高二数学简单的线性规划2
高二数学简单的线性规划2-PPT
4
的可行域内共有_______个整数点.
2.设z = x y,式中变量x,y满足
x y1
4x y 4 .
2 x 3 y 8 0
求z的最大值和最小值.
z max = 1,
z min = 3.
小结
练习:
3.教材P64练习1:
(1) 求z = 2x + y的最大值,使式
域内的点且平行于l的直线中,以经过
点A(5,2)的直线l2所对应的t最大,
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
y
x 1
− 4 + 3 = 0
l2
6
5
l1
4
3
2
1
O
− 4 + 3 = 0
C
3 + 5 − 25 = 0
A
=1
B
1
2
3
4
5
6
7
x
以经过点B(1,1)的直线l1所对应的
2
1
O
C
3 + 5 − 25 = 0
A
=1
B
1
2
3
4
5
6
7
x
分析:不等式组表示的区域是图
中的ABC.
y
x 1
− 4 + 3 = 0
− 4 + 3 = 0
6
5
4
3
2
1
O
C
3 + 5 − 25 = 0
A
=1
B
1
2
3
4
5
6
7
高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)
《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。
本节的教学重点是线性规划问题的图解法。
数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。
二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。
三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。
从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。
从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。
五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。
注重引导帮助学生充分体验“从具体到一般”的抽象过程。
应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。
六、教学过程。
简单的线性规划教学设计
简单的线性规划问题教学设计探究问题(二)如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排现实际的生产安排与数学问题之间的联系,画出相应的图形数学建模思想及作图能力,并能够找到与实际应用问题相关的可行区域探究问题(三)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为233zy x=-+,这是斜率为23-,在y轴上的截距为3z的直线.当z变化时,可以得到一组互相平行的直线,如图:由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x=-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。
可以看到,直线233zy x=-+与不等式组表示的平面区域的交点满足不等式组,而且当截距3z最大时,z取得最大值.因此,问题可以转化为当直线233zy x=-+与不等式组确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时以老师讲授为主,学生配合讨论,归纳总结出求解目标函数最优解的方法通过本环节培养学生探索、发现、解决问题的能力,渗透实际应用问题转化为数学问题的数学建模思想,在实际解决问题的过程中培养学生的观察能力,提高数形结合解题的意识,让学生体会到数学无处不在,体会数学之美。
新课标人教A版数学必修5全部课件:简单的线性规划(二)
可行域
(5,2)
(1,1)
线性规划
例1 解下列线性规划问题: 求z=2x+y的最大值和最小值,使式中x、y满足下 列条件: 2x+y=0 y
解线性规划问题的一般步骤:
2x+y=-3 y x 1 1 第一步:在平面直角坐标系中作出可行域; C( , ) 2 2 第二步:在可行域内找到最优解所对应的点; x y 1 O y 1 第三步:解方程的最优解,从而求出目标函数 B(2,-1)
探索结论
新疆奎屯市第一高级中学 王新敞 2012-10-1
复习判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
2012-10-1
新疆奎屯市第一高级中学 王新敞
探索结论
线性规划
作业:P64 习题 7.4
2
2012-10-1
新疆奎屯市第一高级中学 王新敞
探索结论
y
2x+y=300
2 x y 300 x 2 y 250 x 0 y 0
x+3y=0
A 125
300x+900y=112500
C x+2y=250 150 B 250
300x+900y=0
高二数学教学设计:简单的线性规划
人不怕走在黑夜里,就怕心中没有阳光。
下面是为您推荐高二数学教学设计:简单的线性规划。
一、教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.二、教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.。
第一部分 第三章 3.3 第二课时 简单的线性规划问题
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
高二数学简单的线性规划知识精讲 人教版
高二数学简单的线性规划知识精讲 人教版【同步教育信息】 一. 本周教学内容:简单的线性规划二. 重点、难点:1. 二元一次不等式的区域(1)在平面直角坐标系中,所有的点被直线x +y -1=0分成三类,即点在直线上,点在直线的上方区域,点在直线的下方区域。
{}()集合表示的图形是直线右上方的所有点。
210(,)|x y x y +-> {}()集合表示的图形是直线左下方的所有点。
310(,)|x y x y +-<一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域,我们把直线画成虚线以表示区域不包括边界直线。
注意:在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时画成实线。
(4)区域判断方法是:特殊点法。
2. 线性规划:(1)约束条件、线性约束条件:变量x 、y 满足的一组条件叫做对变量x 、y 的约束条件,如果约束条件都是关于x 、y 的一次不等式,则约束条件又称为线性的约束条件。
(2)目标函数、线性目标函数:欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数。
如果解析式是x 、y 的一次解析式,则目标函数又称线性目标函数。
(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
(4)可行域:满足线性约束条件的解(x 、y )叫做可行解,由所有可行解组成的集合叫做可行域。
(5)最优解:分别使目标函数取得最大值和最小值的解,叫做这个问题的最优解。
3. 解线性规划应用问题的一般方法和步骤: (1)理清题意,列出表格。
