实数章节复习知识点归纳,总结

合集下载

综合实数知识点总结

综合实数知识点总结

综合实数知识点总结一、实数的定义实数是数学上最基本的数,包括有理数和无理数,任何一个不是虚数的数都是实数。

实数可以用数轴上的点来表示,数轴上的每一个点都对应一个实数,反之,每一个实数都可以对应数轴上的一个点。

实数包括正数、负数和零,可以表示为一个小数、一个分数、一个整数或者以无穷不循环小数的形式表示。

无理数是指不能被表示为两个整数之比的数,如π和根号2等。

有理数是指可以被表示为两个整数之比的数,包括正整数、负整数、零、分数等。

二、实数的性质1. 实数的加法性质- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)- 存在加法单位元0:a + 0 = a- 存在加法逆元:a + (-a) = 02. 实数的乘法性质- 交换律:a * b = b * a- 结合律:(a * b) * c = a * (b * c)- 存在乘法单位元1:a * 1 = a- 存在乘法逆元:如果a ≠ 0,则存在a的乘法逆元1/a3. 实数的分配律:a * (b + c) = a * b + a * c4. 实数的比较性质:对于不相等的实数a和b- 反对称性:如果a > b,则b < a- 传递性:如果a > b,且b > c,则a > c- 密集性:在任意两个不相等的实数a和b之间,存在一个实数c,使得a < c < b5. 导数性质:对于可导的函数f(x),f'(x)=lim(h->0)[f(x+h)-f(x)]/h三、实数的运算1. 实数的加法和减法加法:a + b减法:a - b = a + (-b)2. 实数的乘法和除法乘法:a * b除法:a / b = a * (1 / b),其中b ≠ 03. 实数的指数运算幂运算:a^b,其中a是底数,b是指数4. 实数的根号运算开方运算:√a5. 实数的数学函数常见的数学函数包括四则运算、幂函数、指数函数、对数函数、三角函数、反三角函数等。

实数知识点总结

实数知识点总结

实数知识点总结实数是数学中的一个重要概念,它是包括有理数和无理数在内的所有数的集合。

实数具有许多独特的性质和特征,是数学的基础和核心。

一、实数的基本性质1. 实数的有序性:实数集中的任意两个数可以通过大小来比较。

实数集上定义了一个偏序关系,即a≤b,如果b-a是一个非负数。

2. 实数的稠密性:实数集中的任意两个数之间都存在另一个实数。

也就是说,实数集是无空隙的,无论两个实数如何接近,它们之间总有一个其他实数。

3. 实数的完备性:实数集中的每一个非空有界数集都有一个上确界和下确界,即实数集中没有“漏洞”。

4. 实数的数轴表示:实数可以通过一个数轴来表示,其中每一个实数对应于数轴上的一个点。

二、有理数有理数是可以表示为两个整数的比值的数,包括正整数、负整数、分数和零。

有理数具有以下性质:1. 有理数的加法和乘法封闭性:两个有理数的和或积仍然是有理数。

2. 有理数的有序性:有理数可以通过大小进行比较。

3. 有理数的数值性质:有理数可以准确地表示为一个分数或小数。

三、无理数无理数是指无法表示为两个整数的比值的数,无理数不能用分数精确表示,并且无限不循环的小数是无理数。

常见的无理数有根号2、根号3、圆周率π等。

无理数具有以下性质:1. 无理数的近似性:无理数可以通过有理数的序列进行无限逼近,但无法精确表示。

2. 无理数的无限性:无理数的小数表示是无限不循环的,不会在某一位上终止。

四、实数的运算1. 实数的加法和乘法:实数的加法和乘法满足交换律、结合律和分配律。

2. 实数的减法和除法:减法可以通过加法的逆运算来实现,除法可以通过乘法的逆运算来实现。

3. 实数的幂运算:实数的乘方可以通过连乘的方式来实现。

4. 实数的开方运算:实数的开方运算可以将一个实数的平方根表示为另一个实数。

五、实数的连续性实数具有连续性,也就是说实数集没有断点。

这一性质可以通过实数的稠密性来推导出来。

实数连续性在微积分和实分析等领域中起到了重要作用。

(完整版)第六章实数知识点总结

(完整版)第六章实数知识点总结

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16π是有理数,而不是无理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a≥0,则a的平方根是a a a它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

