初二数学一次函数练习题(附答案)

合集下载

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。

精选-初二数学一次函数练习题(附答案)-word文档

精选-初二数学一次函数练习题(附答案)-word文档

初二数学一次函数练习题(附答案)查字典数学网为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) (B) (C) = (D)以上均有可能4.若函数(为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若ADE=C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,DEF=90,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC 在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m0)和反比例函数y= (n0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网打出时间t(分钟)与打出费s(元)的函数关系如图3,当打出150分钟时,这两种方式费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案

一次函数 练习题一、选择题1、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 2、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)3、直线y=kx+b 在坐标系中的位置如图,则( ) (第13题图)(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (1,12k b ==4、下列一次函数中,随着增大而减小而的是 ( ) (A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y5、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0 二、填空6、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

7、若函数y= -2x m+2是正比例函数,则m 的值是 。

8、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

9、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

10、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

11、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

12、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。

13、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

八年级数学一次函数专项训练(含答案)

八年级数学一次函数专项训练(含答案)

16. 如 图 所 示 , 在 同 一 直 角 坐 标 系 中 , 一 次 函 数 y k1x , y k2 x , y k3x ,
y k4 x 的 图 像 分 别 是 l1 , l2 , l3 , l4 ; 那 么 k1 , k2 , k3 , k4 的 大 小 关 系


y l2
l1
O
l3 l4
3. 【答案】D
4. 【答案】A 【解析】 kx b 0 ,即 y 0 ,∴由图象看出与 x 轴交于点(-2,0)
5. 【答案】C 【解析】设该一次函数的解析式为 y=kx+b(k≠0),将点(5,0)、
{ ) { ) (10,-10)代入到
y=kx+b 中得,-100==51k+0k+b b
令 y 0 ,则 3x 2 0 ,解得 x 2 ,因此图象交 x 轴于点 ( 2 ,0)
3
3
∴函数
y
3x
2
与两坐标轴围成的三角形面积
S
1 2
2 3
2
2 3
19. 【答案】
y 1 x 2 ,它不是正比例函数,是一次函数.
3
【解析】依题意,设 y 2 kx , 整理得: y kx 2 将 x 3,y 1代入上式,得:1 3x 2 ∴ x 1
x
y l2
l1
O
l3 l4
x
三、解答题
17. 如图,在平面直角坐标系中,点 P x, y 是第一象限直线 y x 6 上的点, 点 A5, 0 , O 是坐标原点, PAO 的面积为 s ,求 s 与 x 的函数关系式.
y P① x, y①
O
A
x
18. 求一次函数 y 3x 2 的图象与两坐标轴围成的三角形面积.

八年级(初二)数学(一次函数)试卷试题附答案解析

八年级(初二)数学(一次函数)试卷试题附答案解析

一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。

(word版)初二数学一次函数经典试题含答案,文档

(word版)初二数学一次函数经典试题含答案,文档

初二数学一次函数超经典试题含答案一、相信你一定能填对!〔每题3分,共30分〕1.以下函数中,自变量x的取值范围是x≥2的是〔〕A.y =2x B.y=1C.y=4x2D.y=x 2·x 2x 22.下面哪个点在函数y=1x+1的图象上〔〕2A.〔2,1〕3.以下函数中,B.〔-2,1〕C.〔2,0〕y是x的正比例函数的是〔〕D .〔-2,0〕A.y=2x -1B.y=x C.y=2x2D .y=-2x+134.一次函数y=-5x+3的图象经过的象限是〔〕A .一、二、三B .二、三、四C .一、二、四D .一、三、四6.假设一次函数y=〔3-k〕x-k的图象经过第二、三、四象限,那么k的取值范围是〔〕A .k>3B .0<k≤3C .0≤k<3D.0<k<37.一次函数的图象与直线y=-x+1平行,且过点〔8,2〕,那么此一次函数的解析式为〔〕A .y=-x-2B .y=-x-6C .y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,那么油箱内余油量y〔升〕与行驶时间t〔时〕的函数关系用图象表示应为以下列图中的〔〕9.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y?〔千米〕与行进时间t〔小时〕的函数图象的示意图,同学们画出的图象如下列图,你认为正确的选项是〔〕10.一次函数y=kx+ b的图象经过点〔2,-1〕和〔0,3〕,?那么这个一次函数的解析式为〔〕A .y=-2x+3B.y=-3x+2C.y=3x-2D.y=1x-32二、你能填得又快又对吗?〔每题3分,共30分〕11.自变量为x的函数y=mx+2-m是正比例函数,那么m=________,?该函数的解析式为_________.12.假设点〔1,3〕在正比例函数y=kx的图象上,那么此函数的解析式为________.13.一次函数 y=kx+b 的图象经过点〔A1,3〕和〔B-1,-1〕,那么此函数的解析式为 14.假设解方程 x+2=3x-2得x=2,那么当x_________时直线y=x+?2?上的点在直线_________. y=3x-2上相应点的上方.15.一次函数y=-x+a 与y=x+b 的图象相交于点〔 m ,8〕,那么a+b=_________.16.假设一次函数 y=kx+b 交于y?轴的负半轴,?且y?的值随x?的增大而减少, ?那么k____0,b______0.〔填“>〞、“<〞或“=〞〕17.直线y=x-3x y 3 0与y=2x+2的交点为〔-5,-8〕,那么方程组y 2的解是________.2x 018.一次函数y=-3x+1的图象经过点〔a ,1〕和点〔-2,b 〕,那么a=________,b=______.y19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积A4是9,那么k 的值为_____.320.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,那么此一次函数的解析式为__________,2△AOC 的面积为_________.1CO1234x-1 -1-2三、认真解答,一定要细心哟!〔共60分〕21.〔14分〕根据以下条件,确定函数关系式:〔1〕y与x成正比,且当x=9时,y=16;〔2〕y=kx+b的图象经过点〔3,2〕和点〔-2,1〕.23.〔12分〕一农民带了假设干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数〔含备用零钱〕的关系如下列图,结合图象答复以下问题:〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克元将剩余土豆售完,这时他手中的钱〔含备用零钱〕是26元,问他一共带了多少千克土豆?24.〔10分〕如下列图的折线ABC?表示从甲地向乙地打长途所需的费y〔元〕与通话时间t〔分钟〕之间的函数关系的图象〔1〕写出y与t?之间的函数关系式.〔2〕通话2分钟应付通话费多少元?通话7分钟呢?25.〔12分〕雅美服装厂现有A种布料70米,B种布料52米,?现方案用这两种布料生产M、N两种型号的时装共 80套.做一套M型号的时装需用A种布料1.?1米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料0.?9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y〔元〕与x〔套〕的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:3第一份4.B4.C5.D6.A7.C8.B9.C10.A11.2;y=2x12.y=3x13.y=2x+114.<215.16x5.±620.y=x+2;4 16.<;<17.18.0;719y821.①y=16x;②y=1x+722.y=x-2;y=8;x=1495523.①5元;②元;③45千克24.①当0<t≤3时,;当t>3时,.元;元25.①y=50x+45〔80-x〕=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.?6〔80-x〕]米,共用B种布料〔80-x〕]米,∴解之得40≤x≤44,而x为整数,x=40,41,42,43,44,y与x的函数关系式是y=5x+3600〔x=40,41,42,43,44〕;②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。