(2)设好变元并列出不等式组和目标函数、约束条件。
(3)准确作图,准确计算。
【典型例题】例1. 画出不等式表示的平面区域。
-+-<x y 240 解:先画直线(画成虚线)-+-=x y 240 取原点(,),代入O x y 0024-+-因为,所以原点在表示的平面区域内。
简单的线性规划(二)_高二数学教案.doc
作出直线将它平移至点B,显然,点B的坐标是可行域中的最优解,它使达到最大值,解方程组得点B的坐标为(9,2).∴这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数所确定的直线的斜率有关.就这个例子而言,当的斜率为负数时,即时,若(直线的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当时,点C处使z取得最大值(比如:时),若,可请同学思考.随堂练习1.求的最小值,使式中的满足约束条件2.求的最大值,使式中满足约束条件答案:1.时,.2.时,.总结提炼1.线性规划的概念.2.线性规划的问题解法.布置作业1.求的最大值,使式中的满足条件2.求的最小值,使满足下列条件答案:1.2.在可行域内整点中,点(5,2)使z最小,探究活动利润的线性规划[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.建立平面直角坐标系,设1997年的利润为5万元对应的点为(0,5),1998年的利润为7万元及1999年的利润为8万元分别对应点(1,7)和(2,8),那么①若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为13万元.②若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为11万元.③若将过两点的直线作为预测直线,其方程为:,这样预测2001年的利润为10万元.④若将过及线段的中点的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑤若将过及的重心(注:为3年的年平均利润)的直线作为预测直线,其方程为:,这样预测2001年的利润为11.667万元.⑥若将过及的重心的直线作为预测直线,其方程为:,这样预测2001年的利润为10.667万元.⑦若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为9万元.⑧若将过且以线段的斜率为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为11.5万元.⑨若将过点且以线段的斜率为斜率的直线,作为预测直线,则预测直线的方程为;,这样预测2001年的利润为12万元.⑩若将过且以线段的斜率与线段的斜率的平均数为斜率的直线作为预测直线,则预测直线的方程为:,这样预测2001年的利润为12万元.如此这样,还有其他方案,在此不—一列举.[思考](1)第⑤种方案与第④种方案的结果完全一致,这是为什么?(2)第⑦种方案中,的现实意义是什么?(3)根据以上的基本解题思路,请你思考新的方案.如方案⑥中,过的重心,找出以为斜率的直线中与两点的距离的平方和最小的直线作为预测直线.(4)根据以上结论及你自己的答案估计一下利润的范围,你预测的利润频率出现最多的是哪一个值?你认为将你预测的结论作怎样的处理,使之得到的利润预测更为有效?如果不要求用线性预测,你能得出什么结果?【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?【二元一次不等式表示的平面区域】1.先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式,这些点却在l的左下方的平面区域.由此我们猜想,对直线l右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.在直线上任取一点,过点P作垂直于y轴的直线,在此直线上点P右侧的任意一点,都有∴于是所以因为点,是L上的任意点,所以,对于直线右上方的任意点,都成立同理,对于直线左下方的任意点,都成立所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集点.是直线右上方的平面区域(如图)类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.2.二元一次不等式和表示平面域.(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.【应用举例】例1画出不等式表示的平面区域解;先画直线(画线虚线)取原点(0,0),代入,∴∴原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.例2画出不等式组表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.课堂练习作出下列二元一次不等式或不等式组表示的平面区域.(1)(2)(3)(4)(5)总结提炼1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法.3.二元一次不等式组表示的平面区域.布置作业1.不等式表示的区域在的().A.右上方B.右下方C.左上方D.左下方2.不等式表示的平面区域是().3.不等式组表示的平面区域是().4.直线右上方的平面区域可用不等式表示.5.不等式组表示的平面区域内的整点坐标是.6.画出表示的区域.答案:1.B2.D3.B4.5.(-1,-1)6.。
高二数学 7.4简单的线性规划(备课资料)大纲人教版必修
高二数学 7.4简单的线性规划(备课资料)大纲人教版必修一、平面区域问题在直角坐标平面内,直线l可以用二元一次方程Ax+By+C=0来表示,点P(x0,y0)在直线l上的充要条件是Ax0+By0+C=0;若点P不在直线l上,则Ax0+By0+C>0或Ax0+By0+C<0,二者必居其一、直线l:Ax+By+C=0将平面划分为两个半平面Ax+By+C>0和Ax+By+C<0,位于同一个半平面内的点,其坐标必适合同一个不等式、要确定一个二元一次不等式所表示的半平面,可用“特殊点”法,如取原点或坐标轴上的点来检验、另外,还可证明如下结论:(1)若A>0,则Ax+By+C>0表示直线l:Ax+By+C=0右侧的半平面,Ax+By+C<0表示直线l左侧的半平面、(2)若B>0,则Ax+By+C>0表示直线l:Ax+By+C=0上方的半平面,Ax+By+C<0表示直线l下方的半平面、[例1]在直角坐标平面上有两个区域M和N、M是由y≥0,y≤x和y≥z-x这三个不等式确定的、N是随t变化的区域,它由不等式t≤x≤t+1的确定,t的取值范围是0≤t≤1、设M和N的公共面积是函数f(t),求证:f(t)=-t2+t+、导析:这是一个基本问题,关键是确定M和N的公共部分的形状、可先让学生自行画出M、N这两个区域,然后再作判断、如图所示,依题意,区域M是图中△AOB,区域N是直线x=t与x=t+1(0≤t≤1)之间的带形域、M和N的公共部分为图中的阴影部分五边形ACDEF(包括边界)、关于五边形ACDEF面积的计算,可引导学生从下面三个途径去考虑:(1)△AOB的面积减去Rt△ODC、Rt△BEF的面积;(2)过A作x轴的垂线,将其划分为两个直角梯形来计算;(3)连结CF,将其划分为一个直角三角形CAF和一个直角梯形CDEF去求解、[例2]已知实数x、y满足2x+y≥1,求u=x2+y2+4x-2y的最小值、导析:注意到所求式的结构特点,学生容易想到将其作如下的配方变形、u=(x+2)2+(y-1)2-5显然,(x+2)2+(y-1)2表示点P(x,y)与定点A(-2,1)的距离的平方、由约束条件2x+y≥1知,点P(x,y)在直线l:2x+y=1的右上方区域G、于是,问题转化为求定点A(-2,1)到区域G的最近距离、由图知,点A到直线l的距离为A到区域G 