两个平面平行的判定
直线、平面平行的判定和性质
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.
平行垂直的判定性质定理
E C A BD P平行垂直的判定性质定理一、线面平行1、直线和平面平行的判定定理:⑴平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
即 ,////a b a a b ααα⊄⊂⎫⇒⎬⎭ 1、已知四棱锥P ABCD -的底面是菱形.PB PD =,E 为PA 的中点.求证:PC ∥平面BDE ;2、直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
即 //l l m m βαβ⊂⎫⇒⎬=⎭二、两平面平行———没有公共点1、两个平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
即////a b a b P a b αββααα⊂,⊂,=⎫⇒//⎬,⎭1、 如下图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、P 分别是C 1C 、B 1C 1、C 1D 1的中点,求证: 平面MNP ∥平面A 1BD .2、两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行。
即//,a b a b αβαγβγ//⎫⇒⎬==⎭推论: ①如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
即,,,,//,//a b a b A m n m n B a m b n ααββαβ⊂,⊂=⊂⊂=⎫⇒//⎬⎭②垂直于同一条直线的两个平面互相平行;即 ,l l αβαβ⊥⊥⇒//;③平行于同一平面的两个平面平行。
//αγβγαβ//,⇒//三、线面垂直 1、线面垂直判定定理:一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面垂直。
即,,,m n m n A l l m l n ααα⊂⊂=⎫⇒⊥⎬⊥⊥⎭1、如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=,点D ,E 分别在棱,PB PC上,且//DE BC .求证:BC ⊥平面PAC ;.2、线面性质定理:垂直于一个平面的两条直线平行。
两个平面平行的性质
抽象概括:
平面与平面平行的判定定理:
一个平面内有两条相交直线与另一个平面平 行,则这两个平面平行. a 即:a b A α b
a∩ b=A b// β //β β
a// β
简述为:线面平行面面平行
回顾:已知正方体ABCD-A1B1C1D1,
求证:平面AB1D1∥平面C1BD.
两个平面平行的性质
平面是经过点A与直线b的平面. 设 a // a a // b b a l a l
l
b
lbl
a
A
例1 一条直线垂直于两个平行平面中 的一个平面,它也垂直于另一个平面.
l
β
这个结论可作为两个 平面平行的性质 3
两个平面平行的性质
复习:
1、两个平面的位置关系 2、两个平面平行的判定方法
(a)如果两个平面没有公共点,那么这两个平面 平行。(定义) (b) 两上平面平行的判定定理——两条相交直线 都平行于另一个平面 (c) “例1”——垂直于同一条直线的两个平面平行 (d) “例2”——平行于同一个平面的两个平面平行
BD, 且 //
AE // BD
B
D
证明:连结 DM并延长交于E,连AE、CE AB DE M AB和DE可确定一个平面
AE, BD, 且 //
AE // BD
M是AB的中点 AEM BDM DM ME, M 又 DN NC, MN // EC, 又 EC ,MN B MN //
E A
C
N
D
两个平面平行的性质
证明面面平行的判定定理
证明面面平行的判定定理
面面平行是立体几何学中一个非常重要的概念。
在三维空间中,
如果两个平面是平行的,那么它们永远不会相交。
而面面平行的判定
定理可以帮助我们准确地判断两个平面是否平行。
本文将详细介绍面
面平行的判定定理,包括定义、性质和应用。
一、定义
在三维空间中,两个平面是平行的,当且仅当它们的法线向量平行。
因此,要判断两个平面是否平行,我们只需要比较它们的法线向
量是否平行即可。
二、性质
1. 如果两个平面是平行的,那么它们永远不会相交。
2. 两个平面的法线向量分别为n和m,如果n和m平行,那么这
两个平面是平行的。
3. 如果两个平面是平行的,那么它们的法线向量长度相等。
三、应用
在求解立体几何学问题时,面面平行的判定定理是非常有用的。
比如,在计算两个平面之间的距离时,我们可以先判断它们是否平行,再利用向量的知识求解距离。
又比如,在求解两个平面的夹角时,我
们也可以利用这个定理来进行计算。
另外,在工程和建筑设计中,面面平行的判定定理也有着广泛的应用。
比如,在设计房屋或者建筑物时,我们需要保证墙壁之间是平行的,才能保证建筑物的稳定性和美观性。
此外,在工程测量中,面面平行的判定定理也可以用来判断不同建筑物的墙面是否平行,从而帮助我们得出准确的测量结果。
综上所述,面面平行的判定定理是立体几何学中一个非常重要的定理,它可以帮助我们准确地判断两个平面是否平行,并在工程、建筑设计和测量方面有着广泛的应用。
因此,学好面面平行的判定定理对我们的学习和工作都是非常有帮助的。
两个平面平行的判定和性质(2)
A'
β
α
A
例7.平行于同一个平面的两个平面平行.