答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。

答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。

答案:14.函数y = -2x - 1与y轴交于点(____,0)。

答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。

解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。

所以当x = 3时,y的值为7。

(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。

所以当y = 5时,相应的x值为2。

2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。

(2)求函数的斜率和截距。

解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。

所以与x轴的交点坐标为(5/3, 0)。

当函数与y轴交点时,x = 0,代入函数得到y = 5。

所以与y轴的交点坐标为(0, 5)。

(2)已知函数y = -3x + 5,斜率为-3,截距为5。

四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。

八年级(初二)数学(一次函数)试题附答案解析

八年级(初二)数学(一次函数)试题附答案解析

一、单选题(共7题;共14分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B−E−D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是().A. 监测点AB. 监测点BC. 监测点CD. 监测点D2.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2B. y=2x+1C. y=2xD. y=2x+23.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )A. (√5)7B. 2(√5)7C. 2(√5)8D. (√5)94.如图所示,一次函数y=kx+b(k、b为常数,且k ≠0)与正比例函数y=ax(a为常数,且a ≠0)相交于点P,则不等式kx+b>ax的解集是()A. x>1B. x<1C. x>2D. x<25.如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A7B8的长为()A. 64B. 128C. 256D. 5126.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A. x≤﹣2B. x≥﹣2C. x<﹣2D. x>﹣27.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A. M处B. N处C. P处D. Q处二、填空题(共6题;共6分)8.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+ b=________.9.设m、x、y均为正整数,且√m−√28=√x−√y,则(x+y+m)²=________.10.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为________.11.如图,在平面直角坐标系中,一次函数y=x+3 √2的图象与x轴交于点A,与y轴交于点B,点P在线12.已知一次函数的图象过点且不经过第一象限,设,则m的取值范值是________;13.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标是________.三、计算题(共1题;共5分)14.计算:(1)√2+1√8+(√3−1)0(2)(−12)−1−3√13+(1−√2)0+√12四、解答题(共2题;共20分)15.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)16.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 √5,OCOA =12(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.五、综合题(共6题;共88分)17.已知四边形OABC是边长为4的正方形,分别以OA,OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A,C两点.(1)写出点A,点C坐标并求直线l的函数表达式;(2)若P是直线l上的一点,当△OPA的面积是5时,请求出点P的坐标;(3)如图2,点D(3,﹣1),E是直线l上的一个动点,求出使|BE﹣DE|取得最大值时点E的坐标和最大值(不需要证明).18.如下图所示,直线y=-1x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q2以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为________;(3)综上所述,若△OCQ是等腰直角三角形,则t的值为2或4. (3)若CQ平分△OAC的面积,求直线CQ 对应的函数表达式.19.如图,直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(-8,0),点A的坐标为(-6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3?并求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图1,在平面直角坐标系中,直线l:y=34x+32与x轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒√2个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.21.已知:如图,直线l1:y1=−x+n与y轴交于A(0,6),直线l2:y2=kx+1分别与x轴交于点B(−2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)直接写出直线l1、l2的函数表达式;(2)求ΔABD的面积;(3)在x轴上存在点P,能使ΔABP为等腰三角形,求出所有满足条件的点P的坐标.22.