实数知识点归纳及典型例题

实数知识点归纳及典型例题

第十三章实数----知识点总结一、算术平方根1.算术平方根的定义:一般地,如果的等于a ,即,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为,读作“根号a ”,a 叫做.规定:0的算术平方根是0.也就是,在等式a x =2(x ≥0)中,规定a x =。

理解:a x =2(x ≥0)a x =a 是x 的平方x 的平方是ax 是a 的算术平方根a 的算术平方根是x 2.a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

3.当被开方数扩大(或缩小)时,它的算术平方根也扩大(或缩小);4.夹值法及估计一个(无理)数的大小(方法:)二、平方根1.平方根的定义:如果的平方等于a ,那么这个数x 就叫做a 的.即:如果,那么x 叫做a 的. 理解:a x =2<—>a x ±=a 是x 的平方x 的平方是ax 是a 的平方根a 的平方根是x2.开平方的定义:求一个数的的运算,叫做.开平方运算的被开方数必须是才有意义。

3.平方与开平方:±3的平方等于9,9的平方根是±34.一个正数有平方根,即正数进行开平方运算有两个结果;一个负数平方根,即负数不能进行开平方运算5.符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.6.平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个; 联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

三、立方根1.立方根的定义:如果的等于a ,这个数叫做a 的(也叫做),即如果,那么x 叫做a 的立方根。

2.一个数a “三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

理解:a x =3<—>3a x =a 是x 的立方x 的立方是ax 是a 的立方根a 的立方根是x3.一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根;任何数都有唯一的立方根。

实数知识点详细总结

实数知识点详细总结

第4章 实数知识结构:实数1.平方根(1)定义:如果x 2=a(a ≥0),那么x 叫做a 的平方根(1)一个正数有两个平方根,它们互为相反数(2)性质 (2)0的平方根是0(3)负数没有平方根 (3)开平方:求一个数的平方根的运算叫做开平方(4)算术平方根(1)定义:正数a 的正的平方根叫做a 的算术平方根(2)规定:0的算术平方根是0(3)性质:√a 具有双重非负性,即√a ≥0,a ≥0 (5)意义:(√a )2=a(a ≥0)a(a ≥0)√a 2=∣a ∣=-a(a <0)2.立方根(1)定义:如果x 3=a,那么x 叫做a 的立方根(2)性质(1)正数的立方根是正数 (2)0的立方根是0 (3)负数的立方根是负数(3)开立方:求一个数的立方根的运算叫做开立方(4)意义√a 33=a(√a 3)3=a3.实数(1)实数的分类1.按性质 (1)正实数 (2)0 (3)负实数2.按概念(1)有理数(2)无理数-----无限不循环小数(2)实数的性质实数范围内的相反数、倒数、绝对值意义与有理数范围内完全一样 实数与数轴上的点是一一对应关系有理数的大小比较方法在实数范围内仍然适用 与有理数的运算法则、运算律相同4.近似数定义:接近准确数而不等于准确数的数叫做近似数 精确度:常用四舍五入法对近似数进行精确4.1平方根一、平方根的概念及表示拓展延伸:(1)由平方根的意义可知,x=±√a,把x=±√a代入x2=a,得(±√a)2=a(a≥0).(2)当a≥0时,我们说式子√a有意义,当a<0时,式子√a无意义。

二、平方根的性质1.正数有两个平方根,它们互为相反数。

如果a>0,那么a的平方根为±√a2.0有一个平方根,就是0,即√0=03.负数没有平方根三、开平方注意:开平方是求一个非负数的平方根的运算,开平方与平方互为逆运算,只不过一个数的平方是一个数,而一个数(正数)的平方根是一对相反数。