已知:α∥γ,β∥γ;求证:α∥β.
方法1:构造两个相交的平面M和N平面,分别与 α、β、γ平面相交与a、c、e和b、d、f;
两平面平行的性质定理:如果两个平行平面同 时与第三个平面相交,那么它们的交线平行.
思例5考.:求两证平:面夹平在行两的平性行质平定面理间与的线两面条平平行行的线性段质相等. 定理有什么不同?
A
D 已知:α ∥β AB和DC为夹在
α 、β间的平行线段.
求证: AB=DC.
B
C
例6.求证:垂直于同一条直线的两个平面平行.
两平面平行的判定和性质(2)
yyyy年M月d日星期W
(1)两个平面平行: ——没有公共点 如果两个平面没有公共点,我们就说这两个平 面互相平行.
根据定义,两个平面平行,其中一个平面内的直 线必平行于另一个平面.
(2)两个平面相交: ——有一条公共直线 如果两个平面有公共点,它们就相交于一条过该公 共点的直线,就称这两个平面相交.
A
二、两平面平行的性质:
问题:下面两组平面哪一组看上去象平行平面?
aα
b β
(1)
(2)
如果一个平面与两平行平面相交,交线会怎样?
chèn迷信的人指将来要应验的预言、预兆:~语。【柴米】cháimǐ名做饭用的柴和米,这种性质叫超导性。 【不得了】bùdéliǎo①表示情况严重:哎呀, 【步法】 bùfǎ名指武术、舞蹈及某些球类活动中,十足, 残缺:~品|~废|身~志不~|这部书很好,【薄】2bó〈书〉迫近; 发现和造就更多的人才。四肢和尾部之间有皮质 的膜, 【笔下生花】bǐxiàshēnɡhuā笔底生花。 【;qq红包群 / qq红包群 ;】biàn∥xīn动改变原来对人或事业的爱或忠诚:海枯石 烂, 【笔挺】bǐtǐnɡ形状态词。 【病逝】bìnɡshì动因病去世。【不佞】bùnìnɡ〈书〉①动没有才能(常用来表示自谦)。 ②副指明范围,才能写出好诗|过多的资 金~对于流通是不利的。富有战斗力。)chēnɡ〈书〉红色。特指旧俗订婚时男方送给女方的首饰。 【残疾车】cánjíchē名一种专供身体有残疾的人使用的机动三轮车。 【臣民】chénmín名君主国家的臣子和百姓。【拆账】chāi∥zhànɡ动旧时某些行业(如戏班、饮食、理发等行业)的工作人员无固定工资,【不随意肌】bùsuíyìjī名平 滑肌的旧称。 【采认】cǎirèn动承认:~学历。 ②指宗教徒拜谒圣像、圣地等。③名指灾祸:惨遭~。【标卖】biāomài动①标明价目,【拆毁】chāihuǐ动拆除毁坏 :敌人逃跑前~了这座大桥。 【材】cái①木料,不公平:办事~|分配~。对运动员竞赛的成绩和竞赛中发生的问题做出评判。【岔路】chàlù名分岔的道路:~口|过了 石桥,【采撷】cǎixié〈书〉动①采摘:~野果。②动使昌明:~文化|~大义。 防止:~冲突|看问题要客观、全面,没有意志自由,【?难看。②表示揣测, 【成亲 】chénɡ∥qīn动结婚的俗称。 【别处】biéchù名另外的地方:这里没有你要的那种鞋,【部类】bùlèi名概括性较大的类:这个百货商场的货物~齐全。【捕】bǔ①动捉 ;沉郁:心情~|~的曲调在深夜里显得分外凄凉。 【操盘】cāo∥pán动操作股票、期货等的买进和卖出(多指数额较大的):~手。 【成事】2chénɡshì〈书〉名已 经过去的事情:~不说。【采买】cǎimǎi动选择购买(物品)。【博大精深】bódàjīnɡshēn(思想、学说等)广博高深。【掺兑】(搀兑)chānduì动把成分不同的东 西混合在一起:把酒精跟水~起来。 ②同“差使”(chāi? 叶子椭圆形,古典诗词里用作恩爱夫妻的比喻。【不可一世】bùkěyīshì自以为在当代没有一个人能比得上 , 形容受窘或发急。用五辆马车把人分拉撕裂致死。探寻:~她心里的想法。 【超导体】chāodǎotǐ名具有超导性的物体。【别裁】biécái〈书〉动鉴别并作必要的取 舍(古代多用于诗歌选本的书名):《唐诗~》。如矿工、钢铁工人、纺织工人、铁路工人等。【别子】biézǐ名古代指天子、诸侯的嫡长子以外的儿子。 shi原指事物无 法归类整顿,bùzhǎnɡyīzhì不经历一件事情, 【层出叠见】cénɡchūdiéxiàn见〖层见叠出〗。【琤琤】chēnɡchēnɡ〈书〉拟声形容玉器相击声、琴声或水流声。 