如图,己知函数y= 4x + 4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、3Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO(1)点A的坐标为________,AC的长为________;(2)判断∠BPQ与∠CAP的大小关系,并说明理由;(3)当△APQ为等腰三角形时,求点P的坐标.六、综合题(共1题;共11分)x+4的图像与x轴和y轴分别相交于A、B两点.动23.如图,在平面直角坐标系中,一次函数y=−23点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A 关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=1秒时,点Q的坐标是________;3(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.答案解析部分一、单选题1. C2. B3. B4. D5.【答案】 C6.【答案】 A7.【答案】 D二、填空题8.【答案】2.5 9.【答案】 256 10.【答案】( 2√3−3,2−√3 ) 11.【答案】59≤m ≤1 12.【答案】 3+3√2 13.【答案】 (−1,−1)三、计算题14.【答案】 (1) 原式=√2−1−2√2+1=−√2(2)原式=−2−√3+1+2√3=√3−1四、解答题15.【答案】 解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x ﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x 1=﹣25(舍去),x 2=10.答:该月需售出10辆汽车.16.【答案】 (1)解:∵ OC OA =12 ,∴ 可设OC=x ,则OA=2x ,在Rt △AOC 中,由勾股定理可得OC 2+OA 2=AC 2 ,∴x 2+(2x )2=(4 √5 )2 , 解得x=4或x=-4(不合题意,舍去),∴OC=4,OA=8,∴A (8,0),C (0,4),设直线AC 解析式为y=kx+b ,∴ {8k +b =0b =4, 解得: {k =−12 ,∴直线AC 解析式为y= −12 x+4(2)解:由折叠的性质可知AE=CE ,设AE=CE=y ,则OE=8-y ,在Rt △OCE 中,由勾股定理可得OE 2+OC 2=CE 2 ,∴(8-y )2+42=y 2 , 解得y=5,∴AE=CE=5,∵∠AEF=∠CEF ,∠CFE=∠AEF ,∴∠CFE=∠CEF ,∴CE=CF=5,∴S △CEF = 12 CF•OC= 12 ×5×4=10,即重叠部分的面积为10;(3)解:由(2)可知OE=3,CF=5,∴E (3,0),F (5,4),设直线EF 的解析式为y=k′x+b′,∴ {3k ′+b ′=05k ′+b ′=4 , 解得: {k ′=2b ′=−6, ∴直线EF 的解析式为y=2x-6五、综合题17.【答案】 (1)解:∵四边形OABC 是边长为4的正方形,∴A (4,0)和C (0,4);设直线l 的函数表达式y=kx+b (k≠0),经过A (4,0)和C (0,4)得 {0=4k +b b =4, 解之得 {k =−1b =4, ∴直线l 的函数表达式y=﹣x+4(2)解:设△OPA 底边OA 上的高为h ,由题意等 12 ×4×h=5,∴h= 52, ∴|﹣x+4|= 52 ,解得x= 32 或132 ∴P 1( 32 , 52 )、P 2(132, −52 )(3)解:∵O 与B 关于直线l 对称,∴连接OD 并延长交直线l 于点E ,则点E 为所求,此时|BE ﹣DE|=|OE ﹣DE|=OD ,OD 即为最大值,如图2.∴﹣1=3k 1 , ∴k 1= −13∴直线OD 为 y =−13x ,解方程组: {y =−x +4y =−13x,得 {x =6y =−2 , ∴点E 的坐标为(6,﹣2). 又D 点的坐标为(3,﹣1) 由勾股地理可得OD= √10 .18.【答案】 (1)解:由 {y =−12x +3y =x解得: {x =2y =2 ,∴点C 的坐标为(2,2)(2)4 3)解:令- x +3=0,得x =6, ∴A(6,0). ∴点Q 的坐标为(3,0)时,CQ 平分△OCA 的面积. 设直线CQ 的函数表达式为y =kx +b. 把C(2,2),Q(3,0)代入y=kx+b 得: {3k +b =02k +b =2,解得k =-2,b =6, ∴当直线CQ 平分△OCA 的面积时,其对应的函数表达式为y =-2x +6. 19.【答案】 (1)解:直线l :y=kx+6过点B (-8,0), 0=-8k+6,K= 34(2)解:当x=0时,y= 34 x+6=6,∴点C 的坐标为(0,6) 如图,设点P 的坐标为(x , 34 x+6),∴S △PAC =S △BOC +S △BAP +S △AOC = 12 ×8×6- 12 ×2( 34 x+6)- 12 ×6×6=- 34 x取S △PAC =3,解得x=4,∴点P 的坐标为(4,3),设此时直线AP 的解析式为y=ax+b (a≠0), 将A (-6,0),P (-4,3)代入y=ax+b , 得 {-6a +b =0−4a +b =3 解得= a =32b =9,∴当点P 的坐标为(-44,3)时,△PAC 的面积为3,此时直线AP 的解析式为y= 32 x+9 (3)解:点M 的坐标为(-18,0)或(- 74 ,0)或(2,0)或(8,0) 20.【答案】 (1)解:将点B (2,m )代入 y =34x +32 得m=3 ∴ B(2,3)C(3,0)设直线BC 解析式为 y =kx +b 得到 {2k +b =33k +b =0 ∴ {k =−3b =9 ∴直线BC 解析式为 y =−3x +9(2)解:如图,过点O 作 OD//AB 交BC 于点D∴S △ABC =S △ABD , k AB =k OD =34 ∴直线OD 的解析式为y= 34x ,∴ 联立方程组{y =34xy =−3x +9解得 {x =125y =95∴D(125,95) (3)解:①如图,当P 点在y 轴负半轴时,作 M 1N ⊥OP 于点N ,∵直线AB 与x 轴相交于点A ,∴点A 坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM 1=90° ∴∠PAO=∠PNM 1 , 又∵AP=PM 1 , ∠POA=∠PNM 1=90° ∴△AOP ≅ △PNM 1 , ∴PN=OA=2, 设OP=NM 1=m ,ON=m-2 ∴ M 1(m ,2−m)代入y =−3x +9 解得 m =72 ∴ M 1(72,−32) ②如图,作 M 2H ⊥OP 于点H可证明△AOP ≅ △PHM 2 ,设HM 2=n ,OH=n-2∴ M 2(n,n −2)代入y =−3x +9 ,解得 n =114,∴M 2(114, 34 ),∴综上所述 M 1(72,−32) 或M 2( 114, 34 ) (4)解:如图,作射线AQ 与x 轴正半轴的夹角为45°,过点B 作x 轴的垂线交射线AQ 于点Q ,作 EK ⊥AQ 于点K ,作 BT ⊥AQ 于点T ,∵∠CAQ=45°BG ⊥x 轴,B (2,3)∴AG=4,∴AQ=4 √2 ,BQ=7,t=BE 1+√2 =BE+EK≥BT ,由面积法可得: 12AQ ⋅BT =12BQ ⋅AG ∴ 12 ×4 √2 ×BT= 12 ×7×4,∴BT= 72√2 因此t 最小值为 72√2 . 