选修4-4参数方程的概念
选修4-4 第五节几种常见的参数方程
![选修4-4 第五节几种常见的参数方程](https://img.taocdn.com/s3/m/4a3c1a13581b6bd97f19eaf4.png)
x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0
高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件
![高中数学人教A版选修4-4第二讲 一 1. 参数方程的概念 课件](https://img.taocdn.com/s3/m/91e2ddd1f121dd36a22d8231.png)
[解] 法一:设 P 点的坐标为(x,y),过
P 点作 x 轴的垂线交 x 轴于 Q.如图所示,则 Rt△OAB≌Rt△QBP.
∴xy==bascions
θ, θ.
这就是所求的轨迹方程.
9.如图所示,OA是圆C的直径,且OA=2a, 射线OB与圆交于Q点,和经过A点的切线 交于B点,作PQ⊥OA,PB∥OA,试求点P 的轨迹方程.
解:设 P(x,y)是轨迹上任意一点,取∠DOQ=θ, 由 PQ⊥OA,PB∥OA,得 x=OD=OQcosθ=OAcos2θ= 2acos2θ,y=AB=OAtan θ=2atan θ. 所以 P 点轨迹的参数方程为xy==22aatcaons2θθ,, θ∈-π2,π2.
解析:x轴上的点横坐标可取任意实数,纵坐标为0.
答案:D
2.若点P(4,a)在曲线x=2t , (t为参数)上,则a等于(
)
y=2 t
A.4
B.4 2
C.8
D.1
解析:根据题意,将点P坐标代入曲线方程中得
4=2t , a=2 t
⇒ta==84,2.
答案:B
3.在方程
参数方程是曲线方程的另一种表达形式,点与曲线 位置关系的判断,与平面直角坐标方程下的判断方法是 一致的.
1.已知点 M(2,-2)在曲线 C:x=t+1t , (t 为参数)上, y=-2
则其对应的参数 t 的值为________. 解:由 t+1t =2 知 t=1. 答案:1
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a.
曲线的参数方程
![曲线的参数方程](https://img.taocdn.com/s3/m/4a1a216ebe1e650e52ea9943.png)
②在普通方程xy=1中,令x = tan,可以化为参数方程
x t an , (为参数) y cot .
(2)参数方程通过代入消元或加减消元消去参数化为 普通方程
x a r cos , 如:①参数方程 消去参数 y b r sin . 可得圆的普通方程(x-a)2+(y-b)2=r2.
y 500
o
x
1、参数方程的概念:
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
y 500
解:物资出舱后,设在时刻t,水平位移为x,
o
x 100t , 1 2 2 ( g=9.8m/s ) y 500 gt . 2 令y 0, 得t 10.10s. x 代入x 100t, 得 x 1010m. 所以,飞行员在离救援点的水平距离约为1010m时投放物资,
6 3t , 2 a 2 t 1.
训练1:
2 x 1 t 1、曲线 与x轴的交点坐标是( B ) ( t 为参数) y 4t 3
25 ( , 0); C、(1, 3); A、(1,4);B、 16
25 D、 ( , 0); 16
x sin (为参数) 所表示的曲线上一点的坐标是 2、方程 y cos
垂直高度为y,所以
可以使其准确落在指定位置.
一、方程组有3个变量,其中的x,y表示点的 坐标,变量t叫做参变量,而且x,y分别是t的 函数。
二、由物理知识可知,物体的位置由时间t唯 一决定,从数学角度看,这就是点M的坐标 x,y由t唯一确定,这样当t在允许值范围内连 续变化时,x,y的值也随之连续地变化,于是 就可以连续地描绘出点的轨迹。 三、平抛物体运动轨迹上的点与满足方程组 的有序实数对(x,y)之间有一一对应关系。
选修4-4第二讲参数方程(文)
![选修4-4第二讲参数方程(文)](https://img.taocdn.com/s3/m/1c9bca6158fafab069dc0291.png)
一、学习目标1. 通过分析抛射体运动中时间与物体位置的关系,了解参数方程的概念,体会其意义。
2. 理解直线、圆、椭圆的参数方程及其参数的意义,掌握它们的参数方程与普通方程的互化,并能利用参数方程解决一些相关的应用问题(如求最值等)。
3. 了解抛物线、双曲线的参数方程,能将它们的参数方程化为普通方程。
4. 知道摆线、圆的渐开线的参数方程,体会参数在建立曲线方程中的作用。
二、重点、难点重点:直线、圆、椭圆的参数方程的建立,以及参数方程与普通方程的互化与应用。
难点:对上述三类重点参数方程中参数的意义的理解,以及熟练应用参数方程解决相关问题。
三、考点分析高考中对本讲的考查以直线、圆、椭圆的参数方程为主,有时会与极坐标方程相结合,多以选做题的形式出现在填空题或解答题中,难度不大,分值为5-10分,不同的省份在题型和分值的设定上略有差异,与普通方程的互化仍然是解决此类问题的常用策略,此外,参数方程也为解决解析几何中的最值、轨迹等问题提供了一条思路。
一、知识网络(1)圆的参数方程其中θ的几何意义为圆心角(参看图甲)(2)椭圆的参数方程其中θ为椭圆的离心角(参看图乙)乙(3)双曲线的参数方程(4)抛物线的参数方程知识点一:参数方程的建立例1 (1)经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 (2)已知椭圆1422=+yx ,点P 为椭圆上一动点,O 为坐标原点,设由x 轴逆时针旋转到OP 的角为α,则该椭圆的以α为参数的参数方程为 。
知识点一小结:参数方程的建立主要是指利用教材中的直线、圆、椭圆的参数方程的基本形式结合题中参数的意义直接写出参数方程,同时也是利用参数方程解决一些解析几何问题的知识基础。
人教版高数选修4-4第2讲:参数方程(学生版)
![人教版高数选修4-4第2讲:参数方程(学生版)](https://img.taocdn.com/s3/m/c70eb12a16fc700abb68fc58.png)
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t =⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线例2:设直线l 1的参数方程为1,13x t y t=+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s =⎧⎨=-⎩(s 为参数)垂直,则k =______.类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则y x 的取值范围为______.练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t (t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 练习1:求圆3cos ρθ=被直线22,14x t y t =+⎧⎨=+⎩(t 是参数)截得的弦长.1.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21B .221C.29D .2293.参数方程⎩⎪⎨⎪⎧x =e t-e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t (t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个. 6.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m 的取值范围是______.7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB|=________. 8.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3)B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π22.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP的斜率为( )A.33B. 3C.332D.2396.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.7.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________.8.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655 D .0 11.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.12.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.13.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.14.(2014·辽宁卷)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.课程顾问签字: 教学主管签字:。
高中数学:2.1《参数方程的概念》教案(新人教A版选修4-4)
![高中数学:2.1《参数方程的概念》教案(新人教A版选修4-4)](https://img.taocdn.com/s3/m/cf3ff6e16c175f0e7dd137a7.png)
1. 参数方程的概念一)目标点击:1. 理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标;2. 熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3. 能掌握消去参数的一些常用技巧:代人消参法、三角消参等; 4. 能了解参数方程中参数的意义,运用参数思想解决有关问题; 二)概念理解: 1、例题回放:问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦,交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程。