中点的距离的最小值、d=∴d2=、故umin=d2-5=-、说明:这是一个条件最值问题,由于所求式呈现出两点间距离的特点,所以我们应用了等价转化的思想,应用解析法使问题得到巧妙地解决、[例3]设实数x、y满足不等式组(1)求点(x,y)所在的平面区域;(2)设a>-1,在(1)所求的区域内,求函数f(x,y)=y-ax 的最值、导析:必须使学生明确,求点(x,y)所在的平面区域,关键是确定区域的边界线,可从去掉绝对值符号入手、(1)已知的不等式组等价于解得点(x,y)所在的平面区域为所示的阴影部分(含边界)、其中,AB:y=2x-5;BC:x+y=4;CD:y=-2x+1;DA:x+y=1、(2)f(x,y)表示直线l:y-ax=k在y轴上的截距,且直线l与(1)中所求区域有公共点、∵a>-1,∴当直线l过顶点C 时,f(x,y)最大、∵C点的坐标为(-3,7),∴f(x,y)的最大值为7+3a、如果-1<a≤2,那么当直线l过顶点A(2,-1)时,f(x,y)最小,最小值为-1-2a、如果a>2,那么当直线l过顶点B (3,1)时,f(x,y)最小,最小值为1-3a、说明:由于直线l的斜率为参数a,所以在求截距k的最值时,要注意对参数a进行讨论,方法是将直线l动起来、二、参考例题[例1]不等式2x-y-6>0表示的平面区域在直线2x-y-6=0的()A、左上方B、右上方C、左下方D、右下方分析:因直线2x-y-6=0不过原点,故可取原点(0,0)代入2x-y-6,得20-0-6=-6<0,在直角坐标系中画出直线2x-y-6=0,结合图形可知与原点同在直线一侧的平面区域表示2x-y-6<0,故2x-y-6=0右下方表示2x-y-6>0、解:在直角坐标系中画出直线2x-y-6=0,将原点(0,0)代入直线方程2x-y-6=0即可判定,应选D、[例2]图中阴影部分可用二元一次不等式组表示()A、B、C、D、分析:结合图形可知,相关联的直线方程分别为x=0,y=-2,2x-y+4=0,再由原点(0,0)代入2x-y+4可知20-0+4=4>0,故与原点同侧的平面区域表示2x-y+4≥0的区域、解:找出相关直线方程后,将原点(0,0)坐标代入直线方程判定平面区域可知选C、[例3]画出不等式组表示的平面区域图形,并计算它表示的平面区域的面积、分析:分别画出直线x=3,x+y=0,x+5-y=0,再代点判定平面区域、解:在直角坐标系画出直线x=3,x+y=0,x-y+5=0,因原点(0,0)不在直线x-y+5=0上,故将原点(0,0)代入x-y+5可知,原点所在平面区域表示x-y+5≥0部分,因原点在直线x+y=0上,故取(0,1)代入x+y判定可知点(0,1)所在平面区域表示x+y≥0部分,如图所示:解相应的方程组可求出A、B、C三点的坐标分别为(3,8),(-),(3,-3)、为计算△ABC的面积,可将AC作底边,点B作三角形顶点、S△ABC=、[例4]求下面不等式组表示的平面区域内的整点、分析:先画出不等式组所表示的平面区域,再根据图形找出整点、解:如图作直线l1:3x-2y-2=0,l2:x+4y+4=0,l3:2x+y-6=0,分别求出l1与l3的交点A(2,2),l1与l2的交点B(0,-1),l2与l3的交点C(4,-2),直线x=1与边界交于E(1,)、F(1,-),直线x=2与边界交于A(2,2)、G(2,-),直线x=3与边界交于M(3,0)、N(3,-)、由图可看出(1,-1)、(1,0)、(2,1)、(2,0)、(2,-1)、(3,-1)即为所求的整点、[例5]求不等式|x-2|+|y-2|≤2表示的平面区域的面积、分析一:依绝对值的定义去掉绝对值符号、解法一:|x-2|+|y-2|≤2作出以上不等式组所表示的平面区域;它是边长为2的正方形,其面积为8、分析二:因|x-2|+|y-2|=2是|x|+|y|=2向右、向上各平移2个单位而得到的,利用平移前后不改变图形的大小和形状解题、解法二:|x-2|+|y-2|≤2是由|x|+|y|≤2经过向右、向上各平移2个单位得到的,所以|x-2|+|y-2|≤2表示的平面区域的面积等于|x|+|y|≤2表示的平面区域的面积,由于|x|+|y|=2图象关于x轴、y轴、原点均对称,故求得平面区域如图所示:的面积为2、故|x|+|y|≤2的面积为42=8、∴所求面积为8、三、参考练习题1、画出下列不等式表示的平面区域、(1)2x+y-10<0;(2)y≤-2+3、解:(1)先画出直线2x+y-10=0(画成虚线),取点(1,1),代入2x+y-10,有21+1-10=-7<0∴2x+y-10<0表示的区域是直线2x+y-10=0的左下半平面、如图所示、评述:本题用点(1,1)代入2x+y-10,来判断2x+y-10<0所表示的区域,遵循的是最简化原则、(2)将y≤-2x+3变形为2x+y-3≤0,首先画出2x+y-3=0(画成实线)、取点(0,0)代入2x+y-3,有20+0-3=-3<0、∴2x+y-3≤0表示的平面区域是直线2x+y-3=0的左下半平面、∴2x+y-3≤0表示的平面区域是直线2x+y-3=0以及左下半平面、如图、评述:本题解答过程中将y≤-2x+3变形为2x+y-3≤0来处理,其他类似情况,也须同样变形、3、画出下列不等式组表示的平面区域、解:不等式组的解集是x+y≤5,①x-2y≥3,②的解集的交集、①式区域是直线x+y-5=0左下半平面区域并且包括直线x+y-5=0、②式区域是x-2y-3=0的右下半平面区域并且包括直线x-2y-3=0、如图所示、4、画出不等式组表示的平面区域、解:不等式x<3表示直线x=3左侧点的集合、不等式2y≥x即x-2y≤0表示直线x-2y=0上及左上方点的集合、不等式3x+2y≥6即3x+2y-6≥0表示直线3x+2y-6=0上及右上方点的集合、不等式3y<x+9即x-3y+9>0表示直线x-3y+9=0右下方点的集合、综上,不等式组表示的平面区域如图:评述:对于直线Ax+By+C=0同一侧的所有点(x、y),实数Ax+By+C的符号相同,所以只须在直线某一侧任取一点(x0,y0)代入,由Ax0+By0+C值的符号即可判断出Ax+By+C表示的是直线哪一侧的点集、●备课资料一、简单线性规划问题的向量解法[例1]设z=2x+y,式中变量x,y满足下列条件求z的最大值和最小值、解:画出可行域如图所示中的阴影部分过原点O(0,0)作直线l0:2x+y=0,正法向量为n=(2,1)、当直线2x+y=t沿着正法向量平行移动时,t的值就逐渐增大,当直线2x+y=t通过与可行域的公共点B(1,1)时,目标函数z=2x+y取得最小值zmin=21+3=3;当直线2x+y=t通过与可行域的公共点C(5,2)时,目标函数z=2x+y取得最大值、zmax=25+2=12、[例2]求z=2x-y的最大值和最小值,式中变量x、y满足下列条件求z的最大值和最小值、解:如图所示可行域:过原点O(0,0)作直线l0:2x-y=0,正法向量为n=(2,-1),当直线2x-y=t沿着正法向量方向平行移动时,t的值就逐渐增大;当直线2x-y=t通过与可行域的公共点C(5,2)时,使目标函数z=2x-y 