21.【答案】 (1)解:∵直线 l 1 : y 1=−x +n 与y 轴交于A (0,6), ∴n =6, ∴直线 l 1 : y 1=x +6 ,∵ y 2=kx +1 分别与x 轴交于点B (−2,0),∴−2k +1=0, ∴k = 12 ,直线 l 2 : y 2=12x +1(2)解:设 l 1 与 x 轴交于点 E ,令 y 1=−x +6=0 ,得 x =6 , ∴点 E 坐标为 (6,0) , BE =8 . 由 {y =−x +6y =12x +1解得 x =103 , y =83 ,∴点 D 的坐标为 (103,83) , ∴ S ΔABD =S ΔABE −S ΔBDE =12×8×6−12×8×83=403.(3)解:在 RtΔAOB 中,由勾股定理可得 AB =√22+62=2√10 ,①当 BP =BA 时,满足条件的点 P 有两个,分别为 P 1(−2−2√10,0) , P 2(−2+2√10,0) ; ②当 AP =AB 时,由等腰三角形的三线合一可得 OP =OB ,于是满足条件的点 P 为 P 3(2,0) ; ③当 AP =AB 时,如图,设 OP =t ,则 AP =BP =t +2 ,在RtΔAOP中,AP2=AO2+OP2,∴(t+2)2=62+t2,解得t=8,∴P4(8,0).综上,满足条件的点P为P1(−2−2√10,0),P2(−2+2√10,0),P3(2,0),P4(8,0).22.【答案】(1)(3,0);5(2)解:∠BPQ=∠CAP.理由如下:∵点C与点B关于x轴对称,∴AB=AC,∴∠1=∠2,∵∠APQ=∠1,∴∠2=∠APQ,∵∠BPA=∠2+∠3,即∠BPQ+∠APQ=∠2+∠3,∴∠BPQ=∠3;(3)解:当PA=PQ,如图1,则∠PQA=∠PAQ,∵∠PQA=∠1+∠BPQ=∠APQ+∠BPQ=∠BPA,∴BP=BA=5,∴OP=BP﹣OB=1,∴P(0,﹣1);当AQ=AP,则∠AQP=∠APQ,而∠AQP=∠BPA,所以此情况不存在;当QA=QP,如图2,则∠APQ=∠PAQ,而∠1=∠APQ,∴∠1=∠PAQ,∴PA=PB,设P(0,t),则PB=4﹣t,∴PA=4﹣t,在Rt△OPA中,∵OP2+O A2=PA2,∴t2+32=(4﹣t)2,解得t= 78,∴P(0,78),综上所述,满足条件的P点坐标为(0,﹣1),(0,78).六、综合题23.【答案】(1)(4,0)(2)解:当点Q与原点O重合时,即OA=6, ∴AP= 12AO=3=3t, ∴t=1,①当0<t≤1时(如图1),∵一次函数与y轴交于B点,令x=0,∴y=4,∴B(0,4),即OB=4由(1)知OA=6,在Rt△AOB中,∴tan∠OAB= OBOA= 46= 23,∵AP=3t,∴OP=OA-PA=6-3t,∴P(6-3t,0),又∵点A关于点P的对称点为点Q,∴AP=PQ=3t,∴OQ=OA-AP-PQ=6-3t-3t=6-6t,∴Q(6-6t,0),∵四边形PQMN是正方形,∴PN=PQ=3t,MN∥AO,在Rt△APD中,∴tan∠PAD= PDPA= PD3t= 23,∴PD=2t,∴DN=PN-PD=3t-2t=t,∵MN∥AO,∴∠PAD=∠DCN,在Rt△DCN中,∴tan∠DCN= DNCN= tCN= 23,∴CN= 32t,∴S=S正方形PQMN-S△CDN,=(PQ)2- 12·DN·CN,=(3t)2- 12·t·32t,= 334t2,②当1<t≤ 43时(如图2),由①可知:DN=t,CN= 32t,OP=6-3t,PN=3t,∴S=S矩形POEN-S△CDN,=PO·PN-12·DN·CN,=(6-3t)×3t- 12·t·32t,=18t- 394t2,③当43<t≤2时(如图3),由①可知:PD=2t,OP=6-3t,OB=4,∴S=S四边形POBD,= 12·(PD+OB)·OP,= 12×(2t+4)×(6-3t),=-3t2+12t,综上所述:S={334t2,0≤t<1−394t2+18t,1≤t≤43−3t2+12,43<t≤2(3)解:解:如图4,由(2)中①可知:P(6-3t,0),Q(6-6t,0),PN=PQ=3t,A(6,0),∴M(6-6t,3t),N(6-3t,3t),∵T是正方形PQMN对角线的交点,∴T(6- 92t,32t),设直线AT解析式为:y=kx+b,∴{6k+b=0(6−92t)k+b=32t,解得:{k=−13b=2,∴AT解析式为:y=- 13x+2,∴点T是直线y=- 13x+2上一段线段上的点(-3≤x<6),同理可得直线AN解析式为:y=-x+6, ∴点N是直线y=-x+6上一段线段上的点(0≤x≤6),∴G(0,6),∴OG=6,∵OA=6,在Rt△AOG中,∴AG=6 √2,又∵T是正方形PQMN对角线的交点,∴PT=TN,∴OT+PT=OT+TN,∴当O、T、N在同一条直线上,且ON⊥AG时,OT+TN最小,即OT+PT最小, ∵S△AOG= 12·AO·GO= 12·AG·NO,∴NO= AO×GOAG =6√2=3 √2,∴OT+PT=OT+TN=ON=3 √2, 即OT+PT最小值为3 √2.。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.下列函数中,是一次函数的是()A. y = 3x^2 + 4x - 2B. y = 2x + 5C. y = 5/xD. y = √x答案:B2.已知一次函数y = kx - 3的图象与x轴交于点(-4, 0),则k的值为()A. 4B. 3C. 2D. 1答案:D3.已知函数y = -2x + 5与直线y = x + 3相交于点P,点P的坐标是()A. (2, 3)B. (-2, 1)C. (-2, 5)D. (2, 1)答案:A二、填空题1.若一次函数y = -3x + b过点(4, 11),则b的值为_______。