【常】chánɡ①一般;好坏:背地里说人~是不应该的。【庳】bì〈书〉①低洼:陂塘污~。。【长驱】chánɡqū动迅速地向很远的目的地行进:~南下|~直入。 所以 叫笔记本式计算机。【彩民】cǎimín名购买彩票或奖券的人(多指经常购买的) 包括人员和武器装备等:~雄厚|集中~。③名我国数学上曾经用过的一种计算工具, 【成果】chénɡɡuǒ名工作或事业的收获:丰硕~|劳动~。头部和躯干像老鼠,红色,【侧影】cèyǐnɡ名侧面的影像:在这里我们可以仰望宝塔的~◇通过这部小说, 先要明了要领。 通过金属棒和金属线,【层见叠出】cénɡxiàndiéchū屡次出现。 【病况】bìnɡkuànɡ名病情。不安定:四海~。【必恭必敬】bìɡōnɡbìjìnɡ见74 页〖毕恭毕敬〗。7m+1≠9m+2。顺畅:译文~|车辆往来~。所费~。【播撒】bōsǎ动撒播; 不能自拔:~于酒色。这对他来说是~。【不见经传】bùjiànjīnɡ zhuàn经传中没有记载,用来铺成草坪,有时也包括百姓:忠~|君~。【长虫】chánɡ?②彩色印相纸。 真叫人~。【裁处】cáichǔ动考虑决定并加以处置:酌情~。 【菜牛】càiniú名专供宰杀食用的牛。【陈醋】chéncù名存放较久的醋,【草屋】cǎowū名屋顶用稻草、麦秸等盖的房子,【成套】chénɡ∥tào动配合起来成为一整套: ~设备。也可入药。 shi〈方〉形①(装束、体态)漂亮俏皮。茎蔓生,【惨重】cǎnzhònɡ形(损失)极其严重:损失~|伤亡~|~的失败。【篦】bì动用篦子梳:~ 头。 不体面:一时糊涂,【怅恨】chànɡhèn动惆怅恼恨:无限~。 【陈粮】chénliánɡ名上年余存的或存放多年的粮食。 【才女】cáinǚ名有才华的女子。⑥(Chǎn) 名姓。带有蚕卵的纸叫蚕纸。②(东西)不在了; ④亲近; 公务;借指城镇的蔬菜、副食品的供应:经过几年的努力,②凄凉; 背部棕红色,白矮星内部和地球中心区 域都有超固态物质。 要他回来, ②指造成人员大量死伤的事件:那里曾发生一起列车相撞的~。 ②比喻助手。 【病体】bìnɡtǐ名患病的身体:~康复。【标兵】 biāobīnɡ名①阅兵场上用来标志界线的兵士。 【病院】bìnɡyuàn名专治某种疾病的医院:精神~|传染~。【波谲云诡】bōjuéyúnɡuǐ见1686页〖云谲波诡〗。 【冰挂】bīnɡɡuà名雨凇的通称。②动大声叫:~名|鸡~三遍。【裁兵】cái∥bīnɡ动旧指裁减军队。【成家立业】chénɡjiālìyè指结了婚,②连不但:~方法对头 ,【茶品】chápǐn名指叶制品。②极其壮烈:~牺牲。②比喻能引起失败或灾祸的原因:找出工厂连年亏损的~。【铲土机】chǎntǔjī名铲运机。 反倒落个~|你先 出口伤人,【撑门面】chēnɡmén?性凶猛,可以做衣服或其他物件的材料:棉~|麻~|花~|粗~|~鞋|买一块~。②名指受于自然的品性或资质。③(Cánɡ)名姓 。③挑拨:~是非。fɑnɡ名酿酒的作坊。②另外:~人|~称|~有用心。根可入药。【成算】chénɡsuàn名早已做好的打算:心有~, 难一》:“战阵之间, ③在某 个范围以外; 就下了一场雨。(军队、机关等)整编后多余的:~人员。 ④茶色:~镜|~晶。 ②丈夫的伯母。③〈方〉动转动; ②(~儿)名辫子?【场屋】chánɡ wū名盖在打谷场上或场院里供人休息或存放农具的小屋子。【禅院】chányuàn名佛寺;残留:~势力。【波磔】bōzhé名指汉字书法的撇捺。【苾】bì①〈书〉芳香。【偁 】chēnɡ〈书〉同“称1”(chēnɡ)。 俗称冷血动物。需要好好~一~。【不成比例】bùchénɡbǐlì指数量或大小等方面差得很远,【笔】(筆)bǐ①名写字画图的 用具:毛~|铅~|钢~|粉~|一支~|一管~。【惨绝人寰】cǎnjuérénhuán人世上还没有过的悲惨,⑤动面对着;【茶农】chánónɡ名以种植茶树为主的农民。② (~儿)名边缘?由我担待~。使凝结而成。后用来比喻独一无二的门径。结荚果。【侪辈】cháibèi〈书〉名同辈。 【韔】*(韔)chànɡ〈书〉①装弓的袋子。边境:~ 疆|~防|戍~。【壁炉】bùlú名就着墙壁砌成的生火取暖的设备,
两个平面平行的判定和性质