取得最大值为:zmax=25-2=8;当直线2x-y=t沿着负法向量方向平行移动时,t的值就逐渐减小,当直线2x-y=t通过与可行域的公共点A(1,)时,目标函数z=2x-y取得最小值为:zmin=-、这道题若用课本提供的方法,用纵截距来做学生易出错、这是因为由z=2x-y得y=2x-z与例1相比此处z为直线l:y=2x-z的纵截距的相反数,故欲求z的最大值与最小值,需先求出直线系y=2x+t 中与可行域有公共点的直线的纵截距的最小值与最大值,这样一正一反,概念容易混淆而出差错,而用按正法向量方向取最值不会出差错、为了避免这种差错,可以用横截距来做、由z=2x-y得x= (略)、通过例2 n种方法的比较不难看出用正法向量方法解题比较简单,学生容易掌握且不易出错、下面就用正法向量的方法解简单线性规划问题作一个说明、求x、y满足下列约束条件的目标函数z=ax+by的最大值与最小值:我们用符号K表示可行域(为便于说明仅假设可行域是有界的凸多边形),现在的问题是在可行域K中找一点(x0,y0),使ax0+by0达到最大(或最小)、设ax+by=t(把t作为参数)是表示平行直线系、在K中任取一点(x0,y0),使得ax0+by0=t就表示平行直线系中通过(x0,y0)的一条直线,而坐标原点到这直线的距离为d=,这说明把点(x0,y0)的坐标代入目标函数的绝对值正好是坐标原点到这条直线距离的倍(即d)、所以我们要在可行域K中找一点(x0,y0),使ax0+by0达到最大(或最小)就转化为在直线系ax+by=t中找一条直线,使得这条直线通过可行域中的某一点且这条直线找到原点的距离最大(或最小)、怎样寻找这条直线呢?先作l0:ax+by=0、(1)若l0与K无交点,则让直线系ax+by=t 沿着正法向量方向从l0平行移动到与K有交点,如图,这时t为正且逐渐增大,移动到刚开始进入K且与K相交的那种点,这时原点到这直线的距离达到最小,即目标函数z=ax+by达到最小值zmin=ax0+by0;继续移动到刚开始要离开K但仍与K相交的那种点,这时原点到这直线的距离达到最大,即目标函数z=ax+by达到最大值zmax=ax0+by0、反之,如果让直线系ax+by=t沿着负法向量的方向从l0平行移动到与K刚有交点,如图所示,因为这时t为负且逐渐减小,移动到刚开始进入K且与K相交的那种点,这时原点到直线的距离达到最小,因t为负,此时目标函数达到最大值zmax=ax0+by0,移动到刚开始要离开K但仍与K相交的那种点时,此时直线到原点的距离最大,而目标函数达到最小值zmin=ax0+by0、(2)若l0与K有交点,如图,则直线系从l0开始沿正法向量方向平行移动的为最大值,沿负法向量方向平行移动的为最小值、本文从目标函数的法向量的观点来求最优解,而目标函数的法向量是教材上的阅读材料,不需要补充新的知识,学生理解容易,操作方便且不易出错,是提高学生能力的较好方法、二、参考例题[例1]已知x、y满足不等式组,试求z=300x+900y的最大值时的整点的坐标,及相应的z的最大值、分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y取最大值时的整点、解:如图所示平面区域AOBC,点A(0,125),点B(150,0),点C的坐标由方程组得C(),令t=300x+900y,即y=-,欲求z=300x+900y的最大值,即转化为求截距的最大值,从而可求t的最大值,因直线y=-与直线y=-x平行,故作与y=-x的平行线,当过点A(0,125)时,对应的直线的截距最大,所以此时整点A使z取最大值,zmax=3000+900125=、[例2]求z=600x+300y的最大值,使式中的x,y满足约束条件的整数值、分析:画出约束条件表示的平面区域即可行域再解、解:可行域如图所示:四边形AOBC,易求点A(0,126),B(100,0)由方程组:得点C的坐标为(69,91)因题设条件要求整点(x,y)使z=600x+300y取最大值,将点(69,91),(70,90)代入z=600x+300y,可知当时,z取最大值为zmax=60070+300900=69000、[例3]已知x、y满足不等式,求z=3x+y的最小值、分析:可先找出可行域,平行移动直线l0:3x+y=0,找出可行解,进而求出目标函数的最小值、解:不等式x+2y≥2,表示直线x+2y=2上及右上方的点的集合;不等式2x+y≥1表示直线2x+y=1上及右上方的点的集合、可行域如图所示:作直线l0:3x+y=0,作一组与直线l0平行的直线l:3x+y=t,(t∈R)、∵x、y是上面不等式组表示的区域内的点的坐标、由图可知:当直线l:3x+y=t通过P(0,1)时,t取到最小值1,即zmin=1、●备课资料参考练习题1、某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表甲原料(吨)乙原料(吨)费用限额成本100015006000运费5004002000产品90100解:设此工厂每月甲、乙两种原料各x吨、y吨,生产z千克产品,则:z=90x+100y作出以上不等式组所表示的平面区域,即可行域:由令90x+100y=t,作直线:90x+100y=0即9x+10y=0的平行线90x+100y=t,当90x+100y=t过点M()时,直线90x+100y=t中的截距最大,由此得出t的值也最大,最大值zmax=90=440、答:工厂每月生产440千克产品、2、某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成、已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?解:设每天生产A型桌子x张,B型桌子y张、则目标函数为:z=2x+3y作出可行域:把直线l:2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=2x+3y取最大值、解方程得M的坐标为(2,3)、答:每天应生产A型桌子2张,B型桌子3张才能获得最大利润、评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解、第 1 页共 1 页。
人教版A版高中数学高二必修五 3.3简单的线性规划内容导学
简单的线性规划内容导学内容导学:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性归划问题.1.可行域满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。