第六章实数知识点总结

第六章实数知识点总结

第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。

实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。

根据横坐标a 的值,实数可以分为负数、零和正数。

实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。

实数的运算包括加法、减法、乘法、除法、乘方和开方。

这些运算遵循交换律、结合律和分配律等基本运算法则。

实数的运算不仅限于实数,还可以扩展到复数。

实数与数轴有密切的关系。

数轴是一个直线,规定了原点、正方向和单位长度。

实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。

数轴上的点与实数之间的对应关系是一一映射。

实数的大小比较和大小关系是数学中常见的问题。

实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。

实数的大小关系可以通过数轴来直观表示。

实数在数学中有广泛的应用,如微积分、实分析等。

实数在其他学科中也有应用,如物理、化学、生物等。

实数的概念、性质和运算等基础知识是解决实际问题的关键。

总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。

实数常识知识点归纳总结

实数常识知识点归纳总结

实数常识知识点归纳总结一、有理数有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。

有理数的性质包括:1. 有理数的加减乘除运算规律;2. 有理数的乘方和开方运算规律;3. 有理数的大小比较和大小关系;4. 有理数的取整和绝对值等基本运算。

二、无理数无理数是不能由两个整数的比值来表示的数,它们是无限不循环的小数。

无理数的性质包括:1. 无理数与有理数的加减乘除运算规律;2. 无理数的乘方和开方运算规律;3. 无理数的大小比较和大小关系;4. 无理数的取整和绝对值等基本运算。

三、实数实数是有理数和无理数的总称,实数的性质包括:1. 实数与实数的加减乘除运算规律;2. 实数的乘方和开方运算规律;3. 实数的大小比较和大小关系;4. 实数的取整和绝对值等基本运算。

四、实数的表示实数可以用各种方式来表示,包括有限小数、循环小数、无限不循环小数和根式等形式。

在表示实数时,需要注意保留足够的有效数字和小数点后的位数。

五、实数的运算实数的加减乘除运算是数学中最基本的运算,要掌握实数的运算规律,包括正负数相加减、乘法法则、除法运算。

另外还有实数的乘方和开方运算,这也是实数的重要运算。

六、实数的大小比较实数的大小比较是数学中的一个重要概念,掌握了实数的大小比较,才能够更好地理解和运用实数。

实数的大小比较包括有理数和无理数的大小比较,以及实数的大小关系。

七、实数的应用实数在数学中有着广泛的应用,包括代数计算、几何运算、函数图像和方程求解等方面。

实数的应用可以帮助我们解决各种数学问题,提高数学运算能力和解题能力。

总结:实数是数学中的一个重要概念,掌握了实数的常识知识点,才能够更好地理解和运用数学知识。

实数的常识知识点包括有理数、无理数、实数的性质、表示、运算、大小比较和应用等方面,需要不断地进行学习和实践,才能够掌握实数的知识,提高数学运算能力。

实数章节复习(含知识点)

实数章节复习(含知识点)

实数章节复习 一、归纳总结 1.平方根 平方根的定义:一般地,如果 ,那么这个数叫作a 的平方根 平方根的性质: ①正数有且有 个平方根,他们互为 ;0的平方根是 ;负数 平方根。

②()2a = (0a ≥) ③2a a ⎧==⎨⎩ a 的平方根的表示: 2.算术平方根 一般地,如果一个 的平方等于a ,即 ,那么这个 叫做a 的算术平方根。

a 的算术平方根记为 ,a 叫作 算术平方根具有 性:即(1)被开方数是 (2)a 0 3.立方根 定义:一般地,如果 ,就说 性质:①正数有一个 的立方根,0的立方根是 ,负数有一个 的立方根。

②33a = ;()33a = ③33a a -=- 表示:a 的立方根是 4.平方根等于其本身的数是 算术平方根等于其本身的数是 立方根等于其本身的数是 5.实数的概念:有理数和无理数的统称。

6.实数的分类:考室号: 座位号: 姓名: 班级:7.无理数:无限不循环小数。

包括:① ② ③ 二、典例精析 例1:16的平方根是 ,16的算术平方根是 16的平方根是 ,16的算术平方根是例2.553y x x =-+-+,则xy =例3:如果一个数的平方根是1a +和27a -,求这个数。

例3.用平方根定义解方程(1)24250x -= (2)216(2)49x +=例4.已知11的小数部分是m ,411-的小数部分是n ,则m n +=例5.已知3 1.732,30 5.477,(1)300≈≈≈ ;(2)0.3≈例6.已知3333 1.442,30 3.107,300 6.694≈≈≈,那么30.3≈ ;33000≈例7. 数在数轴上的位置如图:化简()2a b b c -+-变式:已知 ,,a b c 位置如图所示:化简()22a a b c a b c --+-+-【当堂测评】1.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 12.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3. 下列各数中,不是无理数的是 ( )A. 7B. 0.5C. 2πD. 0.151151115…(两个5之间依次多一个1) 4.在数轴上表示3-的点离原点的距离是 。