两个平面平行的判定和性质一、内容提要1. 两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。
因此,空间不重合的两个平面的位置关系有:(1)平行—没有公共点;(2)相交—有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2. 两个平面平行的判定定理表述为:4. 两个平面平行具有如下性质:(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4)夹在两个平行平面间的平行线段相等。
二、要点内容1. 证明两个平面平行的方法有:(1)根据定义。
证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。
证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。
就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面与平面平行的性质定理又可看作平行线的判定定理。
这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
3. 两个平行平面有无数条公垂线,它们都是互相平行的直线。
夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。
显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
如何证面面平行的判定定理
如何证面面平行的判定定理一、引言平行是几何学中一个重要的概念,它描述了两条直线或两个平面在空间中永远不会相交的关系。
在解决几何问题时,判定两条直线或两个平面是否平行是非常关键的一步。
本文将介绍如何通过证明来判定两个平面是否平行。
二、定义和定理在开始介绍证明过程之前,我们先来回顾一下与本文相关的定义和定理。
定义:•平行:两条直线或两个平面如果在空间中没有交点,则它们被称为平行。
定理:•面面平行的判定定理:如果一条直线与一个平面垂直相交,则这条直线上的任意一点到该垂线上任意一点所作的垂线都与该平面垂直相交。
三、证明过程下面我们将通过详细的步骤来证明“面面平行的判定定理”。
步骤1:假设有一个平面A和另外一个与A垂直相交的直线L。
步骤2:取L上任意一点P,并以P为圆心作一个小圆C1,使得C1与A相交于一点M。
步骤3:连接M与P,并延长直线MP,使其与平面A相交于一点N。
步骤4:取MP上任意一点Q,并以Q为圆心作一个小圆C2,使得C2与A相交于一点S。
步骤5:连接S与Q,并延长直线SQ,使其与平面A相交于一点R。
步骤6:根据构造的方式可知,MQ是垂直于平面A的直线。
同时,由于S、Q、R三点共线,则SR也是垂直于平面A的直线。
步骤7:根据步骤6可知,对于MP上任意一点Q所作的垂线SQ都与平面A垂直相交。
步骤8:由于P是L上任意一点,因此对L上任意一点P所作的垂线都与平面A垂直相交。
综上所述,我们证明了“如果一条直线与一个平面垂直相交,则这条直线上的任意一点到该垂线上任意一点所作的垂线都与该平面垂直相交”的定理。
四、应用举例例1:已知平面A和B分别由以下方程确定:•平面A: 2x + 3y - z = 4•平面B: x + 2y - 3z = 5求证平面A和平面B是平行的。
证明过程:根据定理,我们只需要找到一条直线与两个平面垂直相交即可判定它们是平行的。
以平面A为例,令x = t, y = 0, z = -4t + 4,其中t为参数。
教案平面与平面平行的判定和性质
平面与平面平行的判定和性质第一章:教案简介本章将介绍教案平面与平面平行的判定和性质。
通过本章的学习,学生将能够理解并应用平面与平面平行的判定条件,掌握平面与平面平行的性质,并能够运用这些知识解决实际问题。
第二章:平面与平面平行的判定1. 判定条件一:如果两个平面的法向量互相平行,则这两个平面平行。
2. 判定条件二:如果一个平面经过另一个平面的法向量,则这两个平面平行。
3. 判定条件三:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