可行域一般是二元一次不等式(组)表示的平面区域,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.2.目标函数z Ax By C =++(,A B 不全为零)被称为目标函数.当0B ≠时,由z Ax By C =++得A z C y x B B -=-+.这样,二元一次函数就可视为斜率为A B -,在y 轴上截距为z C B-,且随z 变化的一组平行线.于是,把求z 的最大值和最小值的问题转化为:求直线与可行域有公点时,直线在y 轴上的截距的最大值或最上值问题.对线性目标函数z Ax By =+中的B 的符号一定要注意:当0B >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴上截距最小时,z 值最小;当0B <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.3.最优解的求法如果可行域是一个多边形,那么一般在某顶点处使目标函数取得最大值或最小值,最优解一般就是多边形的某个顶点,到底哪个顶点为最优解,可有两种确定方法:一是将目标函数的直线平行移动,最先通过或最后通过的顶点便是最优解;另一种方法可利用围成可行域的直线的斜率分别为,12n k k k <<<,而且目标函数的直线的斜率为k ,则当1i i k k k +<<时,直线i l 与1i l +相交的顶点一般是最优解.特别地,当表示线性目标函数的直线与可行域的某条边平行时()i k k =,其最优解可能有无数个.若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与表示线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.4.线性规划问题的解题步骤(1)建模 建模是解决线性规划问题极为重要的环节与技术.首先,要过文理关.理清题意,找清关系,列出关系表格.其次,要过数理关.即将各种关系数量化,实现实际问题与数学问题的转化.可分三步走:一设:设出所求的未知数.二列:列出线性约束条件.三建:建立目标函数.(2)求解 即过算理关,可以分为四步:一画:画出可行域,将代数问题化为几何问题.二移:采用平移的方法找出符合条件的平行线系中的直线.三求:求出最优解(,)x y .四答:即下结论,写出满足条件的最优解并求出目标函数z 的最值.(3)还原 把数学问题还原为实际问题,以便用来指导我们的生产实践.题型导析:线性规划问题的应用范围很广,简单的线性规划问题主要解决生产实际中资源配置和降低资源消耗两个方面的问题.(1)在人力、物力、资金等资源有限给定时,怎样利用对有限资源的合理配置,使产品结构更合理,收到的效益最大.例1:央视为改版后的《非常6+1》栏目播放两套宣传片.其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万,宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多?播放片甲 播放片乙 节目要求 片集时间(min )3.5 1 ≤16 广告时间(min )0.5 1 ≥3.5 收视观众(万) 60 20解:设电视台每周应播映片甲x 次, 片乙y 次,总收视观众为z 万人.则其线性约束条件为:42160.5 3.5,x y x y x y N +≤⎧⎪+≥⎨⎪∈⎩,目标函数为:6020z x y =+画出了可行域如下图由图可得:当3x =,2y =时,220max z =.答:电视台每周应播映甲种片集3次,乙种片集2次才能使得收视观众最多.小结:把实际问题转化成线性规划问题即建立数学模型是解决本题的关键.建模时要分清已知条件中,哪些属于约束条件,哪些与目标函数有关.(2)完成给定的某顶任务,怎样统一筹划安排资金、人力、物力,最大限度地降低资源消耗.例2.北京市某中学准备组织学生去国家体育场“鸟巢”参观.参观期间,校车每天至少要运送480名学生.该中学后勤集团有7辆小中巴、4辆大中巴,其中小中巴能载16人、大中巴能载32人. 已知每辆客车每天往返次数小中巴为5次、大中巴为3次,每次运输成本小中巴为48元,大中巴为60元.请问每天应派出小中巴、大中巴各多少辆,能使总费用最少?数量 往返次数 载人数 每次运输成本 总人数 小中巴 7 5 16 48 ≥480 大中巴 4 3 32 60x y z 5163324800704,x y x y x y N⋅+⋅≥⎧⎪≤≤⎪⎨≤≤⎪⎪∈⎩,目标函数为:240180z x y =+其可行域如下图:由网格法可得:2x =,4y =时,min 1200z .答:派4辆小中巴、2辆大中巴费用最少.小结:求解整点最优解的方法称为——网格法.网格法主要依赖作图,要规范地作出精确图形.解题中要注意利用数形结合思想、化归思想,几何方法等处理代数问题.。
高二数学高效课堂资料简单的线性规划课件
(A)6
(B) -6 (C)10
(D) -10
x y 4
4.平面内满足不等式组
x 2 y 6 x 0
的所有点中,
y 0
使目标函数z=5x+4y取得最大值的点的坐标
是___(4_,__0_)_
5.在如图所示的坐标平面的可行域内(阴影部分且
包括周界),目标函数z=x+ay取得最小值的最优解
经过A(1,1)时,zmin 3
A(1,1)
x
0
经过B(5,2)时,zmax 12
x1
l : y 2x
3x 5 y 25
例3: 若x, y满足下列条件: x - 4y -3
3x 5y 25
1)求z=2x-y的最值
x 1
y
22
C(1, )
5
x 4 y 3
右上方的(平0,2面)区域;(0,0)
代入点2的、坐点表标集示{直(线x( (,xy12),,32+|) )yx-+y1-=10<( (01-}1,-,01) )
左下方的(平0,5面) 区域。(0,-2)
x+y-13区值、的域直正的负线边x界+y正。-1=0叫做这负两个
y
1
x 01
x+y-1=0
同侧同号,异侧异号
A(1,1)
0
x1
B(5,2)
x
3x 5 y 25
例3 : 若x, y满足下列条件: x - 4y -3 3x 5y 25 x 1
7)若 z=ax+y取得最小值的最优解
有无数个, 求实数a的值
y C(1, 22)
高二数学简单的线性规划知识精讲
高二数学简单的线性规划【本讲主要内容】简单的线性规划二元一次不等式表示的平面区域,线性规划的意义。
【知识掌握】 【知识点精析】 1、二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)。
由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域(特殊地,当C ≠0时,常把原点作为此特殊点)。
2、线性规划若对于变量x 、y 的约束条件都是关于x 、y 的一次不等式,可称其为线性约束条件。
z =f(x,y)是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数。
当z =f(x,y)是关于x 、y 的一次解析式时,z =f(x,y)叫做线性目标函数。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解(x ,y )叫做可行解;由所有可行解组成的集合叫做可行域。
使目标函数取得最大值和最小值的可行解,叫做最优解。
【解题方法指导】例1. 画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域。
分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
解:不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合,x +y ≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合。
不等式组表示平面区域即为图示的三角形区域。
例2. 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+0,01222y x y x y x ,求z =3x +y 的最小值。
简单的线性规划高二数学 教案