答案:232.若函数y = kx + 2经过点(3, -1),则k的值为_______。

答案:-33.若直线y = 2x + a与函数y = kx - 3的图象交于点(-2, 1),则a的值为_______。

答案:-5三、计算题1.某商品的售价y与进价x之间的关系可用一次函数模型y = 0.8x + 200表示。

如果进价为600元,那么售价是多少?答案:售价为680元。

解析:将进价x代入函数模型y = 0.8x + 200中,得到售价y = 0.8 * 600 + 200 = 480 + 200 = 680元。

2.一辆汽车以每小时60公里的速度行驶,已经行驶2小时。

如果继续以相同的速度行驶,总共行驶的路程是多少公里?答案:行驶路程为120公里。

解析:车速为60公里/小时,行驶2小时,则行驶的路程为60 * 2 = 120公里。

3.已知函数y = 4x - 5,求使得y = 0的x的值。

答案:x = 5/4。

解析:将y = 0代入函数中,得到0 = 4x - 5,解方程得x = 5/4。

四、应用题小明去超市买牛奶,一瓶牛奶售价为y元,购买x瓶牛奶的总花费C(x)与购买数量x之间的关系可以表示为一次函数C(x)= 5x + 10。

1.如果小明购买3瓶牛奶,他需要支付多少钱?答案:小明需要支付25元。

八年级数学一次函数专项训练(含参考答案)

