FEMAG晶体生长建模软件--Numerical_Prediction_of_Bulk_Crystal_Defects
全球半导体晶体生长仿真著名商业软件FEMAG-建模策略
2
Introduction
How to improve the growth process in terms of:
- crystal quality ? - process yield ? - energy consumption ? - production rate ?
FEMAGSoft © 2013
FEMAGSoft © 2013
1. Numerical strategy (cont’d)
Inverse QS and TD simulation of the Global temperature growth of a 300 field mm silicon crystal
t 1800 1740 1680 1620 1560 1500 1440 1380 1320 1260 1200 1140 1080 1020 960 900 840 780 720 660 600 540 480 420 360 300
• To resort to appropriate and up-to-date numerical simulation techniques to couple and solve these models
→ quasi-steady and dynamic models
FEMAGSoft © 2013
Numerical strategy (cont’d)
Stream function Temperature field
FEMAGSoft © 2013
Numerical strategy (cont’d)
FEMAG-1 timedependent simulation of Czochralski Ge growth
FEMAG晶体生长专业模拟软件
FEMAG 晶体生长专业模拟软件F产品与服务FEMAG Soft 擅长所有类型晶体材料生长方面的工艺模拟专业技术,比如: • 直拉法(Czochralski )• 区熔法(Floating Zone )• 适用于铸锭定向凝固过程工艺(DS ),Bridgman 法• 物理气相传输法(PVT )产品模块1. FEMAG/CZ-Czochralski (CZ) Process适用于Czochralski 直拉法生长工艺和Kyropoulos 生长工艺2. FEMAG/DS-Directional Solidification (DS) Process适用于铸锭定向凝固过程工艺3. FEMAG/FZ-Float Zone Process (FZ)适用于区熔法生长工艺FEMAG 软件是由比利时鲁汶大学研发的晶体生长数值仿真软件。
20世纪80年代中期,鲁汶大学François Dupret 教授带领其团队,开始晶体生长的研究,经过10多年的行业研发及应用,FrançoisDupret 教授于2003年成立了FEMAGS.A.(总部设在比利时Louvain-la-Neuve市),正式推出晶体生长数值仿真软件FEMAG 。
如今,FEMAG 软件已成为全球行业用户高度认可的数值仿真工具,在晶体生长数值模拟领域处于国际领先地位。
主要功能1. 全局热传递分析“全局性”即包涵所有拉晶要素在内,并考虑传热模式的耦合。
全局热传递模拟分析,主要考虑:炉内的辐射和传导、熔体对流和炉内气体流量分析。
2. 热应力分析按照经验,一般情况下,晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。
该软件可以进行三维的非轴对称和非各向同性温度场热应力分析计算,可以提出对晶体总的剪切力预估。
“位错”的产生是由于在晶体生长过程中,热剪应力超越临界水平,被称为CRSS(临界分剪应力),而导致的塑性变形。
3. 点缺陷预报该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过程中点缺陷的分布。
晶体生长计算软件FEMAG系列之晶体生长方法介绍
可扩展性
软件具有开放性和可扩展性, 用户可以根据需要添加新的材 料属性和边界条件。
图形界面
提供友好的图形界面,方便用 户进行模型建立、参数设置和 结果分析。
软件应用领域
半导体晶体生长
用于研究半导体晶体生长过程中的物理和化学行 为,优化晶体质量和性能。
光学晶体生长
用于研究光学晶体的生长过程,优化晶体光学性 能和加工工艺。
增强可视化功能
为了更好地帮助用户理解和分析计算结果,FEMag软件将 增加更强大的可视化功能,如3D图形界面、实时渲染等, 使用户能够更直观地查看和操作计算结果。