江西省南昌大学附属中学简单的线性规划高二数学胡凌云一、教材在本章节中的地位及作用1.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》中增加的一个新内容,反映了《新大纲》对数学知识应用的重视,体现了数学的工具性、应用性.2.本节内容渗透了转化、归纳、数形结合数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.3.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.二、教学目标1.知识目标:能把实际问题转化为简单的线性规划问题,并能给出解答.2.能力目标:培养学生观察、联想以及作图的能力,渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力.3.情感目标:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.三、教学重点与难点1.教学重点:建立线性规划模型2.教学难点:如何把实际问题转化为简单的线性规划问题,并准确给出解答.解决重点、难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,突破难点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.四、教学方法与手段1.教学方法为了激发学生学习的主体意识,面向全体学生,使学生在获取知识的同时,各方面的能力得到进一步的培养.根据本节课的内容特点,本节课采用启发引导、讲练结合的教学方法,着重于培养学生分析、解决实际问题的能力以及良好的学习品质.2.教学手段新大纲明确指出:要积极创造条件,采用现代化的教学手段进行教学.根据本节知识本身的抽象性以及作图的复杂性,为突出重点、突破难点,增加教学容量,激发学生的学习兴趣,增强教学的条理性、形象性,本节课采用计算机辅助教学,以直观、生动地揭示二元一次不等式(组)所表示的平面区域以及图形的动态变化情况.3.学生课前准备坐标纸、三角板、铅笔和彩色水笔五、教学过程设计教学流程图(一)创设情境,新课导入(教师活动)通过多媒体创设情境(学生活动) 思考、并根据分析,尝试用坐标纸作图、解答.引例:某班班长赵彬预算使用不超过50元的资金购买单价分别为6元的笔筒和7元的文具盒作为奖品,根据需要,笔筒至少买3个,文具盒至少买2个,问他最多共买多少个笔筒和文具盒?请同学们考虑怎么将这个实际问题转化为数学问题?设计意图:通过创设情境,自然地让学生感受到数学与实际生活息息相关,激发学生的学习热情,明确本节课探究目标,同时又复习了线性规划问题的图解法.(二)例题示范,形成技能(教师活动)电脑打出例题,并作分析.(学生活动)思考、并根据分析,尝试解答.例1要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型 钢板类型 A 规格 B 规格 C 规格 第一种钢板 2 1 1 第二种钢板123今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?[分析]本题是给定一项任务,如何合理安排和规划,能以最少的资源来完成该项任务 (审题)引导学生弄清各元素之间的关系,抓住问题的本质.(建模)① 确定变量及目标函数:第一种钢板x 张,第二种钢板y 张,所用钢板数为z 张,则z =x+y ② 分析约束条件;③ 建立线性规划模型;设需截第一种钢板x 张,第二种钢板y 张,由题中表格得⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,273,182,152y x y x y x y x试求满足上述约束条件的x, y ,且使目标函数z =x+y 取得最小值(其中x, y 均为正整数).因此把实际问题转化为线性规划问题.(求解)④ 运用图解法求出最优解;用多媒体教学, 着重分析如何寻找最优解是整数解.⑤ 回答实际问题的解.解:设需截第一种钢板x 张,第二种钢板y 张,根据题意可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,273,182,152y x y x y x y x z=x+y ,作出以上不等式组所表示的平面区域,即可行域. 作直线l : x+y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点A ,且与原点距离最近,此时z=x+y 取最小值.解方程组215327x y x y +=⎧⎨+=⎩,,得交点A 的坐标(183955,),由于185和395都不是整数,所以可行域内的点(183955, )不是最优解.将直线l 1向可行域内平移,最先到达的整点为B(3,9)和C(4,8)它们是最优解,此时z 取得最小值12. 答:要截得所需规格的三种钢板,且使所截两种钢板的张数最少的方法有两种,第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张,两种方法都最少要截得两种钢板共12张.[说明]这种寻找整点最优解的方法可简述为“平移找解法”,即打网格,描整点,平移直线l ,找出整点最优解.此法应充分利用非整点最优解的信息,作图要精确.设计意图:把实际问题转化为线性规划问题是本节课的重难点,而寻找整点最优解则是例1的难点.为此本环节充分利用计算机辅助教学,投影题目及表格,作可行域,动态演示直线的平移过程等,不仅能够增大教学容量,而且能够使数学知识形象化、直观比,诱发学生在感情上参与;同时,多媒体教学通过对学生各种感官的刺激,以一种接近人类认知特点的方式来组织、展示教学内容及构建知识结构,能把课堂结构反映得更集中、典型、精粹,从而大大优化了课堂结构.例2某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t 、B 种矿石不超过200 t 、煤不超过360 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?[分析] 本题是在资源一定的条件下,怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大. (审题)引导学生弄清各元素之间的关系,抓住问题的本质,整理已知数据列成下表:产品消耗量 资源 甲产品(1t )乙产品(1t )资源限额(t )A 种矿石(t ) 10 4 300B 种矿石(t ) 5 4 200 煤(t ) 4 9 360 利润(元)6001000(建模)(1)确定变量及目标函数:若设生产甲、乙两种产品分别为x t, y t, 利润总额为z 元,则用x ,y 如何表示z ?(2)分析约束条件:z 值随甲、乙两种产品的产量x ,y 变化而变化,但甲、乙两种产品是否可以任意变化呢?它们受到哪些因素的制约?怎样用数学语言表述这些制约因素? (3)建立线性规划模型:已知变量x,y 满足约束条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x 求x, y 取何值时,目标函数z =600x +1000y 取得最大值,(求解)采用图解法求出最优解解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,根据题意可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x 目标函数为:z=600x+1000y . 作出以上不等式组所表示的平面区域,即可行域. 作直线l :600x+1000y=0, 即直线l :3x+5y=0,把直线向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x =36029≈12.3y=100029≈34.5答:应生产甲产品约12.3 t ,乙产品约34.5 t ,能使利润总额达到最大[说明]对于最优解的近似值,要根据实际问题的具体情形取近似值.