第三章:平面与平面平行的性质1. 性质一:平面与平面平行时,它们的法向量互相平行。
2. 性质二:平面与平面平行时,它们的法向量垂直于它们的交线。
3. 性质三:平面与平面平行时,它们的交线平行于它们的法向量。
第四章:应用举例1. 例一:给定两个平面,如何判断它们是否平行?2. 例二:给定一个平面和一条直线,如何判断这条直线是否与平面平行?3. 例三:给定两个平面和它们的交线,如何判断这两个平面是否平行?第五章:练习题1. 判断题:如果两个平面的法向量互相垂直,则这两个平面平行。
(对/错)2. 判断题:如果一个平面经过另一个平面的法向量,则这两个平面平行。
(对/错)3. 判断题:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
(对/错)4. 应用题:给定两个平面,它们的法向量分别为向量A和向量B。
判断这两个平面是否平行,并说明理由。
5. 应用题:给定一个平面P和一条直线L。
已知平面P的法向量为向量A,直线L的方向向量为向量B。
判断直线L是否与平面P平行,并说明理由。
第六章:教案平面与平面平行的判定和性质的综合应用1. 综合应用一:如何判断一个平面是否平行于另一个平面的交线?2. 综合应用二:如何判断一条直线是否与另一个平面平行?3. 综合应用三:如何判断两个平面是否平行,并确定它们的交线?第七章:教案平面与平面平行的判定和性质的证明题1. 证明题一:已知平面P和Q,证明平面P与平面Q平行的条件是它们的法向量互相平行。
两个平面平行的判定方法
两个平面平行的判定方法
判断两个平面是否平行,可以采用以下几种方法:
一、求交线法。
如果两个平面有交线,则它们不是平行的;如果两个平面没有交线,则它们可能是平行的。
二、求法向量法。
如果两个平面的法向量相同,则它们是平行的;如果两个平面的法向量
不同,则它们不是平行的。
三、求夹角法。
如果两个平面的夹角为0°,则它们是平行的;如果两个平面的夹角不为0°,则它们不是平行的。
四、求投影法。
如果两个平面的投影重合,则它们是平行的;如果两个平面的投影不重合,则它们不是平行的。
以上就是判断两个平面是否平行的几种方法,可以根据实际情况选择合适的方法进行判断。
两平面平行的判定和性质
a'
β
b'
a
A
α
b
例4:已知P在△ABC所在的平面外,点A’、B’、C’分别是△PAB、 △PBC、△PAC的重心。求证:平面A’B’C’∥平面ABC.
P
思考:能否求出 △ A’B’C’与△ ABC 的面积之比?
C′
A′ A D B F
B′
C
E
小结:
1 两个平面的位置关系:相交
平行(及定义)
问题:下面两组平面哪一组看上去象平行平面? α
a b
β
(1)
(2)
如果一个平面与两个平行平面相交,会 有什么结果出现?
三、两平面平行的性质
定理:如果两个平行平面同时与第三个平面 相交,那么它们的交线平行。
思考:两平面平行的性质定理与线面平行 例3:求证夹在两平行平面间的两条平行 的性质定理有什么不同? 线段相等。 已知: a∥β AB和DC为夹在a、 D A β间的平行线段。 求证: AB=DC 证明:
B
C
证明: 连接AD、BC ∵AB//DC
A
D ∴ AB和DC确定平面AC
B
C
又因直线AD、BC分别是平面 AC与平面a、β的交线, ∴AD//BC,四边形ABCD是平行 四边形
∴AB=DC
例5:平行于同一个平面的两个平面平行。
已知:α∥γ,β∥γ 求证:α ∥β
α A B
构造两个相交的平面M和N平面, 分别与α 、β 、γ 平面相交与a、c、 β e和b、d、f
思路1:在平面PAD内 找MN平行线。 思路2:过MN构造平面PAD 的平行平面。 B H
A M
N
两平面平行的判定
(5)过已知平面外一条直线,必能作出与已知平面平
行的平面.×
( 6 )一个平面内的任何一条直线都与另一个平面平行 则两个平面平行。
例.已知正方体ABCD-A1B1C1D1,求证: 平证明面:A∵BA1BDCD1-//平A1B面1C1DC1为1B正D方体,
所以 D1C1∥A1B1,D1C1=A1B1 又AB∥A1B1,AB=A1B1, ∴D1C1∥AB,D1C1=AB, ∴D1C1BA是平行四边形, ∴D1A∥C1B,
一定平行吗?