八年级数学一次函数专项训练(含参考答案)
一次函数专项训练
练习一 一次函数与正比例函数 1. 已知正比例函数的图像过点(2,-4),求这个正比例函数的关系式。
2. 已知一次函数的关系式为 y kx 2 ,当 x 2 时 y 的值为 4,求 k 的值及一次 函数的关系式。
3. 已知关于 x 的一次函数 y kx 4k 2(k 0) 。若其图像经过原点,求这个一次 函数的关系式。
4. 已知一次函数 y kx b ,在 x 0 时的 y 值为 4;在 x 1 时的值为-2,求这 个一次函数的关系式。
5. 已知一次函数 y kx b 的图像经过点 A(0,4),点 B(2,0) (1)求这个一次函数的关系式; (2)当 x 1 时,求 y 的值。
第1页共8页
练习二 确定一次函数的关系式 1. 已知直线 l 过 A,B 两点,A(0,-1),B(1,0)。求直线 l 的函数关系式。
4 5. y xBiblioteka 16. (1) y 9x 7
1. y 3 x 6 2
2. k 1 ,b 6 2
3. y 3x 1
(2) x 5 9
练习三 确定一次函数的关系式
4. (1) y x 2
(2)(0,-2)或(2,0)
5. (1) y 2x 7
(2)12.25
1. k 1,b 2
2. 在平面直角坐标系中,一次函数 y kx b 的图像经过点 A(2,1),B(0,2),C (-1,n),试求 n 的值。
3. 一次函数的图像与 y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为 6,求这个一次函数的关系式。
4. 如图,已知一次函数 y kx b 的图像经过 A(-2,-1),B(1,3)两点,并且 交 x 轴于点 C,交 y 轴于点 D。 (1)求该一次函数的关系式; (2)求△AOB 的面积。

(完整版)初二数学一次函数经典试题含答案,推荐文档

(完整版)初二数学一次函数经典试题含答案,推荐文档

初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

八年级数学《一次函数》测试题及答案

八年级数学《一次函数》测试题及答案

• • •A 3B •八年级数学《一次函数》测试题及答案一、相信你一定能填对!(每小题 3 分,共 30 分)1.下列函数中,自变量 x 的取值范围是 x ≥2 的是()A .y= 2 - xB .y=1C .y= 4 - x 2D .y= x + 2 · x - 2x - 22.下面哪个点在函数 y=12x+1 的图象上()A .(2,1)B .(-2,1)C .(2,0)D .(-2,0)3.下列函数中,y 是 x 的正比例函数的是()A .y=2x-1B .y=x3C .y=2x 2D .y=-2x+14.一次函数 y=-5x+3 的图象经过的象限是()A 一、二、三 B .二、三、四 C .一、二、四 6.若一次函数 y=(3-k )x-k 的图象经过第二、三、四象限,则 k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<37.已知一次函数的图象与直线 y=-x+1 平行,且过点(8,2),那么此一次函数的解析式为 ( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油 40 升,如果每小时耗油 5 升,则油箱内余油量 y (升)与行驶时间 t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程 y •(千米)与行进时间 t (小时)的函数图象 的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数 y=kx+b 的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y= 12x-3二、你能填得又快又对吗?(每小题 3 分,共 30 分)11.已知函数 y=mx+2-m 是正比例函数,则 m=________, 该函数的解析式为_________. 12.若点(1,3)在正比例函数 y=kx 的图象上,则此函数的解析式为________. 13.已知一次函数 y =kx+b 的图象经过点 (1,)和 (-1,-1),则此函数的解析式为_________. 14.若解方程 x+2=3x-2 得 x=2,则当 x_________时直线 y=x+•2上的点在直线 y=3x-2 上相 应点的上方.15.已知一次函数 y=-x+a 与 y=x+b 的图象相交于点(m ,8),则 a+b=_________.16.若一次函数 y=kx+b 交于 y•轴的负半轴,•且 y•的值随 x•的增大而减少,•则 k____0,b______0.(填“>”、“<”或“=”)-8⎧1O1234((17.已知直线y=x-3与y=2x+2的交点为(-5,),则方程组⎨x-y-3=0⎩2x-y+2=018.已知一次函数y=-3x+1的图象经过点(a,)和点(-2,的解是________.b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△y432AAOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;C1-1x-1-2(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?23.10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?24.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为y = -8⎩ 21.①y= 16 (多少套时,能使该厂所获利润最大?最大利润是多?一次函数测试答案1.D2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16⎧ x = -516.<;< 17. ⎨ 18.0;7 19.±6 20.y=x+2;41 7x ;②y= x+22.y=x-2;y=8;x=149 5 522.①5 元;②0.5 元;③45 千克23.①当 0<t ≤3 时,y=2.4;当 t>3 时,y=t-0.6.②2.4 元;6.4 元24.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用 A 种布料[1.1x+0.•6 80-x )]米,共用 B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得 40≤x ≤44,而 x 为整数,∴x=40,41,42,43,44,∴y 与 x 的函数关系式是 y=5x+3600(x=40,41,42,43,44); ②∵y 随 x 的增大而增大,∴当 x=44 时,y 最大=3820,即生产 M 型号的时装 44 套时,该厂所获利 润最大,最大利润是 3820 元.。

八年级一次函数试卷【含答案】

八年级一次函数试卷【含答案】

八年级一次函数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 一次函数的图像是一条直线,当斜率k>0时,这条直线是向()倾斜的。