书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,),由⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x ) 解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k(直线的斜率),间接地求出了x 与y 的关系式,从而求得M点的轨迹方程。
实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式。
方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程。
由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k ,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法。
问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律,得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:【例1】 形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,) 和时间t 的对应关系.【例2】 我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈(*)与曲线C 满足以下条件:(1) 对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(0t g t f )都在曲线C 上;(2) 对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y 之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式. 问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系.曲线的参数方程⎩⎨⎧==)()(t g y t f x(t 为参数,t D ∈)是表示一条确定的曲线;含参数的方程),,(t y x F =0却表示具有某一共同属性的曲线系,两者是有原则区别的. 三)基础知识点拨:例1:已知参数方程⎩⎨⎧==θθsin 2cos 2y x ∈θ[0,2π)判断点A (1,3)和B (2,1)是否在方程的曲线上。
参数方程
![参数方程](https://img.taocdn.com/s3/m/13420cb304a1b0717fd5ddf9.png)
参数方程ZHI SHI SHU LI 知识梳理 1.参数方程的概念如果曲线C 上任意一点P 的坐标x 和y 都可以表示为某个变量t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).反过来,对于t 的每个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t ),所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ),叫做曲线C 的参数方程,变量t 是参数.2.圆锥曲线的参数方程(1)圆心为(a ,b ),半径为r 的圆的参数方程为__⎩⎪⎨⎪⎧y =a +r cos θ,y =b +r sin θ(θ为参数)___.(2)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为__⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)___.(3)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为__⎩⎪⎨⎪⎧x =a cos θ,y =b tan θ(θ为参数)___.(4)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).3.直线的参数方程过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为__⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)___,其中t表示直线上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M 0M →的__数量___.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当t =0时,M 与M 0重合.SHUANG JI ZI CE双基自测1.参数方程⎩⎪⎨⎪⎧x =cos 2θy =sin θ(θ为参数)所表示的曲线为( A )A .抛物线的一部分B .一条抛物线C .双曲线的一部分D .一条双曲线[解析] y 2+x =1,∵x ∈[0,1],y ∈[-1,1],∴是抛物线的一部分.2.(2019·北京西城期末)已知M 为曲线C :⎩⎪⎨⎪⎧x =3+cos θy =sin θ(θ为参数)上的动点,设O 为原点,则|OM |的最大值为( D ) A .1 B .2 C .3D .4[解析] 由题意知|OM |=x 2+y 2=(3+cos θ)2+sin 2θ=10+6cos θ≤4(θ=2k π(k ∈Z )时取等号),故选D .3.(2019·西宁模拟)直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A ,B 两点,则线段AB 的中点坐标为( D ) A .(3,-3) B .(-3,3) C .(3,-3)D .(3,-3)[解析] 将直线方程代入圆的方程,得(1+12t )2+(-33+32t )2=16,整理,得t 2-8t +12=0,则t 1+t 2=8,t 1+t 22=4,故其中点坐标满足⎩⎨⎧x =1+12×4,y =-33+32×4,解得⎩⎪⎨⎪⎧x =3,y =- 3.4.直线⎩⎨⎧x =1+45t ,y =-1-35t (t 为参数)被曲线ρ=2cos(θ+θ4)所截的弦长为__75___.[解析] 将方程⎩⎨⎧x =1+45t ,y =-1-35t ,ρ=2cos(θ+π4)分别化为普通方程3x +4y +1=0,x 2+y 2-x +y =0,圆心C (12,-12),半径为22,圆心到直线的距离d =110,弦长=2r 2-d 2=212-1100=75. 5.(2018·天津高考)已知圆x 2+y 2-2x =0的圆心为C ,直线⎩⎨⎧x =-1+22t ,y =3-22t (t 为参数)与该圆相交于A ,B 两点,则△ABC 的面积为__12___.[解析] 圆C 的标准方程为(x -1)2+y 2=1,消去参数t 得直线的普通方程为x +y -2=0.圆心C (1,0)到直线的距离d =|1+0-2|2=22,|AB |=212-(22)2=2,所以△ABC 的面积为12|AB |·d =12×2×22=12. 6.(2019·湖北模拟)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,则|AB |=__25___.[解析] 直线l 的直角坐标方程为y -3x =0,曲线C 的普通方程为y 2-x 2=4.由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4得x 2=12,即x =±22,则|AB |=1+k 2AB |x A -x B |=1+32×2=2 5.考点1 参数方程与普通方程的互化例1 (2019·宁夏模拟)选修4-4:坐标系与参数方程.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =5cos α-1y =5sin α+2(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos(θ+π4)=322.(1)求曲线C 的普通方程与直线l 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线l 的距离的最大值. [解析] (1)曲线C 的普通方程为(x +1)2+(y -2)2=5. 因为ρcos(θ+π4)=322.所以22ρ(cos θ-sin θ)=322,所以直线l 的直角坐标方程为x -y -3=0.(2)设M (5cos α-1,5sin α+2),则点M 到直线l 的距离 d =|5cos α-5sin α-6|2=|10cos (α+π4)-6|2.所以d max =32+ 5. 名师点拨 ☞将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参.如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. 〔变式训练1〕(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . [解析] (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.考点2 参数方程的应用例2 (2018·课标Ⅱ卷)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. [解析] (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时, l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α.故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2. 