按四舍五入取值即x =12.4,y =34.5时,虽然z=41940最大,但此时的x,y 不在可行域内.可以验证点(12.4,34.4)和(12.3,34.5)在可行域内,但当x =12.4,y =34.4时,z =41840;当x =12.3,y =34.5时,z =41880,因此按精确度取舍后的最优解点,可以离M 点“较远”,但必须离l 1距离最小.本例要求精确到0.1 t ,只需把坐标平面以0.1 单位网格化,在格点上找到离l 1距离最小的点,就是符合题意的最优解.设计意图:学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,不能正确理解题意,弄清各元素之间的关系;不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;孤立地考虑单个的问题情境,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,本环节教师侧重于引导学生建立数学模式,其余过程由学生自主解决.用多媒体展示最优解的近似值.引导学生结合上述两例子总结归纳解决这类问题的方法和步骤:(三)学生互动巩固提高(教师活动)电脑打出练习、要求学生独立解答.巡视学生解答情况,纠正错误.(学生活动)用坐标纸作图、解答.某人有楼房一幢,室内面积共180m2,拟分隔成两类房间作为旅游客房.大房间每间面积为18m2,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15m2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大效益?(答案:隔出大房间3间,小房间8间或者只隔出小房间12间就能获得最大收益.)(教师用投影展示学生的结论并用多媒体展示正确结论同时点评)设计意图:巩固、加深对线性规划解决实际问题的理解和应用.(四)概括提炼,总结升华(引导学生从知识和思想方法两方面进行总结)1.本节课你学了哪些知识?2.本节课渗透了什么数学思想方法?(五)布置作业,探究延续1.课本作业:P65,习题7.4第3,5题.2.选做题:P88,第16题3.拓展题:通过网络搜索查阅有关线性规划的应用实例设计意图:强化基本技能训练,巩固课堂内容,发现和弥补教与学中的遗漏和不足,以便及时矫正.(六)板书设计(略)(七)教学设计说明1.本节课是线性规划第三课时的教学内容,它以二元一次不等式(组)所表示的平面区域和线性规划的图解法等知识为基础,体现了数学的工具性、应用性,同时也渗透了转化、归纳、数形结合数学思想.2.学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模,故本设计把“实际问题抽象转化为线性规划问题”作为本堂课的重难点,并紧紧围绕如何引导学生根据实际问题的已知条件,找出约束条件和目标函数,然后利用图解法求得最优解作为突破难点的关键.3.对于应用问题而言,学生遇到的障碍主要有三类:①不能正确理解题意,弄清各元素之间的关系;②不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立地考虑单个的问题情境,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,故将本节课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在同学们面前.以利于他们理解;分析完题意后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法. 4.本节课的设计,力图让学生在教师的指导下,从“懂”到“会”到“悟”,体会钻研的意识,品尝成功的喜悦,从而使学生在积极活跃的思维过程中,数学能力和数学素养得到提高.。
高二数学简单的线性规划教案 人教版
高二数学简单的线性规划教案——可行域最优解的应用 成都列五中学 刘玉成一、教学目标:知识目标:学会用线性规划的图解法解决一些实际生活中有关的最优问题。
渗透转化的思想、数形结合的思想解决问题。
能力目标:培养学生们分析整理信息的能力、协作学习的能力以及应用所学知识解决实际问题的能力。
品德目标:引发学生学习与使用数学知识的兴趣,发展创新精神,培养实事求是,理论与实际相结合的科学态度与科学精神。
通过师生、生生互动,增进增强学生的自主性和合作精神。
二、教学重点:如何把实际问题转化为线性规划问题即建模。
教学难点:线性规化问题的图解法和建模。
三、教学方法:合作、讨论式教学法 四、教学的操作程序:教师活动教学过程学生活动五、教学过程:一、教材分析:线性规划的应用对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:不能正确理解题意,弄清各元素之间的关系;不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.二、教学建议:(1)对作业、思考题、研究性题的建议:作业主要训练学生规范的解题步骤和作图能力;思考题主要供学有余力的学生课后完成;研究性题综合性较大,主要用于拓宽学生的思维.(2)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(3)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.三、数学小知识:线性规划最早的工作始于20世纪30年年代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
3x + y = 300
A
C B
x + 2y = 252
252
O 100
x
2x + y = 0
求z = 3x + y的最小值. 分析:可先找出可行域, 平行移动直线l0:3x + y = 0,找出可行解,进而 求出目标函数的最小值. z min = 1.
x 2y 2 例3 已知x、y满足不等式组 2 x y 1 , x 0, y 0
y
x 1
C B
1 2 3 4 5 6
l0 : 2 x y 0 6
l1
5 4 3 2 1
l2
A
x 4y 3 0
x 4 y 3 3 x 5 y 25 x 1
3 x 5 y 25 0
7
O
x
以经过点B(1,1)的直线l1所对应的 t最小.所以:zmax = 2 × 5 + 2 = 12, zmin = 2 × 1 + 3 = 3.
2x + y = 300 A C x + 2y = 250 B
150 250 x
l0:4x + 3y = 0
变题2:若目标函数设为z = 300x + 600y ,约束条件不变,则 z的最大值可 在线段AC上任一点处取得.等等.
事实上,可行域内最优解对应的
点在何处,与目标函数z = ax + by(a 0,b 0)所确定的直线l0:ax + by = 0
,
2x+y =300
A O
C
150
x+2 y =250
B 250 x
典型例题:
y
作出直线l0:300x + 2x + y = 300 900y = 0,即x + 3y = 0, A C x + 2y = 250 将它平移至点A, B 显然,点A的坐标是可 O 150 250 x l0:x + 3y = 0 行域中的最优解,它使 z = 300x + 900y达到最大值. 易得点A(0,125),所以 z max = 300×0 + 900×125 = 112500.