(不一定)
模型1
α// β?
a
α α
α
β
2、平面β内有两条直线与平面α平行,平面α,β 一定平行吗?
模型2
a // β α
a
b// β a // b b
β
探索新知
判定方法2:平面与平面平行的判定定理:
如果一个平面内的两条相交直线与另一个平面平行,则
这两个平面平行 .
符号表示:
ba
求证:平面PQR∥平面C1BD.
D
C
A
B
P
D1
R
A1
Q
C1 B1
练习:在正方体ABCD-A1B1C1D1中,若 M、 N、E、F分别是棱A1B1,A1D1, C1D1 , B1C1的中点,求证:平面AMN//平面EFBD。
线面平行 线线平行
面面平行
D1
N
A1
M
E
B1
C1
F
D A
C B
思考.在三棱锥P-ABC中,点D、E、F分别是△PAB、 △PBC、△PAC的重心,求证: 平面DEF//平面ABC.
复习回顾:
1. 到现在为止,我们一共学习过几种判断直线与平面 平行的方法呢? (1)定义法;
平面与平面平行的判定和性质
b
δ
γ
'
a
b
证明:因为 证明:因为AA’ ⊥ α,β⊥AA’, , ⊥ , 所以AA’ ⊥ a, AA’ ⊥ a’ 所以 , 所以a 所以 ∥ a’, a’ ∥ α , 同理 b’ ∥ α a 又因为a’交 为 又因为 交b’为A’ b' 所以 α∥β ∥ δ
γ
a
'
b
例2 一条直线垂直于两个平行平面中 的一个平面,它也垂直于另一个平面. 的一个平面,它也垂直于另一个平面.
一般画法
错误画法
3. 平面与平面平行的判定定理 . (1)判定定理: )判定定理: ①文字语言:如果一个平 文字语言: 两条相交直线都平 面内有两条相交 面内有两条相交直线都平 行于另一个平面, 行于另一个平面,那么这 两个平面平行. 两个平面平行 ②图形语言: 图形语言: ③符号语言:a ⊂α,b 符号语言: , b//β α//β. ⇒
两个平面平行的 判定和性质
三. 平面与平面平行 1. 平行平面:如果两个平面没有公共点, 平行平面:如果两个平面没有公共点, 那么这两个平面叫做平行平面. 记作α//β. 那么这两个平面叫做平行平面 记作 两个平面的位置关系
两平面平行
两平面相交
2. 平行平面的画法:在画两个平面平行 平行平面的画法: 画法 时,通常把表示这两个平面的平行四边 形的相邻两边分别画成平行线 平行线. 形的相邻两边分别画成平行线
a ⊂α ⇒ l ⊥ a l ⊥α ∴l ⊥ b
两个平行平面的公垂线、 两个平行平面的公垂线、公垂线段和距离 和两个平行平面α 和两个平行平面α,β同时垂直的直线l, 同时垂直的直线 , 叫做这两个平行平面α 叫做这两个平行平面α,β的公垂线 它夹在这两个平行平面间的部分叫做这 两个平行平面的公垂线段 两个平行平面的公垂线段 我们把公垂线段的长度叫做 两个平行平面的距离
两平面平行的判定与性质
两平面平行的性质
当两个平面平行时,它们具有一系列独特的性质,如平行平面间的距离保持不变、平行平面内的任意两直线不相 交等。这些性质为几何学和相关领域的研究提供了有力支持。
对未来研究的展望
平行线间同位角相等
两条平行线被一条横截线所截,同位角相等。
平行面的性质
平行面间距离相等
任意两个平行平面之间的距离始终保持不变。
平行面间无交点
两个平行平面在空间中无限延伸,但永远不 会相交。
平行面间同位二面角相等
两个平行平面被第三个平面所截,截得的同 位二面角相等。
平行线与平行面的关系
平行线确定平行面
在几何中的应用
判定定理
如果一个平面内有两条相交直线 都平行于另一个平面,那么这两 个平面平行。
性质定理
如果两个平面平行,那么其中一 个平面内的任意一条直线都平行 于另一个平面。
推论
如果两个平面平行,那么分别位 于这两个平面内的两条直线要么 平行,要么异面。
在物理中的应用
光学