名师点拨 ☞(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等. (2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论;过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2.①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0;②|M 0M 1||M 0M 2|=|t 1t 2|. 〔变式训练2〕(2019·南京模拟)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数,a ∈[0,π)).以原点O为极点,以x 轴的正半轴为极轴,建立极坐标系.设曲线C 的极坐标方程为ρcos 2θ=4sin θ.(1)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围; (2)若直线l 与曲线C 交于不同的两点A ,B ,求|AB |的最小值.[解析] (1)将曲线C 的极坐标方程ρcos 2θ=4sin θ,化为直角坐标方程,得x 2=4y . ∵M (x ,y )为曲线C 上任意一点,∴x +y =x +14x 2=14(x +2)2-1,∴x +y 的取值范围是[-1,+∞).(2)将⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α代入x 2=4y ,得t 2cos 2α-4t sin α-4=0.∴Δ=16sin 2α+16cos 2α=16>0,设方程t 2cos 2α-4t sin α-4=0的两个根为t 1,t 2, 则t 1+t 2=4sin αcos 2α,t 1t 2=-4cos 2α,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α≥4,当且仅当α=0时,取等号.故当α=0时,|AB |取得最小值4.考点3 极坐标方程与参数方程的综合例3 (2019·安徽模拟)已知直线l 的参数方程为⎩⎨⎧x =4+22t ,y =22t(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=4cos θ,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求△ABP 的面积的最大值. [解析] (1)由ρ=4cos θ得ρ2=4ρcos θ,所以x 2+y 2-4x =0,所以圆C 的直角坐标方程为(x -2)2+y 2=4. 设A ,B 对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆C :(x -2)2+y 2=4,并整理得t 2+22t =0, 解得t 1=0,t 2=-2 2.所以直线l 被圆C 截得的弦AB 的长为|t 1-t 2|=2 2. (2)由题意得,直线l 的普通方程为x -y -4=0.圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),可设圆C 上的动点P (2+2cos θ,2sin θ), 则点P 到直线l 的距离d =|2+2cos θ-2sin θ-4|2=⎪⎪⎪⎪2cos (θ+π4)-2, 当cos(θ+π4)=-1时,d 取得了最大值,且d 的最大值为2+ 2.所以S △ABP =12×22×(2+2)=2+22,即△ABP 的面积的最大值为2+2 2. 名师点拨 ☞极坐标方程与参数方程综合问题的解题策略(1)求交点坐标、距离、线段长.可先求出直角坐标方程,然后求解. (2)判断位置关系.先转化为平面直角坐标方程,然后再作出判断.(3)求参数方程与极坐标综合的问题.一般是先将方程化为直角坐标方程,利用直角坐标方程来研究问题. 〔变式训练3〕(2019·盐城模拟)已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)直接写出直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.[解析] (1)由⎩⎪⎨⎪⎧x =2+ty =2-2t (t 为参数),得l 1的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线l 1的极坐标方程为2ρcos θ+ρsin θ-6=0,由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4,所以曲线C 的直角坐标方程为x 2+y 24=1. (2)由(1)知直线l 1的普通方程为2x +y -6=0,设曲线C 上任意一点P (cos α,2sin α),点P 到直线l 1的距离d =|2cos α+2sin α-6|5.由题意得|P A |=dsin60°=415⎪⎪⎪⎪2sin (α+π4)-315,∴当sin(α+π4)=-1时,|P A |取得最大值,最大值为415(3+2)15.。
选修4-4 第2讲 参数方程
![选修4-4 第2讲 参数方程](https://img.taocdn.com/s3/m/22af631017fc700abb68a98271fe910ef12daef9.png)
例1
(1)求直线xy= =2-+1t-,t
(t
为参数)与曲线xy= =33csions
α, α
(α 为
参数)的交点个数.
[解] 将xy= =- 2+1-t,t 消去参数 t 得直线 x+y-1=0;
将xy= =33csions
α, α
消去参数 α,得圆 x2+y2=9.
又圆心(0,0)到直线 x+y-1=0 的距离 d= 22<3. 因此直线与圆相交,故直线与曲线有 2 个交点.
[解] (1)消去参数 t 得 l1 的普通方程 l1:y=k(x-2);消去参数 m 得 l2 的普通方程 l2:y=1k(x+2).
y=kx-2 设 P(x,y),由题设得y=1kx+2 ,
消去 k 得 x2-y2=4(y≠0). 所以 C 的普通方程为 x2-y2=4(y≠0).
(2)C 的极坐标方程为 ρ2(cos2θ-sin2θ) =4(0<θ<2π,θ≠π). 联立ρρ2ccoossθ2θ+-sisninθ2θ-=42,=0 得 cos θ-sin θ=2(cos θ+sin θ). 故 tan θ=-13,从而 cos2θ=190,sin2θ=110. 代入 ρ2(cos2θ-sin2θ)=4 得 ρ2=5,所以交点 M 的极径为 5.
(t 为参数)
圆
x2+y2=r2
x=rcos θ, y=rsin θ
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=acos φ, y=bsin φ
(φ 为参数)
抛物线 y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
[知识感悟] 1.在参数方程与普通方程的互化中,必须使 x,y 的取值范围保 持一致.否则不等价. 2.直线的参数方程中,参数 t 的系数的平方和为 1 时,t 才有几 何意义且其几何意义为:|t|是直线上任一点 M(x,y)到 M0(x0,y0)的距 离,即|M0M|=|t|.
选修4-4 第二讲 参数方程 复习课
![选修4-4 第二讲 参数方程 复习课](https://img.taocdn.com/s3/m/fe37df0bd0d233d4b04e6923.png)
反思与感悟 (1)关于折线段的长度和或长度差的最大值或最小值的求 法,常常利用对称性以及两点之间线段最短解决. (2)有关点与圆、直线与圆的最大值或最小值问题,常常转化为经过圆 心的直线、圆心到直线的距离等.
跟踪训练 3 已知曲线 C:x42+y92=1,直线 l:yx==22-+2t,t (t 为参数). (1)写出曲线C的参数方程,直线l的普通方程;
解答
(2)直线
l
的参数方程是xy= =ttcsions
α, α
(t 为参数),l 与圆 C 交于 A,B 两点,
|AB|= 10,求 l 的斜率.
解答
解 方法一 在(1)中建立的极坐标系中,直线l的极坐标方程为θ=
α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方 程,得ρ2+12ρcos α+11=0.
(3)椭圆 中心在原点,对称轴为坐标轴的椭圆b2x2+a2y2=a2b2(a>b>0)的参数方程 为(4)_双__曲__xy线_= =__ab_csio_ns_φ_φ_,___(_φ__为__参_.数) 中心在原点,对称轴为坐标轴的双曲线b2x2-a2y2=a2b2(a>0,b>0)的参 数方程为____xy_= =__ab_st_aen_c_φφ_,____(φ__为__参__数. )
解
曲线
C
的参数方程为xy==23csions
θ, θ
(θ 为参数).
直线l的普通方程为2x+y-6=0.
解答
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最
大值与最小值.
解 曲线 C 上任意一点 P(2cos θ,3sin θ)到 l 的距离为 d= 55|4cos θ+3sin θ-6|,
高二数学选修4-4:第二讲 一 曲线的参数方程 1.参数方程的概念
![高二数学选修4-4:第二讲 一 曲线的参数方程 1.参数方程的概念](https://img.taocdn.com/s3/m/641a6a3190c69ec3d5bb75d9.png)
首页
上一页
下一页
末页
结束
求曲线参数方程的主要步骤 (1)画出轨迹草图,设 M(x,y)是轨迹上任意一点的坐标.画 图时要注意根据几何条件选择点的位置,以利于发现变量之 间的关系. (2)选择适当的参数.参数的选择要考虑以下两点:一是 曲线上每一点的坐标 x,y 与参数的关系比较明显,容易列出 方程;二是 x,y 的值可以由参数唯一确定.例如,在研究运 动问题时,通常选时间为参数;在研究旋转问题时,通常选 旋转角为参数.此外,离某一定点的“有向距离”、直线的 倾斜角、斜率、截距等也常常被选为参数. (3)根据已知条件、图形的几何性质、问题的物理意义等, 建立点的坐标与参数的函数关系式,证明可以省略.
首页
上一页
下一页
末页
结束
求曲线的参数方程
[例 2] 如图,△ABP 是等腰直角三角形, ∠B 是直角,腰长为 a,顶点 B,A 分别在 x 轴、y 轴上滑动,求点 P 在第一象限的轨迹的 参数方程.