拓展应用领域和范围
扩大应用领域
随着晶体生长研究的不断发展,FEMag软件的应用领域将不 断扩大。未来,FEMag软件将不仅应用于传统的晶体生长研 究,还将拓展到其他相关领域,如材料科学、化学、生物学 等。
该软件通过建立数学模型,模拟晶体生长过程中各 种因素对晶体形态、结构和性能的影响。
FEMag软件提供了丰富的材料属性和边界条件设置 ,支持多种晶体结构和生长条件。
软件特点
01
02
03
04
高效计算
采用有限元方法进行数值计算 ,能够快速求解大规模的晶体 生长问题。
精确模拟
能够模拟晶体生长过程中的温 度场、浓度场、应力场等物理 场,以及化学反应过程。
专业和深入。
与实验结果的比较
FEMag与实验的一致性
FEMag软件在模拟晶体生长方面取得了与实验结果高度一致的结果。通过对比实验和模拟数据,可以验证 FEMag软件的准确性和可靠性,进一步推动其在晶体生长研究中的应用。
实验验证的局限性
尽管FEMag软件与实验结果具有较好的一致性,但实验验证仍然存在局限性。实验条件和参数的微小变化可能 会对结果产生显著影响,而模拟结果可能无法完全反映这些细微差异。因此,将实验和模拟结果相结合,进行综 合分析是更为可靠的方法。
晶体生长建模软件FEMAG-横向磁场直拉硅晶体生长的全局模拟
Top: field
velocity
Bottom: temperature field
Growth of a 300 mm crystal under a 500 mT TMF
FEMAGSoft © 2013
Cz Si growth under a TMF (cont’d)
Left: melt surface Right: meridional cross-sections parallel and perpendicular to the magnetic field
This hypothesis is satisfactory because:
- generally 3D components are rotating with respect to the 2D environment
- 3D components mostly view 2D components because of the presence of heat shields
Main modeling hypothesis:
- the viewed and hidden parts are calculated as axisymmetric
- or, equivalently, each surface of the enclosure is viewed as axisymmetric from the other surfaces
FEMAGSoft © 2013
Cz Si growth under a TMF (cont’d)
Flow and global heat transfer in a silicon Cz puller under the effect of a TMF
晶体生长软件FEMAG-DS之Directional Solidification (DS) Process(FEMAG-DS定向凝固模拟软件介绍)
晶体生长软件FEMAG-DS
之定向凝固
Directional Solidification (DS) Process
(FEMAG-DS)
FEMAG定向凝固模拟软件(FEMAG-DS)适用于铸锭定向凝固过程工艺(DS, HEM, VB, VGF)。
FEMAG定向凝固模拟软件用于设计新的热场,并研发新的方法以满足新的商业需求点,比如:
✓晶体微结构
✓优化
✓扩大生产规模
EMAG-DS模拟软件通过降低试验成本而节省R&D消耗。
定向凝固工艺中的三维熔体流动,速度剖面和界面预测
定向凝固铸锭炉
定向凝固工艺等温线和界面形状的二维仿真图
优化晶粒度
你是否企图在铸造工艺中控制晶粒度的大小呢?
晶体的位错密度依赖于:
✓晶体成核温度梯度
✓沉淀浓度
掌握晶体成核处的温度分布对于获得质量良好的定向凝固晶体铸锭是非常重要的。
掌握熔融硅的碳浓度分布是为了避免生成碳化硅颗粒,这对于获得质量良好的
定向凝固晶体铸锭是也同样重要。
FEMAG定向凝固模拟软件帮助工程师设计工艺配置从而优化产品质量。
为晶粒生长研究所进行的定向凝固速度分布预测
扩大生产规模
你可能梦想过增加定向凝固法硅晶锭的产量,但又担心失败风险及成本问题。
你想要测试你的多晶硅生长工艺参数的改进可能性吗?
若有一个快速建模的,分析准确且易用的求解工具来作为你测试可行性的平台怎么样呢?