A. 上B. 下C. 左D. 右2. 如果一次函数的表达式为y=3x+2,那么它的截距是()。

A. 3B. 2C. -3D. -23. 一次函数y=2x-5与x轴的交点是()。

A. (2.5, 0)B. (-2.5, 0)C. (0, -2.5)D. (0, 2.5)4. 两个一次函数y=2x+1和y=-0.5x+3的图像()。

A. 总是相交B. 总是平行C. 在y轴相交D. 在x轴相交5. 如果一次函数y=kx+b的图像经过点(1, 4)和(3, 12),那么k的值是()。

A. 3B. 4C. 5D. 6二、判断题(每题1分,共5分)6. 一次函数的图像是一条曲线。

()7. 当一次函数的斜率为0时,函数图像是一条水平线。

()8. 一次函数y=5x-10的图像一定经过点(0, -10)。

()9. 两个一次函数如果斜率相同,那么它们的图像一定平行。

()10. 一次函数y=kx+b中,b表示函数图像与y轴的交点。

()三、填空题(每题1分,共5分)11. 一次函数y=3x-7与x轴的交点是______。

12. 如果一次函数的图像经过点(2, 5)和(4, 11),那么这个函数的斜率是______。

13. 一次函数y=-2x+6的图像是一条______。

14. 一次函数y=kx+b的图像与y轴的交点是______。

15. 如果两个一次函数的斜率相同,那么它们的图像是______。

四、简答题(每题2分,共10分)16. 解释一次函数的斜率代表了什么。

17. 描述一次函数图像与x轴和y轴的交点。

18. 如何确定两个一次函数是否平行。

19. 什么是截距?一次函数有几个截距?20. 解释一次函数图像的斜率和截距是如何决定的。

五、应用题(每题2分,共10分)21. 一次函数y=4x-1的图像与x轴的交点是什么?22. 如果一次函数的图像经过点(3, -2)和(6, 4),求这个函数的表达式。

(完整版)一次函数练习题及答案

(完整版)一次函数练习题及答案

八年级一次函数练习题1、直线y=kx+2过点(—1,0),则k 的值是 ( ) A .2 B .—2 C .—1 D .12. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y 3、直线y=kx+2过点(1,—2),则k 的值是( ) A .4 B .-4 C .—8 D .84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )5.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.6.若1)7(0=-x ,则x 的取值范围为__________________.7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.8、0(1)π- = . 9、在函数2-=x y 中,自变量x 的取值范围是______.10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________. 11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______. 12、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. 求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.14.如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . 当△COD 和△AOB 全等时,求C 、D 两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A (0,-1).求直线2l 的函数表达式.xyOAB3y kx =- yxOM11 2-17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。

八年级一次函数题目

八年级一次函数题目

八年级一次函数题目一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = (2)/(x)B. y = - 2x^2C. y = kx + b(k、b为常数,k≠0)D. y=√(x)+1解析:- 选项A:y=(2)/(x)是反比例函数,不是一次函数。

- 选项B:y = - 2x^2是二次函数,不是一次函数。

- 选项C:y = kx + b(k、b为常数,k≠0)符合一次函数的定义,是一次函数。

- 选项D:y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 一次函数y = 3x - 1的图象经过()A. 第一、二、三象限。

B. 第一、二、四象限。

C. 第一、三、四象限。

D. 第二、三、四象限。

- 对于一次函数y = kx + b(k≠0),当k>0,b<0时,函数图象经过第一、三、四象限。

- 在y = 3x - 1中,k = 3>0,b=-1<0。

所以图象经过第一、三、四象限,答案是C。

3. 若一次函数y=(m - 3)x + 5的y随x的增大而减小,则m的取值范围是()A. m>3B. m<3C. m = - 3D. m≤slant3解析:- 对于一次函数y = kx + b(k≠0),当k<0时,y随x的增大而减小。

- 在y=(m - 3)x + 5中,k=m - 3,因为y随x的增大而减小,所以m-3<0,解得m<3。

答案是B。

4. 已知一次函数y = kx + b的图象经过点(1, - 1)和( - 1,3),则k、b的值分别为()A. k=-2,b = 1B. k = 2,b=-1C. k=-2,b=-1D. k = 2,b = 1- 把点(1,-1)和( - 1,3)代入y = kx + b中,得到方程组-1=k + b 3=-k + b。

- 将两个方程相加,可得2b = 2,解得b = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为 .下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。

8.已知,如图,一轮船在离A港10千米的P地出发,向B港匀速行驶,30分钟后离A港26千米(未到达B港),设出发x小时后,轮船离A港y 千米(未到达B港),则y与x的函数关系式为四、解答题1.某产品每件成本10元,试销阶段每件产品的日销售价(元)与产品的日销售量(件)之间的关系如下表:(元)15 20 25 30 …(件)25 20 15 10 …⑴在草稿纸上描点,观察点的颁布,建立与的恰当函数模型。

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?2.】李红和张明正在玩掷骰子游戏,两人各掷一枚骰子。

⑴当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?⑵当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?如果不公平,请你提出一个对双方公平的意见。

3.小明子在银行存入一笔零花钱,已知这种储蓄的年利率为n 。

若设到期后的本息和(本金+利息)为y(元),存入的时间为x(年),那么(1)下列那个图像更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?(2)根据(1)的图象,求出y于x的函数关系式(不要求写出自变量x的取值范围),并求出两年后的本息和。