[思路点拨] 解决此类问题关键是参数的选取.本例中由 于 A,B 的滑动而引起点 P 的运动,故可以 OB 的长为参数, 或以角为参数,此时不妨取 BP 与 x 轴正向夹角为参数来求解.
则其对应的参数 t 的值为________.
解析:由 t+1t=2,解得 t=1. 答案:1
首页
上一页
下一页
末页
结束
2.已知某条曲线 C 的参数方程为xy==a1t+2 2t, (其中 t 为参数, a∈R).点 M(5,4)在该曲线上,求常数 a. 解:∵点 M(5,4)在曲线 C 上,∴45==a1+ t2,2t, 解得ta==21,. ∴a 的值为 1.
首页Biblioteka 上一页下一页末页结束
最新人教版高中数学选修4-4《参数方程》本章概览
![最新人教版高中数学选修4-4《参数方程》本章概览](https://img.taocdn.com/s3/m/1a9ffbdb5fbfc77da269b188.png)
第二章 参数方程本章概览内容提要1.设在平面上取定了一个直角坐标系xOy,把坐标x 、y 表示为第三个变量t 的函数:⎩⎨⎧==)(),(t g y x f x (a≤t≤b),若对于t 的每一个值(a≤t≤b),所确定的点M(x 、y)都在一条曲线上;而曲线上的任一点M(x 、y)都可通过t 的某个值而得到.则上式即称为该曲线的参数方程. 2.直线的参数方程:⎩⎨⎧+=+=.sin ,cos 00ααt y y t x x 3.圆的参数方程:⎩⎨⎧==θθsin ,cos R y R x (0≤θ≤2π). 若圆心在M 0(x 0,y 0),则圆的参数方程为⎩⎨⎧+=+=θθsin ,cos 00R y y R x x (0≤θ≤2π). 4.椭圆的参数方程:①当中心在(0,0),方程为⎩⎨⎧==t b y t a x sin ,cos (0≤t≤2π). ②椭圆的参数方程,当中心在M 0(x 0,y 0),为⎩⎨⎧+=+=tb y y t a x x sin ,cos 00(0≤t≤2π).5.抛物线的参数方程:⎩⎨⎧==.2,22pt y pt x 6.双曲线的参数方程:⎩⎨⎧==.tan ,sec θθb y a x 7.摆线与圆的渐开线的参数方程:①摆线⎩⎨⎧-=-=).cos 1(),sin (t a y t t a x ②圆的渐开线:⎩⎨⎧-=+=).cos (sin ),sin (cos t t t a y t t t a x 学法指导1掌握直线和圆的参数方程,学会参数方程和普通方程的互化.2掌握圆锥曲线的参数方程,通过具体问题的分析,会用参数方程解决某些问题.3分析建立曲线的参数方程的步骤,总结用向量方法建立参数方程.4体会从实践中抽象出数学问题的过程及数学在实践中的应用价值.。
高中数学人教版选修4-4参数方程知识总结
![高中数学人教版选修4-4参数方程知识总结](https://img.taocdn.com/s3/m/9ec2efc59e314332396893e2.png)
参数的分类讨论要严密.
【解】 (1)当 t≠±1 时, 由①得 sin θ=t+x 1t , 由②得 cos θ=t-y 1t . ∴t+x21t 2+t-y21t 2=1. 它表示中心在原点,长轴长为 2t+1t ,短轴长为 2t-1t , 焦点在 x 轴上的椭圆.
当 t=±1 时,y=0,x=±2sin θ,x∈[-2,2],它表示在 x 轴 上[-2,2]的一段线段.
已知参数方程x=t+1t sin θ,① y=t-1t cos θ②
(t≠0).
(1)若 t 为常数,θ 为参数,方程所表示的曲线是什么?
(2)若 θ 为常数,t 为参数,方程所表示的曲线是什么?
【分析】 形式相同的方程,由于选择参数的不同,可表示
不同的曲线,因此要注意区分问题中的字母是常数还是参数,对
x=2cos θ, y=4sin θ.
(θ 为参数)
(2)设 M(x,y)是方程 4x2+y2=16 上异于 A 的任一点,则y-x 4 =k(x≠0),
将 y=kx+4 代入方程,得 x[(4+k2)x+8k]=0.
所以yx==--444++k82k+kk22,16
(k≠0),另有一点xy==04,.
数;
(2)若把 C1,C2 上各点的纵坐标都压缩为原来的一半,分别 得到曲线 C′1,C′2,写出 C′1,C′2 的参数方程.C′1 与 C′2 公共点的个数和 C1 与 C2 公共点的个数是否相同?说明你的理 由.
【解】 (1)C1 是圆,C2 是直线,C1 的普通方程为 x2+y2=1, 圆心 C1(0,0),半径 r=1.C2 的普通方程为 x-y+ 2=0.因为圆心 C1(0,0)到直线 x-y+ 2=0 的距离为 1,所以 C1 与 C2 只有一个 公共点.
高考复习配套讲义:选修4-4 第2讲 参数方程
![高考复习配套讲义:选修4-4 第2讲 参数方程](https://img.taocdn.com/s3/m/62a77b3acc7931b764ce150c.png)
第2讲 参数方程[最新考纲]1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.3.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知 识 梳 理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎨⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的参数方程,其中变量t 称为参数. 2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎨⎧x =a +r cos θy =b +r sin θ(θ为参数).(3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos θy =b sin θ(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎨⎧x =2pt 2y =2pt (t 为参数).诊 断 自 测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是________.①直线、直线;②直线、圆;③圆、圆;④圆、直线.解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 ④2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.(2012·北京卷)直线⎩⎨⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.解析 直线方程可化为x +y -1=0,曲线方程可化为x 2+y 2=9,圆心(0,0)到直线x +y -1=0的距离d =12=22<3.∴直线与圆相交有两个交点. 答案 24.已知直线l :⎩⎨⎧x =1-2t ,y =2+2t (t 为参数)上到点A (1,2)的距离为42的点的坐标为________.解析 设点Q (x ,y )为直线上的点, 则|QA |=(1-1+2t )2+(2-2-2t )2=(2t )2+(-2t )2=42,解之得,t =±22,所以Q (-3,6)或Q (5,-2). 答案 (-3,6)和(5,-2)5.(2013·广东卷)已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析 由ρ=2cos θ知,ρ2=2ρcos θ 所以x 2+y 2=2x ,即(x -1)2+y 2=1, 故其参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数).答案 ⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)考点一 参数方程与普通方程的互化【例1】 把下列参数方程化为普通方程,并说明它们各表示什么曲线;(1)⎩⎪⎨⎪⎧x =1+12t ,y =2+32t(t 为参数);(2)⎩⎨⎧x =1+t 2,y =2+t(t 为参数); (3)⎩⎪⎨⎪⎧x =t +1t ,y =1t -t(t 为参数).解 (1)由x =1+12t 得t =2x -2. ∴y =2+32(2x -2).∴3x -y +2-3=0,此方程表示直线. (2)由y =2+t 得t =y -2,∴x =1+(y -2)2. 即(y -2)2=x -1,此方程表示抛物线. (3)⎩⎪⎨⎪⎧x =t +1t y =1t -t①②∴①2-②2得x 2-y 2=4,此方程表示双曲线.规律方法 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,不要忘了参数的范围.【训练1】 将下列参数方程化为普通方程. (1)⎩⎨⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =12(e t +e -t),y =12(e t-e-t)(t 为参数).解 (1)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2]. (2)由参数方程得e t =x +y ,e -t =x -y , ∴(x +y )(x -y )=1,即x 2-y 2=1.考点二 直线与圆参数方程的应用【例2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(3,5),求|P A |+|PB |. 解 (1)由ρ=25sin θ,得ρ2=25ρsin θ. ∴x 2+y 2=25y ,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程. 得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.规律方法 (1)过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是直线上的点P 到点P 0(x 0,y 0)的数量,即t =|PP 0|时为距离.