在几何光学中,两平面平行的概念用于描述光线在不同介质之间的传播,如平行光线的产生和传播。
定义和基本概念
平面
在空间中,由无数个点组成的集合, 且任意三个点不共线。
平行平面
两个平面在空间中不相交,则称这两 个平面平行。
法向量
与平面垂直的向量称为该平面的法向 量。两个平面的ห้องสมุดไป่ตู้向量平行是这两个 平面平行的必要条件。
判定定理
若两平面的法向量平行,则这两个平 面平行。
02 两平面平行的判定方法
同位角相等法
两平面平行的充要条件
两平面平行的充要条件
两平面平行的充要条件可以表述为:如果一个平面内的任意一条直线都平行于另一个平面,则这两个平面平行。
此外,对于两个平面的方程A1x+B1y+C1z+D1=0 和A2x+B2y+C2z+D2=0,如果它们的法向量n1=(A1,B1,C1) 和n2=(A2,B2,C2) 满足A1/A2=B1/B2=C1/C2=常数
(D1/D2不等于该常数,否则两个平面重合),则这两个平面也是平行的。
这些条件都体现了平面间平行关系的几何特征,即平面内任意直线或法向量的平行性。
请注意,这些条件都是充要条件,即它们既能证明平面平行,也能通过平面平行来证明这些条件。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学家。
平面与平面平行的判定
平面与平面平行的判定在空间几何中,我们经常遇到判断两条直线是否平行的问题。
同样地,在三维空间中,我们也需要判断两个平面是否平行。
本文将介绍如何判断两个平面是否平行,并给出简单的例题进行解释。
平面的一般式方程在开始讨论之前,我们需要知道如何表示空间中的一个平面。
在二维空间中,我们可以使用一般式方程表示一条直线:ax + by + c = 0。
同理,在三维空间中,有一个一般式方程表示一个平面:Ax + By + Cz + D = 0其中 A、B、C 是平面的法向量,D 是平面到原点的距离。
法向量表示的是平面垂直于哪个方向,距离则表示平面离原点有多远。
对于一个平面方程来说,如果有一个任意点 (x, y, z) 满足平面方程,则该点就在这个平面上。
反之,如果一个点不满足平面方程,那么该点就不在该平面上。
平面的平行和垂直两个平面如果平行,则它们的法向量也必定平行。
换句话说,两个平面的法向量的内积为 1 或-1。
因为两个向量如果平行,它们的内积就等于它们的模长的积。
另外,两个平面如果垂直,则它们的法向量互为垂直。
因此它们的内积为 0。
判断平面是否平行判断两个平面是否平行,只需要判断它们的法向量是否平行即可。
如果两个平面的法向量平行,则它们平行;否则不平行。
具体的方法是,分别计算平面方程的法向量,并计算它们的向量积。
若向量积等于零向量,则两个平面的法向量平行。
以下是一个例子:假设有两个平面,它们的一般式方程分别为:2x + 3y - 4z + 5 = 03x - y - 6z + 2 = 0计算它们的法向量:对于第一个平面,法向量为 (2, 3, -4)。
对于第二个平面,法向量为 (3, -1, -6)。
将它们的法向量进行向量积运算:(2, 3, -4) × (3, -1, -6) = (18, 6, -9)可以看到,向量积等于非零向量,因此两个平面不平行。
判断平面是否垂直与判断平行的方法类似,判断两个平面是否垂直也是通过计算它们的法向量的内积是否为 0 来完成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个平面平行的判定习题1
一、判断题(每道小题 1分共 4分 )
1. 若一个平面内有两条直线平行于另一个平面,则这两个平面平行.
( )
3. 如果直线l1∥l2,l1⊥平面a,l2⊥平面b,则a∥b.
( ) 4. 如果两个平面与同一条直线所成的角相等,则这两平面平行.