这就是你一直寻求的FEMAG定向凝固模拟软件包。
FEMAG定向凝固模拟软件包提供给您一个全局的模拟平台去模拟多晶硅铸锭生长,是能够优化你所有多晶硅生长工艺参数的技术解决方案。
利用晶体生长计算软件FEMAG进行晶体生长计算仿真的结果图 ppt课件
利用晶体生长计算软件FEMAG进行晶 体生长计算仿真的结果图
• FEMAG软件是世界上第一款商业的材料晶体生长数值模拟软件,由比利时 新鲁汶大学教授Dr. François Dupret于20世纪80年代中期领导开发。
• Dr. François Dupret是第二届晶体生长模型国际研讨会主席、EUROTHERM相 变热力学研讨会联合主席、机械工程学位委员会主席,曾担任国际晶体生 长(Journal of Crystal Growth)期刊主编。
• FEMAG软件拥有国际上最先进、最高效、最全面的晶体生长工艺模拟技术 和多物理场耦合仿真功能,可模拟的晶体生长工艺包括提拉法(柴氏法,Cz 法)、泡生法(Ky法)、区熔法(FZ法)、坩埚下降法(垂直布里兹曼法, VB法)、物理气相传输法(PVT法)等,广泛应用于集成电路、太阳能光伏 、半导体、蓝宝石等领域。ON Semiconductor(安森美半导体)、美国 Kayex、Siltronic(世创电子材料)、AXT(美国晶体技术集团)、韩国 Nexolon、LG、韩国汉阳大学、Norut(挪威北方研究所)、日本SUMCO集团 、Gritek(有研新材料)、天津环欧半导体材料、中环股份、北京有色金属 研究总院、清华大学等企业和科研机构,均是FEMAG软件的用户。
FEMAG定向凝固模拟软件用于设计新的热场,并研发新的 方法以满足新的商业需求点,比如: ✓晶体微结构 ✓优化 ✓扩大生产规模
利用晶体生长计算软件FEMAG进行晶 体生长计算仿真的结果图
利用晶体生长计算软件FEMAG进行晶体生长计 算仿真的结果图
利用晶体生长计算软件FEMAG进行晶 体生长计算仿真的结果图
利用晶体生长计算软件FEMAG进行 晶体生长计算仿真的结果图
全球半导体晶体生长仿真著名商业软件FEMAG--Optimization of Silicon Ingot Quality
全球半导体晶体生长仿真著名商业软件FEMAGOptimization of Silicon I n go t Q u al it yby the Numerical P r e d i c ti on of Bulk Crystal D e f ec t sF. Loix2*, F. D upr e t1,2*, A. de Potter2, R. R ol i n s ky2, W. L i a ng2, N. Van den B oga e rt21CESAME R e s e a r ch C e nt e r, Uni v e r s i téc at ho li que de L ouva i n,Bât i m e nt EULER, 4 av. Georges L e m aît r e,B-1348 Louva i n-l a-N e uv e,B e l g i um2FEMAGSoft S.A. Company, 7 Rue André Dumont, A x i s Parc, B-1435 Mont-Saint-Guibert, B e l g i umThe growth of S ili c on(Si) i ngot s by the Cz oc hra l s ki(Cz) technique for e l e c t roni c (IC) a ppl i c a t i ons has been governed for more than 50 years by two, somewhat c ont ra di c t ory, t e c hnol ogi c a l obj e c t i ve s.First, the c rys t a l diameter has to be nearly constant and the l a rge s t pos s i bl e according to current market requirements. Second, the product quality has to be pe rfe c t l y c ont rol l e d in terms of c rys t a l defects and composition. On the other hand, grow i ng Cz S i c rys t a l s for phot o-volt a i c(PV) a ppl i c a t i ons requires to m i ni m i z e both the energy c ons umpt i on and the growth dura t i on without, however, gene ra t i ng a too l a rge content of m i c ro-voi ds in the c rys t a l.A c hi e vi ng these goa l s i s by no means easy s i nc e i nc re a s i ng the c rys t a l diameter re qui re s a l a rge r m e l t volume and hence results in a much more complex m e l t flow regime with c om pl i c a t e d heat, momentum and s pe c i e s transport effects, a very s e ns i t i ve s ol i d-li qui d i nt e rfa c e shape (with a l e ss uniform t he rm a l gradient), and in gene ra l an enhanced dynamic s ys t e m behavior. A s i m il a r enhancement of the systemdyna m i c behavior can result from the use of a high pull rate to i nc re a s e the growth speed. Therefore, in gene ra l,de s i gni ng the furnace hot zone will require to i nt roduc e appropriate heat s hi e l ds in order to w e ll-c ont rol the ra di a t i on he a t transfer whi l e a s a t i s fa c t ory m e l t flow pattern can only be obt a i ne d for l a rge diameter c rys t a l s by the a c t i on of transverse or configured m a gne t i c fi e l ds.Moreover the s e l e c t i on of opt i m a l proc e ss parameters (heater power, c