使用该式时直线上任意两点P 1、P 2对应的参数分别为t 1、t 2,则|P 1P 2|=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎨⎧ x =1+t ,y =4-2t消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考点三 极坐标、参数方程的综合应用【例3】 已知P 为半圆C :⎩⎨⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解 (1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3.(2)点M 的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0). 故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).规律方法 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.【训练3】 (2013·福建卷)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.转化思想在解题中的应用【典例】 已知圆锥曲线⎩⎨⎧x =2cos θy =3sin θ(θ是参数)和定点A (0, 3),F 1、F 2是圆锥曲线的左、右焦点.(1)求经过点F 1且垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.[审题视点] (1)先将圆锥曲线参数方程化为普通方程,求出F 1的坐标,然后求出直线的倾斜角度数,再利用公式就能写出直线l 的参数方程.(2)直线AF 2是已知确定的直线,利用求极坐标方程的一般方法求解.解 (1)圆锥曲线⎩⎪⎨⎪⎧x =2cos θy =3sin θ化为普通方程x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =-3,于是经过点F 1且垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+t cos 30°y =t sin 30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t(t 为参数).(2)直线AF 2的斜率k =-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则ρsin 60°=1sin (120°-θ),ρsin(120°-θ)=sin 60°,则ρsin θ+3ρcos θ= 3.[反思感悟] (1)本题考查了极坐标方程和参数方程的求法及应用.重点考查了转化与化归能力.(2)当用极坐标或参数方程研究问题不很熟练时,可以转化成我们比较熟悉的普通方程求解.(3)本题易错点是计算不准确,极坐标方程求解错误.【自主体验】已知直线l 的参数方程为⎩⎨⎧ x =4-2t y =t -2(t 为参数),P 是椭圆x 24+y 2=1上任意一点,求点P 到直线l 的距离的最大值.解 将直线l 的参数方程⎩⎨⎧x =4-2ty =t -2(t 为参数)转化为普通方程为x +2y =0,因为P 为椭圆x 24+y 2=1上任意一点, 故可设P (2cos θ,sin θ),其中θ∈R . 因此点P 到直线l 的距离d =|2cos θ+2sin θ|12+22=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫θ+π45. 所以当θ=k π+π4,k ∈Z 时, d 取得最大值2105.一、填空题1.(2014·芜湖模拟)直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点A (-2,3)的距离等于2的点的坐标是________.解析 由题意知(-2t )2+(2t )2=(2)2,所以t 2=12,t =±22,代入⎩⎪⎨⎪⎧x =-2-2t ,y =3+2t(t 为参数),得所求点的坐标为(-3,4)或(-1,2). 答案 (-3,4)或(-1,2)2.(2014·海淀模拟)若直线l :y =kx 与曲线C :⎩⎨⎧x =2+cos θ,y =sin θ(参数θ∈R )有唯一的公共点,则实数k =________.解析 曲线C 化为普通方程为(x -2)2+y 2=1,圆心坐标为(2,0),半径r =1.由已知l 与圆相切,则r =|2k |1+k 2=1⇒k =±33.答案 ±333.已知椭圆的参数方程⎩⎨⎧x =2cos t y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为________.解析 当t =π3时,x =1,y =23,则M (1,23),∴直线OM 的斜率k =2 3. 答案 2 34.(2013·湖南卷)在平面直角坐标系xOy 中,若l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. 解析 ∵x =t ,且y =t -a , 消去t ,得直线l 的方程y =x -a , 又x =3cos φ且y =2sin φ,消去φ, 得椭圆方程x 29+y 24=1,右顶点为(3,0),依题意0=3-a , ∴a =3. 答案 35.直线3x +4y -7=0截曲线⎩⎨⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心(0,1)到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 856.已知直线l 1:⎩⎨⎧ x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎨⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1. 答案 4 -17.(2012·广东卷)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧ x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析 曲线C 1的普通方程为y 2=x (y ≥0), 曲线C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧y 2=x (y ≥0),x 2+y 2=2,解得⎩⎪⎨⎪⎧ x =1,y =1,即交点坐标为(1,1). 答案 (1,1)8.直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎨⎧ x =3+cos θ,y =sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.解析 消掉参数θ,得到关于x 、y 的一般方程C 1:(x -3)2+y 2=1,表示以(3,0)为圆心,以1为半径的圆;C 2:x 2+y 2=1,表示的是以原点为圆心的单位圆,|AB |的最小值为3-1-1=1.答案 19.(2012·湖南卷)在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a =______.解析 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0,ρ=a (a >0)对应的普通方程为x 2+y 2=a 2.在2x +y -1=0中,令y =0,得x =22.将⎝ ⎛⎭⎪⎫22,0代入x 2+y 2=a 2得a =22. 答案 22二、解答题10.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧ x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)将⎩⎨⎧x =4+5cos t ,y =5+5sin t 消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎨⎧ x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎨⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =0,y =2.所以C 1与C 2交点的极坐标分别为⎝ ⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 11.(2013·新课标全国Ⅱ卷)已知动点P 、Q 都在曲线C :⎩⎨⎧ x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎨⎧ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹通过坐标原点.12.(2012·新课标全国卷)已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝ ⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。
人教版高数选修4-4第2讲:参数方程(教师版)
![人教版高数选修4-4第2讲:参数方程(教师版)](https://img.taocdn.com/s3/m/982a4e4658fafab069dc0259.png)