实数综合知识点总结

实数综合知识点总结

实数综合知识点总结一、实数的基本概念1. 有理数有理数包括正整数、负整数、零及所有可以表示为分数形式的数,有理数的数轴上的表示为有限长的线段。

2. 无理数无理数是不能用有限小数表示、也无法写成两个整数的比值的数,如π和根号2等。

无理数在数轴上是分布得非常密集的,无理数和有理数混合在一起构成了实数。

3. 实数实数是有理数和无理数的总称,包括有理数和无理数的所有数。

实数的数轴是一条无限长的直线,数轴上每一个点都对应着一个实数。

实数是数学中最常用的一类数,也是数学研究的一个重要领域。

二、实数的性质1. 实数的基本性质实数满足封闭性、交换律、结合律、分配律、恒等律、互逆律和传递率等基本运算规律。

2. 实数的比较性质实数集中一个重要的性质就是可以进行大小的比较。

两个实数a和b之间有等号(a = b)、大于等于(a ≥ b)、小于等于(a ≤ b)、大于(a > b)、小于(a < b)五种比较关系。

3. 实数的稠密性实数的稠密性指实数在数轴上的分布非常密集,任意两个不相等的实数之间都存在着有理数和无理数。

这也是实数作为数学基础的一个重要性质。

三、实数的运算1. 加法和减法实数的加法和减法满足封闭性、交换律、结合律和等价律。

即对任意实数a、b、c,有a+b=b+a,(a+b)+c=a+(b+c),a+0=a,a+(-a)=0等运算法则。

2. 乘法和除法实数的乘法和除法也满足交换律、结合律、分配律和等价律等规律。

即对任意实数a、b、c,有a×b=b×a,(a×b)×c=a×(b×c),a×1=a,a×(1/a)=1等运算法则。

3. 整除和余数实数的整除和余数是整数除法的基本概念,对于任意实数a、b(a≠0),存在整数q和r,使得a=bq+r且0≤r<|b|成立。

四、实数的应用1. 代数中的应用在代数中,实数是方程和不等式解集的基础。

(完整版)实数知识点总结

(完整版)实数知识点总结

(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。

实数集包含有理数集和无理数集。

2. 有理数的性质有理数是可以表示为两个整数的比值的数。

有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。

- 有理数的分数形式,即可以表示为两个整数的比值。

- 有理数可以表示为小数,且小数可以是有限的或无限循环的。

3. 无理数的性质无理数是不能表示为两个整数的比值的数。

无理数的性质包括:- 无理数不能表示为分数形式。

- 无理数的十进制表示是无限不循环的。

- 无理数可以用无限不循环的小数表示,但无法精确表示。

4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。

5. 实数的运算实数的运算包括加法、减法、乘法和除法。

实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。

- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。

- 分配律:a * (b + c) = a * b + a * c。

6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。

绝对值的性质包括:- 绝对值非负:|a| >= 0。

- 非零数的绝对值大于0:|a| > 0。

- 绝对值的加法:|a + b| <= |a| + |b|。

7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。

- 对称性:如果a > b,则b < a。

- 传递性:如果a > b,b > c,则a > c。

8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。

区间的边界可以是实数也可以是无穷大。

9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。