rys t a l pulling rate, c rys t a l and c ruc i bl e rot a t i on rates, m a gne t i c fi e l d i nt e ns i ty if any, ambient gas flow rate, etc.) becomes much more difficult in vi e w of the i nc re a s e d system nonl i ne a ri ty and t i m e-depe nde nc y,e s pe c i a ll y during the c ri t i c a l process stages (necking, shouldering, t a il-e nd stage, c rys t a l detachment, …).N one t he l e ss,compared to the high difficulty to address these different t e c hnol ogi c a l i ss ue s,it i s worth observing that huge progress has been achieved in the l a s t decades in s e ve ra l s c i e nt i fi c dom a i ns.F i r s t, the phys i c s of ra di a t i on and c onve c t i on in Cz furnaces, and of defect form a t i on and transport in growing S i c rys t a l s,i s much better known, and hence the m a t he m a t i c a l m ode l s governing Cz S i c ry s t a l growth are better and better e s t a bl i s he d.In spite of the i mport a nt i m prove m e n t s that re m a i n necessary in the m ode li ng of turbulence in the m e l t a nd the ambient gas (i nc l udi ng the m ode li ng of m e l t turbulence under the effect of a m a gne t i c fi e l d) and of the s t ill i ns uffi c i e nt kno w l e dge of the m a t e ri a l parameters governing point-and micro-defect e vol ut i on in S i s i ngl e c rys t a l s,an a l m os t complete picture of the phy s i c s of S i growth today i s a va il a bl e.Secondly, num e ri c a l methods and computers have a l s o quickly progre ss e d s i nc e the de ve l opm e n t ofthe first m ode l s of Cz growth achieved in the 1980’s. Nowadays the qua s i-s t ea dy or t i m e-depe nde nt s i m ul a t i on of the Cz process has become po ss i bl e in an a cc e pt a b l e c om put i ng t i m e,with s uffi c i e nt l y refined meshes to resolve the key de t a il s of the problem, and with appropriate num e ri c a l techniques to handle the system de form i ng ge om e try (which comprises s e ve ra l moving components together with free boundaries such as the m e l t-c rys t a l and m e l t-ga s i nt e rfa c e s).Therefore, having at one’s di s pos a l the appropriate phys i c a l m ode l s, num e ri c a l tools a nd computer hardware, the route i s directly opened to process opt i m i z a t i on by means of num e ri c a l s i m ul a t i on.The obj e c t i ve of the present paper i s to ill us t ra t e how this strategy can be a ppl i e d by use of the FEMAG-CZ software as today co-de ve l ope d by FEMAG Soft S.A. Company and the CESAME research center of the Uni ve rs i téde L ouva i n (Belgium).We will here focus on the S i ingot quality pre di c t i on and i t s opt i m i z a t i on.We present a fully t i m e-depe nde nt m ode l devoted to predict the gl oba l heat transfer in the furnace, the s ol i d-liquid i nt e rfa c e shape, and the re s ult i ng di s t ri but i ons of point-and m i c ro-de fe c t s as c a l c ul a t e d from the S i nno-D ornbe rge r (S-D) model together with an e xt e ns i on of the l um pe d model of Voronkov and Kulkarni. All the t ra ns i e nt s are c ons i de re d including the effects of c rys t a l a nd c ruc i bl e lift, of the heat c a pa c i t i e s of the furnace c ons t i t ue nt s, of the t he rm a l i ne