参数方程____________________________________________________________________________________________________________________________________________________________________1.了解直线参数方程,曲线参数方程的条件及参数的意义2.会选择适当的参数写出曲线的参数方程3.掌握参数方程化为普通方程几种基本方法4.了解圆锥曲线的参数方程及参数的意义5.利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题一.参数方程的定义1.一般地,在平面直角坐标系中,如果曲线C上任一点P的坐标x和y都可以表示为某个变量t的函数:()()x f ty g t=⎧⎨=⎩;反过来,对于t的每个允许值,由函数式()()x f ty g t=⎧⎨=⎩所确定的点P(x,y)都在曲线C上,那么方程()()x f ty g t=⎧⎨=⎩叫作曲线C的参数方程,变量t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程,参数方程可以转化为普通方程.2.关于参数的说明.参数方程中参数可以有物理意义、几何意义,也可以没有明显意义.3.曲线的参数方程可通过消去参数而得到普通方程;若知道变数x、y中的一个与参数t的关系,可把它代入普通方程,求另一变数与参数t的关系,则所得的()()x f ty g t=⎧⎨=⎩,就是参数方程.二.圆的参数方程点P 的横坐标x 、纵坐标y 都是t 的函数:cos sin x r ty r t =⎧⎨=⎩(t 为参数).我们把这个方程叫作以圆心为原点,半径为r 的圆的参数方程. 圆的圆心为O 1(a ,b),半径为r 的圆的参数方程为:cos sin x a r ty b r t =+⎧⎨=+⎩(t 为参数).三.椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).规定θ的范围为θ∈[0,2π).这是中心在原点O 、焦点在x 轴上的椭圆参数方程.四.双曲线x 2a 2-y 2b 2=1的参数方程为tan x asec y b ϕϕ=⎧⎨=⎩(φ为参数).规定φ的范围为φ∈[0,2π),且φ≠π2,φ≠3π2.这是中心在原点,焦点在x 轴上的双曲线参数方程.五.曲线C 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,t ∈R)其中p 为正的常数.这是焦点在x 轴正半轴上的抛物线参数方程.六.直线的参数方程1.过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),这一形式称为直线参数方程的标准形式,直线上的动点M 到定点M 0的距离等于参数t 的绝对值.当t >0时,M 0M →的方向向上;当t <0时,M 0M →的方向向下;当点M 与点M 0重合时,t =0.2.若直线的参数方程为一般形式为:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数), 可把它化为标准形式:00cos sin t x t x y y αα=+⎧⎨='+'⎩(t′为参数).其中α是直线的倾斜角,tan α=ba ,此时参数t′才有如前所说的几何意义.类型一.参数方程与普通方程的互化例1:指出参数方程3cos 3sin x y θθ=⎧⎨=⎩⎝⎛⎭⎪⎫θ为参数,0<θ<π2表示什么曲线解析:由3cos 3sin x y θθ=⎧⎨=⎩(θ为参数)得x 2+y 2=9.又由0<θ<π2,得0<x <3,0<y <3,所以所求方程为x 2+y 2=9(0<x <3且0<y <3). 这是一段圆弧(圆x 2+y 2=9位于第一象限的部分). 答案:这是一段圆弧(圆x 2+y 2=9位于第一象限的部分). 练习1:指出参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数,0≤θ<2π).表示什么曲线解析:由参数方程315cos 215sin x y θθ=+⎧⎨=+⎩(θ为参数)得(x -3)2+(y -2)2=152,由0≤θ<2π知这是一个整圆弧.答案:一个整圆弧例2:设直线l 1的参数方程为1,13x t y t =+⎧⎨=+⎩(t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为______.解析:由条件知,l 1∥l 2,在l 1中令t=0,则得坐标为(1,1). 由点到直线距离公式得l 1与l 2距离为:5=练习2:若直线112,:2x t y l kt =-⎧⎨=+⎩(t 为参数)与直线l 2:,12x s y s=⎧⎨=-⎩(s 为参数)垂直,则k =______.解析:由l 1消去参数t 得,2,22k k y x =-++斜率为-.2k由l 2消去参数s 得,12y x =-,斜率为-2.∵两直线垂直,(2)()12k ∴-⋅-=-,得k =-1.答案:-1 类型二.曲线参数方程例3:已知点P (x , y )在曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)上,则y x 的取值范围为______.解析:曲线2cos ,sin x y θθ=-+⎧⎨=⎩(θ为参数)是以(-2,0)为圆心,以1为半径的圆,设y k x =,求y x 的取值范围,即求当直线y =kx 与圆有公共点时k 的取值范围,如图22-60结合圆的几何性质可得33k -≤≤故填[答案:[]33-练习1:已知点A (1,0),P 是曲线2cos ,1cos 2x y θθ=⎧⎨=+⎩(θ∈R )上任一点,设P 到直线l :y =12-的距离为d ,则|PA|+d 的最小值是______.解析:y 21cos22cos,θθ=+=消去22(02)x y y θ=≤≤得其图像是一段抛物线弧,如图22-61,1(0,)2F 是它的焦点,l 是准线,d =|PF|,当A ,P ,F 三点共线时,||PA d +最小,其值是||2AF =例4:已知θ为参数,则点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值是______.解析:把cos sin x y θθ=⎧⎨=⎩,化为普通方程为221,x y +=所以点(3,2)到方程cos sin x y θθ=⎧⎨=⎩,的距离的最小值1.1.练习1:已知圆C 的参数方程为cos 1,sin x y θθ=+⎧⎨=⎩(θ为参数),则点P (4,4)与圆C 上的点的最远距离是______.解析:由cos 1,sin x y θθ=+⎧⎨=⎩得22(1)1x y -+=,则点P (4,4)与圆C 上的点的最远距离是16=答案:6例5:已知双曲线方程为x 2-y 2=1,M 为双曲线上任意一点,点M 到两条渐近线的距离分别为d 1和d 2,求证:d 1与d 2的乘积是常数.答案:设d 1为点M 到渐近线y =x 的距离,d 2为点M 到渐近线y =-x 的距离, 因为点M 在双曲线x 2-y 2=1,则可设点M 坐标为(sec α,tan α). d 1=|sec α-tan α|2, d 2=|sec α+tan α|2,d 1·d 2=|sec 2α-tan 2α|2=12,故d 1与d 2的乘积是常数.练习1:将参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t ,y =b 2⎝ ⎛⎭⎪⎫t -1t (t 为参数,a >0,b >0)化为普通方程.解析:∵t+1t =2x a ,t -1t =2yb ,又⎝ ⎛⎭⎪⎫t +1t 2=t 2+1t 2+2=4x 2a 2,⎝ ⎛⎭⎪⎫t -1t 2=t 2+1t 2-2=4y 2b 2,∴⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4=4x 2a 2-4y 2b 2,即x 2a 2-y2b2=1. 答案:x 2a 2-y2b 2=1类型三.直线参数方程例6:曲线C 1:1cos ,sin ,x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线C 2:1,2112x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______.解析:C 1:221cos ,(1)1;sin x x y y θθ=+⎧⇒-+=⎨=⎩则圆心坐标为(1,0).21,2:112x t C y t ⎧=-⎪⎪⇒⎨⎪=-⎪⎩10.x y ++=由点到直线的距离公式得圆心到直线的距离为d=2=,所以要求的最短距离为d -1=1.答案:1练习1:直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10 D .2 2解析:根据点到直线的距离公式可以得出结果. 答案:B类型四.曲线参数方程的应用例7:在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数).(1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解析:(1)把极坐标系下的点P ⎝⎛⎭⎪⎫4,π2化为直角坐标,得P(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎪⎫α+π6+42=2cos ⎝⎛⎭⎪⎫α+π6+2 2.由此得,当cos⎝⎛⎭⎪⎫α+π6=-1时,d 取得最小值,且最小值为 2.答案:(1)点P 在直线l 上. (2)最小值为 2.练习1:已知曲线C 的方程为⎩⎪⎨⎪⎧x =12(e t +e -t)cos θ,y =12(e t-e-t)sin θ.当t 是非零常数,θ为参数时,C 是什么曲线?当θ为不等于k π2(k ∈Z)的常数,t 为参数时,C 是什么曲线?两曲线有何共同特征?答案:当θ为参数时,将原参数方程记为①, 将参数方程①化为 ⎩⎪⎨⎪⎧2xe t +e -t=cos θ,2y e -e=sin θ,平方相加消去θ,得x2⎝ ⎛⎭⎪⎫e t+e -t22+y2⎝ ⎛⎭⎪⎫e t-e -t22=1.②∵(e t+e -t )2>(e t-e -t )2>0, ∴方程②表示的曲线为椭圆. 当t 为参数时,将方程①化为⎩⎪⎨⎪⎧2x cos θ=e t +e-t,2ysin θ=e t -e-t.平方相减,消去t ,得x 2cos 2θ-y2sin 2θ=1.③ ∴方程③表示的曲线为双曲线,即C 为双曲线.又在方程②中⎝ ⎛⎭⎪⎫e t +e -t22-⎝ ⎛⎭⎪⎫e t -e -t22=1,则c =1,椭圆②的焦点为(-1,0),(1,0).因此椭圆和双曲线有共同的焦点.类型五.极坐标与参数方程的综合应用例8:(2015·广东卷Ⅱ,数学文14)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t2y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. 解析:曲线C 1的直角坐标方程为x +y =-2,曲线C 2的普通方程为y 2=8x ,由⎩⎪⎨⎪⎧x +y =-2y 2=8x 得:⎩⎪⎨⎪⎧x =2y =-4,所以C 1与C 2交点的直角坐标为(2,-4). 答案:(2,-4)练习1:求圆3cos ρθ=被直线22,14x t y t=+⎧⎨=+⎩(t 是参数)截得的弦长.