10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。

实数计算知识点总结

实数计算知识点总结

实数计算知识点总结一、实数的基本概念实数包括自然数、整数、有理数和无理数,是所有数的集合。

自然数是0、1、2、3……,整数包括正整数、0和负整数,有理数是可以表示为两个整数的比值的数,无理数是不能表示为两个整数的比值的数。

实数是连续的,能够构成一个完备的数轴。

二、实数的运算1. 加法和减法实数的加法和减法是在数轴上进行的。

当两个实数相加时,我们可以将它们在数轴上表示出来,然后按照从左到右的方向进行相加。

减法也是一样,只不过是在数轴上找到两个数的位置,然后得出它们的距离。

2. 乘法和除法实数的乘法和除法是分别在数轴上进行的。

当两个实数相乘时,我们可以将它们在数轴上表示出来,然后按照它们的正负性进行相乘。

除法也是一样,只不过是在数轴上找到两个数的位置,然后得出它们的商。

3. 乘方和开方实数的乘方是指一个数自己相乘若干次。

开方是指一个数的平方根、立方根或更高次方根。

这些运算是实数运算中常见的一种形式,需要掌握相关的计算方法。

4. 复合运算实数的运算也可以是复合的,例如先乘方再开方、先乘法再除法、先加法再减法等等。

这时需要按照运算法则进行计算,注意运算的顺序。

三、实数的性质1. 交换律对于实数的加法和乘法,满足交换律。

即a+b=b+a,ab=ba。

对于实数的减法和除法,不满足交换律。

2. 结合律对于实数的加法和乘法,满足结合律。

即(a+b)+c=a+(b+c),(ab)c=a(bc)。

3. 分配律实数的乘法对加法的分配律,即a(b+c)=ab+ac。

这是实数运算中一个重要的性质,也是在计算中经常使用的一个法则。

4. 有序性实数是有序的,即对于任意两个实数a和b,必定有a>b、a=b或a<b成立。

这个性质在解不等式时非常重要。

5. 绝对值实数有绝对值的概念,表示一个数到原点的距离。

绝对值的运算规律包括绝对值的非负性、绝对值的相反性和绝对值的三角不等式。

四、方程和不等式实数的运算不仅仅是对单个数进行的,还包括了对方程和不等式的运算。

实数全章知识点总结

实数全章知识点总结

实数全章知识点总结1. 实数的定义和性质实数是指所有的正数、负数、零以及所有有理数和无理数的总称,即实数包括有理数和无理数。

有理数是可以用分数表示的数,无理数是不能用分数表示的数,它们的和、差、积和商都是实数。

实数可以用有理数和无理数的集合表示为R={x | x是有理数或无理数}。

实数具有以下性质:(1)实数集合是有序的,即任意两个实数都可以比较大小;(2)实数集合是稠密的,即任意两个不相等的实数之间必定存在有理数和无理数;(3)实数集合是完备的,即实数集合中的任何一个有界非空集合都有上确界和下确界。

2. 实数的运算规则(1)加法与减法:实数的加法和减法满足交换律、结合律和分配律,即对任意的实数a、b和c,有a+b=b+a,a+(b+c)=(a+b)+c,a(b+c)=ab+ac;(2)乘法与除法:实数的乘法和除法满足交换律、结合律和分配律,即对任意的实数a、b和c,有ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac;(3)幂运算:实数的幂运算满足幂运算法则,即对任意的实数a、b和c,有a^0=1,a^1=a,a^m·a^n=a^(m+n),(a^m)^n=a^(mn),(ab)^n=a^n·b^n。

3. 实数的代数式代数式是由实数和各种运算符号组合而成的式子,包括有理数和无理数等。

实数的代数式可以进行加减乘除和幂运算,可以用代数式表示各种数学问题,如方程、不等式和函数等,是数学中非常重要的基本概念之一。

4. 实数的绝对值实数的绝对值是指实数到原点的距离,记作|a|,如果a≥0,则|a|=a,如果a<0,则|a|=-a。

实数的绝对值有以下性质:(1)非负性:对任意的实数a,有|a|≥0;(2)非负性:对任意的实数a,有|a|=0当且仅当a=0;(3)三角不等式:对任意的实数a和b,有|a+b|≤|a|+|b|。