rt i a of the s ol i di fi c a t i on front, and of the dyna m i c defect governing l a w s.We hence show that dynamic effects deeply affect the defect di s t ri but i on inthe c rys t a l(fig 1.). In a ddi t i on to the c l a ss i c a l point-defect e vol ut i on mechanisms, a new l um pe d m ode l i s de ve l ope d to c a l c ul a t e the form a t i on a nd growth of m i c ro-de fe c t s in order to predict their dens i t i e s and s i z e di s t ri but i ons anywhere in the c rys t a l.Another key i ss ue in Cz S i growth i s to control the dens i ty of oxygen and any other s pe c i e s(i nc l udi ng dopants and i m puri t i e s) i ns i de the c rys t a l.M ode li ng i ss ue s will be here a ga i n de t a il e d.Finally, off-line process control pri nc i pl e s will be addressed. Results will ill us t ra t e how this tool can he l p in opt i m i z i ng c rys t a l shape and quality.P r e di c t e d defect de l t a C i-C v di s t r i bu t i on(C i,C v be i ng the c onc e nt r at i on ofi n t e r s t i t i al s , v acan c i e re s p e c t i v e l y) with aquas i-s t e ady (a) and a t i m e-d e pendent (b)simulation. The OSF ring is located at theposition where delta~= 0. This picturehighlights the strong impact on the pointdefect of the transient effects in the growing crystal.。
全球半导体晶体生长建模著名商业软件FEMAG 横向磁场直拉硅晶体生长的全局模拟 优质课件
FEMAGSoft © 2013
Cz Si growth under a TMF (cont’d)
Flow and global heat transfer in a silicon Cz puller
under the effect of a TMF (quasi-steady simulation)
Main modeling hypothesis:
- the viewed and hidden parts are calculated as axisymmetric
- or, equivalently, each surface of the enclosure is viewed as axisymmetric from the other surfaces
dH = L Ha-1 (L = Rs or Rc). Typically dH = 0.05 - 0.08 mm in industrial furnaces.
FEMAGSoft © 2013
Cz Si growth under a TMF (cont’d)
Transverse magnetic fields: FLET method
Bottom: velocity field magnitude and crosssection showing a sharp Hartmann layer along the melt-crucible interface.
FEMAGSoft © 2013
Cz Si growth under a TMF (cont’d)
Hypothesis:
Objective: global, quasi-steady or time-dependent calculations at a reasonable cost
全球半导体晶体生长仿真著名商业软件FEMAG--Numerical Simulation of Bulk Crystal Growth
Introduction (cont’d)
General objective of FEMAGSoft
• FEMAG-2 → FEMAG-3 software generation transition taking place from 2008-2009
→ strongly improved platform in terms of computation time, memory, etc.
FEMAGSoft © 2013
Introduction (cont’d)
Solving these problems requires …
• To develop a sound physical model for each separate effect
→ global and time-dependent modeling of heat transfer, turbulence modeling, defect modeling, …
Analysis of conical growth and shouldering stages m = 8.225 10-4 kg/m.s Wc= 3.82 rpm (0.4 s-1) Ws= -3.82 rpm (-0.4 s-1) Vpul = 1.8 cm/h (5. 10-6 m/s)
FEMAGSoft © 2013
1. Numerical strategy (cont’d)
FEMAG-1 timedependent simulation of Czochralski Ge growth
Direct dynamic simulation (imposed stepwise decrease of heater power, calculated crystal shape): evolution of the temperature field
FEMAG晶体生长模拟软件-DS法(定向凝固法)模拟
DS process simuldent simulation of DS process
Filling of a 20 cm side square crucible (“Minicaster” furnace)
Evolution of the temperature, velocity, oxygen and carbon concentration fields.