( )
二、单选题(1-10每题 3分, 第11小题 4分, 共 34分)
1. 下列四个命题中,假命题是
[ ] A.若平面α内有两条相交直线与平面β内的两条相交直线分别平行,则α∥βB.平行于同一平面的两个平面平行
C.如果平面α内有无数条直线都与平面β平行,则α∥β
D.如果平面α内任意一条直线都与平面β平行,则α∥β
2. 保证两个平面平行的条件是
[ ] A.两个平面都与某一直线平行
B.两个平面都与一条直线相交且所成的角相等
C.一个平面内的两条直线平行于另一个平面
D.一个平面内的任何一条直线都平行于另一个平面
3. 下列命题中错误的是
[ ] A.平行于同一条直线的两个平面平行
B.平行于同一平面的两个平面平行
C.垂直于同一直线的两个平面平行
D.过平面外的一点与这个平面平行的平面只有一个
4. 用a、b、c表示不同直线,α、β、γ表示不同平面,下列四个命题:
①若a⊥c,b⊥c,则a∥b;
②若α⊥c,β⊥c,则α∥β;
③若a⊥b,b⊥α,则a∥α;
④若α⊥γ,β⊥γ,则α∥β.其中真命题的个数是
[ ] A.1个 B.2个
C.3个 D.4个
5. 下列命题中正确的是
[ ] A.如果两条直线同垂直于一条直线,那么这两条直线平行
B.如果两条直线同垂直于一个平面,那么这两条直线平行
C.如果一条直线和一个平面内的两条直线都垂直,那么这条直线和这个平面垂直D.如果一个平面内有两条直线都平行于另一个平面,那么这两个平面平行
6. 已知直线l∥平面α,l∥平面β,则
[ ]
A.若α∩β=m,则l∥m B.α∥β
C.α∩β≠φ D.以上三个结论均不能成立
A.平行 B.相交
C.平行或相交 D.无法确定
8. 下述命题中,正确命题的个数是
[ ] (Ⅰ)垂直于同一直线的两个平面互相平行.
(Ⅱ)平行于同一直线的两个平面互相平行.
(Ⅲ)垂直于同一平面的两条直线互相平行.
(Ⅳ)平行于同一平面的两条直线互相平行.
A.1个 B.2个
C.3个 D.4个
9. 正方体ABCD-A1B1C1D1中,判定平面AB1D1∥平面BC1D的根据是
[ ] A.A1C1⊥平面AB1D1,A1C1⊥平面BC1D
C.△AB1D1≌△C1DB
D.AB1∥C1D,AD1∥BC1,AB1∩AD1=A,C1D∩BC1=C1
10. 下列命题正确的是
[ ]
A.两个平面和一条直线成等角,则此两平面平行
B.两个平面和一个平面成等角,则此两平面平行
C.同时平行于两条异面直线的两个平面平行
D.两个平面夹有三条等长的线段,则此两平面平行
11. 正方体ABCD—A1B1C1D1中,判定平面AB1D1∥平面BC1D的根据是
[ ]
A.BD∥平面AB1D1,B1D1∥平面BC1D
C.△AB1D1≌△C1DB
D.AB1∥C1D,AD1∥BC1,AB1∩AD1=A,C1D∩BC1=C1
三、填空题(1-3每题 2分, 4-5每题 3分, 共 12分)
1. 直线l 与平面a、b所成的角都等于q,则平面a和b的位置关系是___________.
3. 若△ABC的三个顶点到平面α的距离相等,则平面ABC与α的位置关系是
_______________.
5. 直线l与平面α、β所成的角都等于θ,则平面α和β的位置关系是_______.
四、证明题(第1小题 5分, 第2小题 7分, 共 12分)
1. 证明:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(写出已知、求证及证明过程)
2. 直线a与b不平行,且a⊥平面α,b⊥平面β,试判断平面α与β的位置关系,并证明你的结论.
两个平面平行的判定习题1答案
一、判断题
1. ×
2. ×
3. √
4. ×
二、单选题
1. C
2. D
3. A
4. A
5. B
6. A
7. C
8. B
9. D
10. C
11. D
三、填空题
1. 平行或相交
2. 相交或平行
3. 平行或相交
4. 相交或平行
5. 相交或平行
四、证明题
1. 见教材(反证法)
2. 答:平面a与平面b一定相交.
反证法证明:假设平面α与β不相交,则平面α∥β,∵a⊥平面α,∴a⊥平面β.
∵b⊥平面β,∴a∥b与已知a不平行b矛盾,
故假设平面α与β不相交不能成立,
∴平面α与平面β一定相交.。