5. 实数的大小关系实数的大小关系是研究实数大小顺序的一门数学理论。

完整版)实数知识点总结

完整版)实数知识点总结

完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。

8.正整数又称自然数。

9.有理数包括正整数、零、负整数、正分数和负分数。

10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。

考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。

2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

6.如果a与b互为倒数,则有ab=1,反之亦成立。

7.倒数等于本身的数是1和-1,零没有倒数。

考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

3.正数a的正的平方根叫做a的算术平方根,记作“a”。

4.正数和零的算术平方根都只有一个,零的算术平方根是零。

5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。

考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。

实数的知识点全总结

实数的知识点全总结

实数的知识点全总结一、实数的定义实数是指包括有理数和无理数在内的所有实际存在的数。

有理数是可以表示为两个整数的比的数,而无理数是不能表示为两个整数的比的数。

例如,根号2就是一个无理数,它不能被表示为两个整数的比。

实数的定义是数学上一个很基础的定义,但是实数的性质和运算规则却有很多深刻的内容,需要深入研究和探讨。

二、实数的性质1. 实数的闭包性:任意两个实数相加、相减、相乘得到的仍然是一个实数,这就是实数的闭包性。

实数集合对于加法和乘法是封闭的,这也是实数集合与有理数集合的一个重要区别。

2. 实数的稠密性:实数集合是一个稠密集合,任意两个实数之间都存在有理数,也存在无理数。

这就意味着实数集合是一个非常密集的数学概念,包含了所有可能的数。

3. 实数的有序性:实数集合是一个有序集合,任意两个实数都可以进行比较大小。

这是实数集合与无理数集合的一个重要区别,也是实数集合在数学分析中应用广泛的一个性质。

4. 实数的无限性:实数集合是一个无限集合,它包括了所有可能的有理数和无理数。

实数集合的无限性是数学中一个非常重要的概念,它在分析、代数、几何等不同领域都有重要的应用。

5. 实数的稳定性:实数集合是一个稳定的数学概念,它对于加法、乘法、取绝对值等运算都是稳定的。

这也是实数集合与有理数集合的一个重要区别,有理数集合在进行除法运算时往往会出现不稳定的情况。

三、实数的运算规则1. 实数的加法:对于任意两个实数a和b,它们的和a+b也是一个实数。

加法满足交换律、结合律和分配律等运算规则。

2. 实数的减法:对于任意两个实数a和b,它们的差a-b也是一个实数。

减法是加法的逆运算,减法也满足交换律和结合律。

3. 实数的乘法:对于任意两个实数a和b,它们的积ab也是一个实数。

乘法满足交换律、结合律和分配律等运算规则。

4. 实数的除法:对于任意两个实数a和b,如果b不等于0,那么它们的商a/b也是一个实数。

实数的除法是乘法的逆运算,除法满足交换律和结合律。

实数的相关知识点总结

实数的相关知识点总结

实数的相关知识点总结一、实数的分类根据数轴上的位置,实数可以分为正数、负数和零。

1. 正数:指大于零的实数,通常用正号(+)表示。

2. 负数:指小于零的实数,通常用负号(-)表示。

3. 零:指等于零的实数。

根据是否可以用分数表示,实数可以分为有理数和无理数。

1. 有理数:指可以表示为两个整数的比值的实数,包括整数和分数。

有理数的特点是其小数部分是有限的或者循环的。

2. 无理数:指不能表示为两个整数的比值的实数,其小数部分是无限不循环的。

常见的无理数有π、e和根号2等。

实数还可以分为代数数和超越数。

1. 代数数:指可以是方程的根的实数,即代数方程的解。

例如,整数、分数、无理数都是代数数。

2. 超越数:指不能是任何代数方程的解的实数,即不能用代数表达式表示的实数。

π和e都是超越数的例子。

二、实数的性质1. 实数的比较性质:对于任意两个不相等的实数a和b,要么a>b,要么a<b。

2. 实数的加法性质:对于任意三个实数a、b、c,有加法交换律a+b=b+a和加法结合律(a+b)+c=a+(b+c)。

3. 实数的乘法性质:对于任意三个实数a、b、c,有乘法交换律a×b=b×a和乘法结合律(a×b)×c=a×(b×c)。

4. 实数的分配律:对于任意三个实数a、b、c,有乘法对加法的分配律a×(b+c)=a×b+a×c。

5. 实数的零元素:存在一个实数0,使得对于任意实数a,有a+0=a。

6. 实数的负元素:对于任意实数a,存在一个实数-b,使得a+(-b)=0。

7. 实数的乘法单位元素:存在一个实数1,使得对于任意实数a,有a×1=a。

8. 实数的除法单位元素:对于任意非零实数a,存在一个实数1/a,使得a×(1/a)=1。

9. 实数的绝对值:对于任意实数a,有其绝对值|a|≥0,当a≠0时,|a|就是a的绝对值。

实数常识知识点总结初中

实数常识知识点总结初中

实数常识知识点总结初中一、实数的分类1. 有理数有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数、负分数)等。

有理数包括有限小数和循环小数。

2. 无理数无理数是不能表示为两个整数之比的数,它们的小数部分是无限不循环的,如π、根号2等。

无理数与有理数一起构成了实数集。

二、实数的性质1. 实数的比较对于任意两个实数a和b,可以得出以下比较关系:- 如果a>b,则a-b>0;- 如果a=b,则a-b=0;- 如果a<b,则a-b<0。

2. 实数的运算性质实数的加法、减法、乘法、除法具有以下性质:- 加法结合律:a+(b+c)=(a+b)+c;- 乘法结合律:a*(b*c)=(a*b)*c;- 加法交换律:a+b=b+a;- 乘法交换律:a*b=b*a;- 加法分配律:a*(b+c)=a*b+a*c;- 乘法分配律:a/(b+c)=a/b+a/c。