FEMAGSoft © 2013
DS process simulation (cont’d)
y Y Z = X + iY
z = x + iy
x
X
Real square cross-section
Transformed circular cross-section
FEMAGSoft © 2013
DS process simulation (cont’d)
Comparison of 3D FEM-spectral and 3D Cartesian simulations
FEMAGSoft © 2013
DS process simulation (cont’d)
Isotherms
Same isosurfaces : - Colored : 3D FEM-Spectral - Gray : 3D Cartesian
FEMAGSoft © 2013
DS process simulation (cont’d)
Direct solidification of multi-crystalline silicon with a square crucible
Hypothesis: square symmetry of all averaged fields Objective: global, quasi-steady or time-dependent calculations at a reasonable cost Method: 1. Mapping of the square cross-section onto a circle 2. Use of a particular expansion technique for all fields (velocity, pressure, temperature) in the transformed domain
晶体生长软件FEMAG-Czochralski-Crystal-Growth-Simulation-
晶体生长软件FEMAG-CZ之直拉法Czochralski Crystal Growth Simulation byFEMAGSoftFEMAG-CZ is a global crystal growth simulation software taking into account the furnace geometry, the materials and the operating conditions in order to provide the user with all the information required for his process development and optimization.Global heat transfer, Thermo-elastic stresses, Defect prediction, Melt flow and Heater power.Features∙»Evolution of the solid/liquid interface shape (dynamic simulation)∙»Thermal gradients in the liquid and solid phase∙»Heat fluxes in the overall furnace∙»Thermal-stresses in the crystal and hotzone components∙»Continuous feeding∙»Species (dopants and impurities) segregation and concentration∙»Magnetic fieldsSupported Languages:EnglishSupported TechnologiesOperating Systems:LinuxProgramming Languages:C/C++Product Type(s):SoftwareAdditional Product InformationFEMAG family products provide so-called ''global calculations'' , meaning that all the constituents of the furnace are taken into account, together with all heat transfer modes within and between them (conduction, convection and radiation). The modelling of conduction includes the possibility of temperature-dependent and anisotropic conductivity. The modelling of radiative heat exchanges assumes diffuse radiation and can take into account semi-transparent materials through wavelength-dependent radiative properties.The flow in the melt phase can be modelized by a laminar and/or turbulent model. It takes into account natural convection, due to temperature-dependent density and surface tension, and forced convection due to crystal, crucible and/or polycrystal - in case of the FZ process - rotations, possibly under the influence of a magnetic field (axial, cusp, rotating or transverse). Melt flow calculation also considers the effect ofgas flow and of tangential forces due to induction (if any) on melt surface.The flow in the gas phase, as a result of an imposed flow rate at gas inlet and of temperature-dependent density, can be modelized by a laminar or a turbulent model.The heating of the process is modelized: ohmic heaters (one or several, coupled or independent) or inductors. In the case of multiple heaters, the user has the possibility to control the heating powers by imposing a specific temperature at given control points.The shapes of interfaces and free-surfaces of the system are calculated. The solidification front and melting front - in case of the FZ process - shapes are calculated taking into account heat dissipation (or absorption) proportional to the growth rate. The melt/gas interface is calculated, as a result of a balance of surface tension, gravity and normal forces due to induction (for the FZ process), providing an accurate meniscus shape.The processes can be modelized by a quasi-steady or by a time-dependent model. The quasi-steady model takes into account the effect of growth rate on heat transfer while assuming a fixed position for all constituents. The time-dependent model considers a geometry that evolves due to crystal lengthening and melt shrinking. It also takes into account the transient effects due to the thermal inertia of all constituents, and due to the inertia of the solidification front shape.Global heat transfer. Temperature isolines are separated by 50 K.。