线性规划的有关概念:
在上述问题中,不等式组是一组 对变量x、y的约束条件,由于这组约 束条件都是关于x、 y的一次不等式, 所以又可称其为线性约束条件. z = 2x + y是欲达到最大值或最小值所涉 及的变量x、y的解析式,我们把它称 为目标函数.由于z = 2x + y又是关于 x、 y的一次解析式,所以又可叫做线 性目标函数.
小结
y
z max = 3.
1 1 B( 2 , 2 ) x 1 2 -2 -1 A(2,-1) C(-1,-1) -1 x+ y -1=0 2 x+ y = 0
3 2 1 O
x-y = 0
练习:
3.教材P64练习1: (2) 求z = 3x + 5y的最大值和最小 值,使x、y满足约束条件
5 x 3 y 15 y x 1 . x 5y 3
y
x 1
C A B
1 2 3 4 5 6
l0 : 2 x y 0 6
5
4 3 2 1
x 4y 3 0
x 4 y 3 3 x 5 y 25 x 1
3 x 5 y 25 0
7
O
x
作一组与直线l0平行的直线(或平行 移动直线l0)l:2x + y = t,t R. 可知,当在 l0的右上方时,直线上 的点(x,y)满足2x + y > 0,即t > 0.
线性规划的有关概念:
注意:线性约束条件除了用一次不 等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性 约束条件下的最大值或最小值的问题, 统称为线性规划问题.例如: 我们刚才研究的就是求线性目标 函数z = 2x + y在线性约束条件下的最 大值和最小值的问题,即为线性规划 问题.
线性规划的有关概念:
y
典型例题:
P O 0.5
x + 2y = 2 2x + y = 1
2 x
l0:3x + y = 0
y 2x 0 1.满足线性约束条件 x 2 y 3 0 5 x 3 y 5 0 4 个整数点. 的可行域内共有_______
2.设z = x y,式中变量x,y满足
y 5 x-y +1=0 9 17 ( 8, 8 ) 3 x+5 y =0 A x-5y-3=0 1 C -1 O 3 x -1 B
小结
z max = 14, z min = 11.
5x+3y-15=0
小结
用图解法解决简单的线性规 划问题的基本步骤: 1.根据线性约束条件画出可行 域(即不等式组所表示的公共区域); 2.设t = 0,画出直线l0. 3.观察、分析,平移直线l0,从 而找到最优解. 4.最后求得目标函数的最大值或 最小值.
l0 : 2 x y 0 6
5
4 3 2 1
x 4y 3 0
x 4 y 3 3 x 5 y 25 x 1
3 x 5 y 25 0
7
O
x
从图上可看出,点(0,0)不在以 上公共区域内,当x = 0,y = 0时,t = 2x + y = 0. 点(0,0)在直线l0:2x + y = 0上.
的斜率(
就本例而言,若
a b
)有关.
a b
=
+ 2y = 250的斜率),则线段AC上所有
点都使 z 取得最大值 ( 如: z = 300x +
1 2
(直线x
600y时);
当
最大值(比如:例1);当 2 < 400x + 300y时),
1 < 2
a b
< 0时,点A处使z取得
a b
满足线性约束条件的解 (x , y) 叫 做可行解,由所有可行解组成的集合 叫做可行域.在上述问题中,可行域 就是阴影部分表示的三角形区域.其 中可行解 (5 , 2) 和 (1 , 1) 分别使目标 函数取得最大值和最小值,它们都叫 做这个问题的最优解.
2 x y 300 典型例题: x 2 y 250 例1已知x、y满足 x 0 , y 0
<
1 2
时,点C处使z取得最大值(比如:z = 其它情况请同学们课外思考.
典型例题:
例2 求z = 600x + 300y的最大值,使式
3 x y 300 中的x,y满足约束条件 x 2 y 252 . x N, y N 分析:画出约束
条件表示的平面区 域即可行域再解. z max = 600×70 + 300×900 = 69000.
试求z = 300x + 900y的最大值. 分析:先画出平面区域,然后 在平面区域内寻找使 z = 300x + 900y取最大值时的点.
典型例题:
例1已知x、y满足
试求z = 300x + 900y的最大值.
解:作出可行 域,见图中四边形 AOBC 表 示 的 平 面 区域.
y
2 x y 300 x 2 y 250 x 0 y 0
y
x 1
C A B
1 2 3 4 5 6654 3 2 1
x 4y 3 0
x 4 y 3 3 x 5 y 25 x 1
3 x 5 y 25 0
7
O
x
分析:不等式组表示的区域是图 中的ABC.
y
x 1
C A B
1 2 3 4 5 6
作业
1. 阅读教材P60—61的内容.
2. 教材P65习题7. 4第2题(本上). 3.《数学之友》T7. 16.
解线性规划问题的基本步骤:
第一步:在平面直角坐标系中作 出可行域; 第二步:在可行域内找出最优解 所对应的点; 第三步:解方程的最优解,从而 求出目标函数的最大值或最小值.
典型例题:
变题1:在例1中, 若目标函数设为z = 400x + 300y,约束条 件不变,则z的最大值 在点C处取得.
y
O
y
x 1
C B
1 2 3 4 5 6
l0 : 2 x y 0 6
5
4 3 2 1
l2
A
x 4y 3 0
x 4 y 3 3 x 5 y 25 x 1
3 x 5 y 25 0
7
O
x
而且, 直线l往右上平移时, t随之增大. 在经过不等式组所表示的公共区 域内的点且平行于 l 的直线中,以经过 点A(5,2)的直线l2所对应的t最大,
x y1 4x y 4 . 2 x 3 y 8 0
练习:
求z的最大值和最小值.
z max = 1, z min = 3.
小结
练习:
3.教材P64练习1: (1) 求z = 2x + y的最大值,使式 中的x、y 满足约束条件
y x x y 1. y 1
x 4 y 3 y满足下列条件 3 x 5 y 25 . x 1
设z = 2x + y,式中变量x、
求z的最大值和最小值.
分析:从变量 x 、 y 所满足的条件 来看,变量 x 、 y 所满足的每个不等 式都表示一个平面区域,不等式组 则表示这些平面区域的公共区域.