解析:将极坐标方程转化成直角坐标方程:223cos ,3,x y x ρθ=+=可得即2239()24x y -+=,22,14,x t y t =+⎧⎨=+⎩可得23,x y -=所以圆心到直线的距离0,d ==即直线经过圆心,所以直线截得的弦长为3.答案:31.将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =sin 2θ(θ为参数)化为普通方程是( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x≤3)D .y =x +2(0≤y≤1)答案:C 2.椭圆42cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的焦距为( )A.21 B .221C.29D .229答案:B3.参数方程⎩⎪⎨⎪⎧x =e t -e -t,y =e t +e -t(t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的下支 C .双曲线的上支D .圆答案:C4.双曲线23tan sec x y θθ=+⎧⎨=⎩,(θφ为参数)的渐近线方程为答案:y =±13(x -2)5.(2015·惠州市高三第二次调研考试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =4+t(t为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=42sin ⎝⎛⎭⎪⎫θ+π4,则直线l 和曲线C 的公共点有________个. 答案:16.若直线3x +4y +m =0与圆1cos ,2sin x y θθ=+⎧⎨=-+⎩(θ为参数),没有公共点,则实数m的取值范围是______.答案:(,0)(10,)-∞+∞7.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t3(t 为参数)相交于A ,B 两点,则|AB|=________. 答案:168.已知直线l :34120x y +-=与圆C :12cos ,22sin x y θθ=-+⎧⎨=+⎩(θ为参数),试判断它们的公共点的个数.答案:圆的方程可化为22(1)(2)4,x y ++-=其圆心为C (-1,2),半径为2. 由于圆心到直线l 的距离72,5d ==< 故直线l 与圆C 的公共点个数为2.9.求直线2,,x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线x 2-y 2=1截得的弦长答案:把直线2,x t y =+⎧⎪⎨=⎪⎩(t 为参数)化为普通方程为y =+把它代入双曲线方程并整理得,2212130,x x -+=设直线交双曲线于1122(,),(,)A x y B x y 两点, 则1212136,,2x x x x +=⋅=则直线被双曲线截得的弦长||AB ==__________________________________________________________________________________________________________________________________________________________________基础巩固1.当参数θ变化时,动点P (2cos θ,3sin θ)所确定的曲线必过( ) A .点(2,3) B .点(2,0)C .点(1,3)D .点⎝⎛⎭⎪⎫0,π2答案:B2.双曲线6sec x y αα⎧=⎪⎨=⎪⎩(α为参数)的两焦点坐标是( )A .(0,-43),(0,43)B .(-43,0),(43,0)C .(0,-3),(0,3)D .(-3,0),(3,0)答案:A3.参数方程⎩⎪⎨⎪⎧x =sin α2+cos α2,y =2+sin α(α为参数)的普通方程为( )A .y 2-x 2=1B .x 2-y 2=1C .y 2-x 2=1(|x |≤2) D .x 2-y 2=1(|x |≤2)答案:C4.参数方程⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段 D .射线答案:C 5.设O 是椭圆3cos 2sin x y αα=⎧⎨=⎩(α为参数)的中心,P 是椭圆上对应于α=π6的点,那么直线OP 的斜率为( )A.33B. 3C.332D.239答案:D6.将参数方程12cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)化为普通方程是____________.答案:(x -1)2+y 2=47.点P(x ,y)在椭圆4x 2+y 2=4上,则x +y 的最大值为______,最小值为________. 答案: 5- 58.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数)和C :⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A 、B 两点,则|AB|=________. 答案:2能力提升9.点(2,33)对应曲线4cos 6sin x y θθ=⎧⎨=⎩(θ为参数)中参数θ的值为( )A .k π+π6(k∈Z)B .k π+π3(k∈Z)C .2k π+π6(k∈Z)D .2k π+π3(k∈Z)答案:D10.椭圆x 29+y24=1的点到直线x +2y -4=0的距离的最小值为( )A.55B. 5C.655D .0答案:A11.(2015·湛江市高三(上)调考)直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________.答案:1412.在平面直角坐标系xOy中,若l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的右顶点,则常数a 的值为________.答案:313.(2015·惠州市高三第一次调研考试)已知在平面直角坐标系xOy 中圆C 的参数方程为:3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数),以Ox 为极轴建立极坐标系,直线极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为________.解析:圆C 3cos 13sin x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)表示的曲线是以点(3,1)为圆心,以3为半径的圆,将直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=0的方程化为3x -y =0,圆心(3,1)到直线3x -y =0的距离: d =|3×3-1|(3)+12=1,故圆C 截直线所得弦长为232-12=4 2. 答案:4 214.(2014·辽宁卷)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.答案:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x ,y),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.课程顾问签字: 教学主管签字:。
高中数学选修4-4-参数方程
![高中数学选修4-4-参数方程](https://img.taocdn.com/s3/m/a7463f536fdb6f1aff00bed5b9f3f90f76c64de4.png)
参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。
2020版高考人教A版文科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案
![2020版高考人教A版文科数学一轮复习文档:选修4-4 第二节 参 数 方 程 Word版含答案](https://img.taocdn.com/s3/m/1a920f5802020740bf1e9b0c.png)
第二节 参数方程2019考纲考题考情1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:Error!①并且对于t的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,t叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
2.直线的参数方程过定点P0(x0,y0)且倾斜角为α的直线的参数方程为Error!(t→为参数),则参数t的几何意义是有向线段的数量。
P0P3.圆的参数方程圆心为(a,b),半径为r,以圆心为顶点且与x轴同向的射线,按逆时针方向旋转到圆上一点所在半径形成的角α为参数的圆的参数方程为Error!(α为参数)α∈[0,2π)。
4.椭圆的参数方程以椭圆的离心角θ为参数,椭圆+=1(a >b >0)的参数x 2a 2y 2b 2方程为Error!(θ为参数)θ∈[0,2π)。
1.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围。
2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离。
一、走进教材1.(选修4-4P 26T 4改编)在平面直角坐标系中,曲线C :Error!(t 为参数)的普通方程为________。
解析 消去t ,得x -y =1,即x -y -1=0。
答案 x -y -1=02.(选修4-4P 37例2改编)在平面直角坐标系xOy 中,若直线l :Error!(t 为参数)过椭圆C :Error!(φ为参数)的右顶点,求常数a 的值。
解 直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为+=1,x 29y 24所以椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则3-a =0,所以a =3。
高考理科第一轮复习课件(选修4-4第二节参数方程)
![高考理科第一轮复习课件(选修4-4第二节参数方程)](https://img.taocdn.com/s3/m/d294daf30242a8956bece4c1.png)
(1)若t为常数,θ为参数,判断方程表示什么曲线?