femag晶体生长数值模拟技术在光学行业的应用
femag晶体生长数值模拟技术在光学行
业的应用
FEMAG晶体生长数值模拟技术在光学行业的应用
光学行业作为现代科技的重要组成部分,对于高质量光学晶体的需求日益增长。
在这一背景下,FEMAG晶体生长数值模拟技术的出现,为光学行业带来了革命性的改变。
FEMAG是一款专业的晶体生长模拟软件,其具备世界领先的仿真精度,能够优化各种光学晶体的生产质量,提高生产效率和成品率。
在光学晶体生产过程中,晶体生长工艺的控制至关重要。
FEMAG软件能够模拟晶体生长过程中的全局熔体气体对流与热场分析,帮助工程师们精确控制晶体生长的条件。
无论是提拉法、区熔法、定向凝固法还是坩埚下降法,FEMAG都能提供精准的模拟,从而优化热场,提高晶体质量,减小能耗。
例如,在直拉法单晶硅的生产中,FEMAG能够模拟不同气体流量下的全局对流,通过热场图和流场图的分析,工程师们可以更加准确地掌握晶体生长的状态,从而调整工艺参数,实现晶体质量的最大化。
这不仅降低了生产成本,还提高了产品的竞争力。
除了在单晶硅生产中的应用,FEMAG在蓝宝石、砷化镓、YAG等光学晶体的生产中也发挥了重要作用。
这些晶体在激光、光纤通信、太阳能电池等领域有着广泛的应用,FEMAG的应用无疑为这些领域的发展提供了强有力的支持。
总的来说,FEMAG晶体生长数值模拟技术在光学行业的应用,不仅提高了晶体生长的质量,还降低了生产成本,提高了生产效率。
随着技术的不断进步,FEMAG将会在光学行业发挥更加重要的作用,推动光学科技的持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEMAG晶体生长建模软件Optimization of Silicon I n go t Q u al it yby the Numerical P r e d i c ti on of Bulk Crystal D e f ec t sF. Loix2*, F. D upr e t1,2*, A. de Potter2, R. R ol i n s ky2, W. L i a ng2, N. Van den B oga e rt21CESAME R e s e a r ch C e nt e r, Uni v e r s i téc at ho li que de L ouva i n,Bât i m e nt EULER, 4 av. Georges L e m aît r e,B-1348 Louva i n-l a-N e uv e,B e l g i um2FEMAGSoft S.A. Company, 7 Rue André Dumont, A x i s Parc, B-1435 Mont-Saint-Guibert, B e l g i umThe growth of S ili c on(Si) i ngot s by the Cz oc hra l s ki(Cz) technique for e l e c t roni c (IC) a ppl i c a t i ons has been governed for more than 50 years by two, somewhat c ont ra di c t ory, t e c hnol ogi c a l obj e c t i ve s.First, the c rys t a l diameter has to be nearly constant and the l a rge s t pos s i bl e according to current market requirements. Second, the product quality has to be pe rfe c t l y c ont rol l e d in terms of c rys t a l defects and composition. On the other hand, grow i ng Cz S i c rys t a l s for phot o-volt a i c(PV) a ppl i c a t i ons requires to m i ni m i z e both the energy c ons umpt i on and the growth dura t i on without, however, gene ra t i ng a too l a rge content of m i c ro-voi ds in the c rys t a l.A c hi e vi ng these goa l s i s by no means easy s i nc e i nc re a s i ng the c rys t a l diameter re qui re s a l a rge r m e l t volume and hence results in a much more complex m e l t flow regime with c om pl i c a t e d heat, momentum and s pe c i e s transport effects, a very s e ns i t i ve s ol i d-li qui d i nt e rfa c e shape (with a l e ss uniform t he rm a l gradient), and in gene ra l an enhanced dynamic s ys t e m behavior. A s i m il a r enhancement of the system dyna m i c behavior can result from the use of a high pull rate to i nc re a s e the growth speed. Therefore, in gene ra l,de s i gni ng the furnace hot zonewill require to i nt roduc e appropriate heat s hi e l ds in order to w e ll-c ont rol the ra di a t i on he a t transfer whi l e a s a t i s fa c t ory m e l t flow pattern can only be obt a i ne d for l a rge diameter c rys t a l s by the a c t i on of transverse or configured m a gne t i c fi e l ds.Moreover the s e l e c t i on of opt i m a l proc e ss parameters (heater power, c rys t a l pulling rate, c rys t a l and c ruc i bl e rot a t i on rates, m a gne t i c fi e l d i nt e ns i ty if any, ambient gas flow rate, etc.) becomes much more difficult in vi e w of the i nc re a s e d system nonl i ne a ri ty and t i m e-depe nde nc y,e s pe c i a ll y during the c ri t i c a l process stages (necking, shouldering, t a il-e nd stage, c rys t a l detachment, …).N one t he l e ss,compared to the high difficulty to address these different t e c hnol ogi c a l i ss ue s,it i s worth observing that huge progress has been achieved in the l a s t decades in s e ve ra l s c i e nt i fi c dom a i ns.F i r s