三、实数的运算1. 实数的加法实数的加法满足封闭性、交换律、结合律和终结律。

2. 实数的减法实数的减法满足封闭性、结合律和终结律,但不满足交换律。

3. 实数的乘法实数的乘法满足封闭性、交换律、结合律和终结律。

4. 实数的除法实数的除法满足封闭性、结合律和终结律,但不满足交换律。

四、实数的绝对值1. 实数a的绝对值表示为|a|,即a的绝对值等于a或-a,即|a|=a或|a|=-a。

2. 实数的绝对值性质- |a|>0,当且仅当a≠0时成立;- |ab|=|a|*|b|;- |a/b|=|a|/|b|,其中b≠0。

五、实数的循环小数1. 循环小数的表示循环小数是一种特殊的小数,它的小数部分在某一个位置开始循环出现。

2. 循环小数的转化将循环小数转化为分数时,可以使用以下步骤:- 令x=循环小数;- 乘以适当的倍数,使得小数部分移到整数部分的右边;- 通过观察找出一个新的循环小数;- 使用代数式求解得到最终结果。

六、实数的应用实数在生活和实际问题中有着广泛的应用,例如在金融、物理、化学等领域中都可以看到实数的应用。

实数章节知识点总结

实数章节知识点总结

实数章节知识点总结一、实数的基本概念1. 实数的定义实数是所有有理数和无理数的集合,用R表示,即R={x|x是有理数或无理数}。

2. 实数的分类实数可以分为有理数和无理数两大类。

(1)有理数是可以表示为分数形式的数,包括正整数、负整数、零、分数等。

有理数的集合用Q表示,即Q={x|x=m/n,m和n为整数,且n≠0}。

(2)无理数是不能表示为分数形式的数,并且无限不循环小数。

无理数的集合用R-Q表示,即R-Q={x|x不是有理数}。

3. 实数的表示实数可以用小数、分数、根式等形式表示,例如:π,e,√2等就是无理数的例子。

二、实数的性质1. 有理数的性质(1)有理数的四则运算有理数的加减乘除运算仍然是有理数,即有理数集合对于加减乘除封闭。

(2)有理数的比较对于任意两个有理数a和b,有以下性质:① 若a>b,则a+c>b+c(c为任意有理数)② 若a>b且c>0,则ac>bc③ 若a>b且c<0,则ac<bc2. 实数的性质(1)实数集合的稠密性实数集合中的有理数和无理数是密集分布的,即任意两个实数之间都存在无限多的有理数和无理数。

(2)实数的有序性任意两个实数a和b,必属于下列三种关系中的一种:① a=b② a<b③ a>b(3)实数的加法封闭性和乘法封闭性任意两个实数的和、差、积仍然是实数。

三、实数的运算规则1. 实数的加法和减法(1)同号相加:两个正数相加,结果仍为正数;两个负数相加,结果仍为负数。

(2)异号相加:一个正数与一个负数相加,结果的绝对值为它们的差,符号取绝对值较大的数的符号。

2. 实数的乘法和除法(1)同号相乘:两个正数相乘,结果为正数;两个负数相乘,结果为正数。

(2)异号相乘:一个正数与一个负数相乘,结果为负数。

(3)除法:除数不为0时,实数的除法遵循乘法的性质。

3. 实数的乘方和开方实数的n次乘方和n次开方都有以下规律:(1)同号实数的n次乘方是正数,异号实数的n次乘方是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实 数
一.知识结构图:
二.知识定义 算术平方根
正数a 的算术平方根记作: .
正数和零的算术平方根都只有 个,零的算术平方根是 ,负数 算术平方根。


⎨⎧
==||2
a a
()
=2
a
例:1. 25的算术平方根是 ;16
的算术平方根是 。

2.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ) A .1+a B.
1+a
C. 12+a
D. 12+a
3.面积为11的正方形边长为x ,则x 的范围是( ) A .31<<x B. 43<<x C. 105<<x D. 10010<<x
4.若∣a∣=6,b=3,且ab0,则a-b= 。