(2)若θ为常数,t为参数,方程表示什么曲线?
【思路点拨】将参数方程消去参数化为普通方程F(x,y)=0,再 判断曲线形状.
【规范解答】(1)当t≠〒1时,由①得 sin x , 由②得
t cos y 1 t- t ,( x t 1 t )2 ( y 1 t- t ) 2 1, 1 t
【提醒】判断直线与圆的位置关系有几何法和解析法(即判别 式法)两种,解题时要灵活选取不同的方法.
【变式训练】已知圆的方程为x2+y2+2x-6y+9=0,将它化为参数 方程. 【解析】把x2+y2+2x-6y+9=0化为标准方程为:(x+1)2+(y-3)2=1. ∴参数方程为
x 1 cos , 为参数 . y 3 sin
它表示中心在原点,长轴长为 2 t 1 ,短轴长为 2 t-1 , 焦点在x
t t
轴上的椭圆;
当t=〒1时,y=0,x=〒2sin θ,x∈[-2,2],它表示在x轴上
[-2,2]的线段.
(2)当 k (k Z) 时,由①得 x t 1, 由②得
2
2 2
sin t 2 x y x y2 平方相减得 - 2 4, 即 - 1 2 sin cos 4sin 2 4cos 2
2.直线、圆锥曲线的普通方程和参数方程 轨迹
直线
普通方程
y-y0=tan α(x-x0) (α≠ , 点斜式)
2
圆
(x-a)2+(y-b)2=r2
x 2 y2 2= 1 2 a b
参数方程 x0+tcos α x= __________, y0+tsin α y= __________. (t为参数) a+rcos θ x= __________, b+rsin θ y= __________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:取投放点为原点,飞机飞行航线 评 所在直线为x轴,过原点和地心的直线为y
轴建立平面直角坐标系,得到被投放物资 的轨迹方程为
x 100t , 1 2 (t是参数,表示时间) y gt . 2
令x 1000, 解得t 10 1 2 当t =10时,y=- g 10 500 2
提示: 即求飞行员在离救援点的水平距离 多远时,开始投放物资?
投放点
?
救援点
导
y 500
解:物资出舱后,设在时刻t,水平位移为x, 垂直高度为y,所以
(x,y )
x 100t , 1 2 2 ( g=9.8m/s ) y 500 gt . 2
o
x
观察,上面方程有什么特征? 1、有三个变量 2、任意一点的x,y坐标都可以用第三个变量表示 3、给定一个t值,由方程可以唯一确定x,y的值
□讲完还不太懂
2、完善解题过程,并总结题目类型
3、整理参数方程t ,(t为参数) 与x轴的交点坐标是( B ) y 4t 3
25 ( , 0); C、(1, 3); A、(1,4);B、 16
25 D、 ( , 0); 16
的一个点的坐标是 ( C ) 1 1 1 1 A、 (2,7) B、 ( , ),C、 ( , ), D(1,0) 3 2 2 2
x sin 2、方程{ (为参数)表示的曲线上 y cos 2
四、参数方程求法: (1)建立直角坐标系, 设曲线上任一点P坐标 (2)选取适当的参数 (3)根据已知条件和图形的几何性质, 物理意义, 建立点P坐标与参数的函数式 (4)证明这个参数方程就是所求的曲线的方程
检
○一做就错
请拿出你的红笔:
1、先对提纲中的题目对出合理分析,并加上适当 的提醒符号.★重点内容 △典型题目
导
一、学什么?
1、曲线的参数方程2、圆锥曲线的参数方程
3、直线的参数方程4、渐进线与摆线
二、为什么学?
在过去的学习中我们已经掌握了一些求曲线 方程的方法。有时直接确定曲线上点的坐标 x,y的关系不容易,利用某个参数作为联系 的桥梁,会很方便。
导
引例
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
关于参数几点说明: 参数是联系变数x,y的桥梁, 1. 参数方程中参数可以是有物理意义, 几何意义, 也可以没有明 显意义。 2.同一曲线选取参数不同, 曲线参数方程形式也不一样 3.在实际问题中要确定参数的取值范围
评
三、参数方程与普通方程的区别与联系
区别:1、方程形式不同,参数方程经常是方程组 2、普通方程反映了曲线上x,y的直接关系 联系:1、两种方程是同一曲线的不同形式 2、两种方程之间可以进行互化
即飞机投放物资时飞行的高度为500米
评 一般地, 在平面直角坐标系中,如果曲线上任意一点的
一、参数方程的概念:
坐标x, y都是某个变数t的函数 x f (t ), (2) y g ( t ). 并且对于t的每一个允许值, 由方程组(2) 所确定的点 M(x,y)都在这条曲线上, 那么方程(2) 就叫做这条曲线的 参数方程, 联系变数x,y的变数t叫做参变数, 简称参数. 二、普通方程:相对于参数方程而言,直接给出 点的坐标间关系的方程叫做普通方程。
合作学习
组议: 讨论1:结合例题总结参数方程与普通方程的区 别和联系. 讨论2:参数的意义是什么?参数方程求法?
要求: 组长负责全员参与,分工协作。 先比对答案,然后探讨解题思路,总结解题规律方法。
展
要求:大声,规范,清晰,迅速
(黑板展示需在2—3分钟内书写完)
请同学们认真聆听,用红笔记录重点、疑惑点,并主动 进一步完善和补充,质疑。