乘方。
式子表示为:n n n b a b a =⎪⎭
⎫ ⎝⎛ ③ 分式的加减法则:
1)同分母分式加减法:分母不变,把分子相加减。
式子表示为:c
b a
c b ±=±c a 2)异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为:
bd bc ad d c ±=±b a 3)两种类型:一是分式间的加减;二是整式与分式的加减(整式的分母为1)
注意:整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
④ 分式的加、减、乘、除、乘方的混合运算的运算顺序
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对
有无错误或分析出错的原因。
加减后得出的结果一定要化成最简分式(或整式)。
七、整数指数幂
① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指
数幂一样适用。
即:
n m n m a a +=⋅a ()mn n m
a a = ()n n n
b b a a = n m n m a a -=÷a (0≠a ) n n b a b a =⎪⎭
⎫ ⎝⎛n n a 1=-n a 0≠a ) 10=a (0≠a ) (任何不等于零的数的零次幂都等于1) 其中m ,n 均为整数。
八、分式方程
1.分式方程:指含分式,且分母中含有未知数的方程
2.解分式方程的步骤:
(1)能化简的先化简
(2)去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程)
(3)解整式方程,得到整式方程的解。
(4)检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
注意:产生增根的条件是①是得到的整式方程的解;②代入最简公分母后值为0。
九、列分式方程——基本步骤:审,设,列,解,答(跟一元一次不等式组的应用题解法一样)
①审—仔细审题,找出等量关系。
②设—合理设未知数。
③列—根据等量关系列出方程(组)。
④解—解出方程(组)。
注意检验
⑤答—答题。