平方根
正数a的平方根记作: .
一个正数有平方根,他们互为;
零的平方根是;负数平方根。

例1.16的平方根是( ) A.4 B. 4
±
± C. 2 D. 2
2.一个正数x的两个平方根分别是a+2和a-4,则a=____,x=___。

3.已知2a-1的算术平方根式3,4是3a+b-1的算术平方根,求a+2b的平方根。

立方根
a 的立方根记作: .
一个 数有一个 的立方根;一个 数有一个 的立方根;零的立方
根是 。

3
3a a -=-
=3
3
a ()=3
3
a
例:1. 4
12=_____, 169
±
=_____,3
27
8-_____.
2.下列说法中正确的是( ) A 、81的平方根是±3
B 、1的立方根是±1
C 、
1=±1 D 、5-是
5的平方根的相反数
3.判断下列说法是否正确
(1)
的算术平方根是-3; (2)
225
的平方根是±15. (3)当x=0或2时,02=-x x
(4)2
3
是分数
4.已知∣x ∣的算术平方根是8,那么x 的立方根是_____。

5.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )
A 、2
11 B 、 C 、
2 D 、3
5.求下列各式中的
(1)252=x
(2)
912
=-)(x (3)643-=x 实数
例:1.下列各数:①、②……、③
7
-5、④π、⑤25.2±、⑥
、⑦……(相邻两个3之间0的个数逐次增加2)、⑧0中,其中是有理数的有;无理数的有 .(填序号)
相反数
实数a的相反数是;如果a与b互为相反数,则有。

绝对值
整数的绝对值是;零的绝对值是;负数的绝对值是。

倒数
如果a与b互为倒数,则有。

实数a的倒数是(a≠0)。

零倒数。

(填“有”或者“没有”)
例:1.6
-的相反数是____,绝对值等于2的数是_____,∣π-3∣=____。

2.化简:|3
+
-
|+
-
3
+
2
|3
|
2
2
|
|2
3.已知实数、

在数轴
上的位置如图所示:
化简 |b -c -a |-|b a |-|b -c ||a -2c |++ 0+0题型
| |+| |=0 ( )2
+( )2
=0 0=+
任意几种组合都是等于0的形式 例:1.若∣2a-5∣与
2+b 互为相反数,则a= ,b=_____。

2. 已知(x-6)2
+2
62)(y x -+|y+2z|=0,求(x-y)3
-z 3
的值
无理数的整数和小数部分 例1.
29
的整数部分为 ,小数部分为
2. 已知3-24的整数部分为
a ,小数部分为
b ,求a 2
-b 的值
等于本身的数总结
算术平方根等于本身的数有: 平方根等于本身的数有: 立方根等于本身的数有: 相反数等于本身的数有: 绝对值等于本身的数有: 倒数等于本身的数有:
三.章节巩固练习
1.下列各式中正确的是( )
A .416±= B. 4643
= C. -39=
D.
3
159125
=
2.一个正数x 的两个平方根分别是a+2和-2a ,则这个数为 。

3.
81的平方根是_______;364
的算术平方根是 。

4.大于2-,小于10的整数有 个。

5.对于
3-2来说( )
A .有平方根 B.只有算术平方根 C.没有平方根D.不能确定 6.面积为48的正方形边长为x ,则x 的范围是( ) A .31<<x B. 43<<x C. 105<<x D. 10010<<x 7.-8的立方根与4的平方根之和是( )
A .0 B. 4 C. 0或-4 D. 0或4
8. 下列说法中 ①无限小数都是无理数 ②无理数都是无限小数 ③-2是4的平方根 ④带根号的数都是无理数。

其中正确的说法有( )
A .3个 B. 2个 C. 1个 D. 0个 9.数轴上点A ,点
B 分别表示实数5,2-5则A 、B 两点间的距离为 。

10.和数轴上的点一一对应的是( )
A .整数 B.有理数 C. 无理数 D. 实数 11.下列各组数中,互为相反数的是( ) A .-2与2
1- B.|2-|与2 C. 2
2-)(与38- D. 38-与38-
12.计算: (1)
21-- (2)34
-+
(3) 822=x (4) ()823-=x
21.已知 0144252=-x ,且x 是正数,求代数式1352+x 的值。

22.若|2x+1|与x y 48
1
+互为相反数,求-xy 的平方根。

23.已知实数x 、y 、z 在数轴上的对应点如图,试化简:
x z x y y z x z x z
---++++
-。

24.已知
3-10的整数部分为
a ,2-11小数部分为
b ,求-2a+(b+3)2
的算
术平方根。

25.a 的算术平方根是4,b 的81的一个平方根,c 的立方根是-3,求-2a+b-c 的值。

相关文档
最新文档