4.某商场的营业员小李销售某种商品,他的月收入与他该月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题:(1)求出小李的个人月收入y(元)与他的月销售量x(件)( 之间的函数关系式;(2)已知小李4月份的销售量为250件,求小李4月份的收入是多少元?5、如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE∶S四边形AOCE=1∶3。

⑴求出点E的坐标;⑵求直线EC的函数解析式.6如图,表示神风摩托车厂一天的销售收入与摩托车销售量的关系; 表示摩托车厂一天的销售成本与销售量的关系。

(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入-成本)7.在“五一黄金周”期间,小明和他的父母坐游船从甲地到乙地观光,在售票大厅看到表(一),爸爸对小明说:“我来考考你,你能知道里程与票价之间有何关系吗?”小明点了点头说:“里程与票价是一次函数关系,具体是……”.在游船上,他注意到表(二),思考一下,对爸爸说:“若游船在静水中的速度不变,那么我还能算出它的速度和水流速度.”爸爸说:“你真聪明!”亲爱的同学,你知道小明是如何求出的吗?请你和小明一起求出:(1)票价(元)与里程(千米)的函数关系式;(2)游船在静水中的速度和水流速度.里程(千米) 票价(元)甲→乙16 38甲→丙20 46甲→丁10 26………出发时间到达时间甲→乙8:00 9:00乙→甲9:20 10:00甲→乙10:20 11:20………表(一) 表(二)8.教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?9.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:印数x(册) 5000 8000 10000 15000 ……成本y(元) 28500 36000 41000 53500 ……(1)经过对上表中数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出x的取值范围);(2)如果出版社投入成本48000元,那么能印该读物多少册?10.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③。

回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组的解;(2)用阴影表示,所围成的区域。

11一天上行6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程S(km)(即离开学校的距离)与时间(h)的关系可用图4中的折线表示,根据图4提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)求出汪老师在返校途中路程S(km)与时间t(h)的函数关系式;(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述.12.已知正比例函数y=kx与反比例函数y= 的图象都过A(m,,1)点,求此正比例函数解析式及另一个交点的坐标.13.小明暑假到华东第一高峰—黄岗山(位于武夷山境内)旅游,导游提醒大家上山要多带一件衣服,并介绍当地山区气温会随海拔高度的增加而下降.沿途小明利用随身带的登山表(具有测定当前位置高度和气温等功能)测得以下数据:海拔高度x米400 500 600 700 …气温y(0C) 28.6 28.0 27.4 26.8 …(1)以海拔高度为x轴,气温为y轴,根据上表提供的数据在下列直角坐标系中描点;(2)观察(1)中所苗点的位置关系,猜想y与x之间的函数关系,求出所猜想的函数表达式,并根据表中提供的数据验证你的猜想;(3)如果小明到达山顶时,只告诉你山顶的气温为18.1,你能计算出黄岗山的海拔高度大约是多少米吗?13.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图12所示。

请根据图象所提供的信息解答下列问题:⑴甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;⑵分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;⑶当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?14.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O的两根,且x1<0(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD 的函数解析式:参考答案一、选择题1.B2.B3.A4.D5.B6.A7.A8.B9.C10.D11.C12.A13.C二、填空题1. 6.2.3.4.答案不唯一;如5.甲(或电动自行车)2乙(或汽车)218906.107.18.三、解答题1、⑴经观察发现各点分布在一条直线上∴设(k≠0)用待定系数法求得⑵设日销售利润为z则=当x=25时,z最大为225每件产品的销售价定为25元时,日销售利润最大为225元2、⑴这个游戏对双方公平∵P(奇)= ,P(偶)=3P(奇)=P(偶),∴这个游戏对双方公平⑵不公平列表:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12得:P(和大于7)= ,P(和小于或等于7)=李红和张明得分的概率不等,∴这个游戏对双方不公平3、(1)图16能反映y与x之间的函数关系从图中可以看出存入的本金是100元一年后的本息和是102.25元(2)设y与x的关系式为:y=100n x+100把(1,102.25)代入上式,得n=2.25∴y=2.25x+100当x=2时,y=2.25*2+100=104.5(元)4、(1)由题意可设与的函数关系式为:由图象可知:当时,,时,有解得,与的函数关系式为:(2)当时,(元)5、⑴∵S△FAE∶S四边形AOCE=1∶3,∴S△FAE∶S△FOC=1∶4,∵四边形AOCB是正方形,∴AB∥OC,∴△FAE∽△FOC,∴AE∶OC=1∶2,∵OA=OC=6,∴AE=3,∴点E的坐标是(3,6)⑵设直线EC的解析式是y=kx+b,∵直线y=kx+b过E(3,6)和C(6,0)∴3k+b=66k+b=0 ,解得:k=-2b=12∴直线EC的解析式是y=-2x+126、1)y=x(2)设∵直线过(0,2)、(4,4)两点∴又∴∴(3)由图像知,当时,销售收入等于销售成本或∴(4)由图像知:当时,工厂才能获利或时,即时,才能获利。

相关文档
最新文档