t, the phys i c s of ra di a t i on and c onve c t i on in Cz furnaces, and of defect form a t i on and transport in growing S i c rys t a l s,i s much better known, and hence the m a t he m a t i c a l m ode l s governing Cz S i c ry s t a l growth are better and better e s t a bl i s he d.In spite of the i mport a nt i m prove m e n t s that re m a i n necessary in the m ode li ng of turbulence in the m e l t a nd the ambient gas (i nc l udi ng the m ode li ng of m e l t turbulence under the effect of a m a gne t i c fi e l d) and of the s t ill i ns uffi c i e nt kno w l e dge of the m a t e ri a l parameters governing point-and micro-defect e vol ut i on in S i s i ngl e c rys t a l s,an a l m os t complete picture of the phy s i c s of S i growth today i s a va il a bl e.Secondly, num e ri c a l methods and computers have a l s o quickly progre ss e d s i nc e the de ve l opm e n t of the first m ode l s of Cz growth achieved in the 1980’s. Nowadays the qua s i-s t ea dy or t i m e-depe nde nt s i m ul a t i on of the Cz process hasbecome po ss i bl e in an a cc e pt a b l e c om put i ng t i m e,with s uffi c i e nt l y refined meshes to resolve the key de t a il s of the problem, and with appropriate num e ri c a l techniques to handle the system de form i ng ge om e try (which comprises s e ve ra l moving components together with free boundaries such as the m e l t-c rys t a l and m e l t-ga s i nt e rfa c e s).Therefore, having at one’s di s pos a l the appropriate phys i c a l m ode l s, num e ri c a l tools a nd computer hardware, the route i s directly opened to process opt i m i z a t i on by means of num e ri c a l s i m ul a t i on.The obj e c t i ve of the present paper i s to ill us t ra t e how this strategy can be a ppl i e d by use of the FEMAG-CZ software as today co-de ve l ope d by FEMAG Soft S.A. Company and the CESAME research center of the Uni ve rs i téde L ouva i n (Belgium).We will here focus on the S i ingot quality pre di c t i on and i t s opt i m i z a t i on.We present a fully t i m e-depe nde nt m ode l devoted to predict the gl oba l heat transfer in the furnace, the s ol i d-liquid i nt e rfa c e shape, and the re s ult i ng di s t ri but i ons of point-and m i c ro-de fe c t s as c a l c ul a t e d from the S i nno-D ornbe rge r (S-D) model together with an e xt e ns i on of the l um pe d model of Voronkov and Kulkarni. All the t ra ns i e nt s are c ons i de re d including the effects of c rys t a l a nd c ruc i bl e lift, of the heat c a pa c i t i e s of the furnace c ons t i t ue nt s, of the t he rm a l i ne rt i a of the s ol i di fi c a t i on front, and of the dyna m i c defect governing l a w s.We hence show that dynamic effects deeply affect the defect di s t ri but i on in the c rys t a l(fig 1.). In a ddi t i on to the c l a ss i c a l point-defect e vol ut i on mechanisms, a new l um pe d m ode l i s de ve l ope d to c a l c ul a t e theform a t i on a nd growth of m i c ro-de fe c t s in order to predict their dens i t i e s and s i z e di s t ri but i ons anywhere in the c rys t a l.Another key i ss ue in Cz S i growth i s to control the dens i ty of oxygen and any other s pe c i e s(i nc l udi ng dopants and i m puri t i e s) i ns i de the c rys t a l.M ode li ng i ss ue s will be here a ga i n de t a il e d.Finally, off-line process control pri nc i pl e s will be addressed. Results will ill us t ra t e how this tool can he l p in opt i m i z i ng c rys t a l shape and quality.P r e di c t e d defect de l t a C i-C v di s t r i bu t i on (C i, C v be i ng the c onc e nt r at i on of i n t e r s t i t i al s , v acan c i e re s p e c t i v e l y) with a quas i-s t e ady (a) and a t i m e-d e pendent (b)simulation. The OSF ring is located at the position where delta~= 0. This picture highlights the strong impact on the point defect of the transient effects in the growing crystal.。