2018-2019学年最新苏科版七年级数学上册《主视图、左视图、俯视图》综合练习及解析-精编试题
苏科版数学七年级上册《5.4 主视图、左视图、俯视图》教学设计
苏科版数学七年级上册《5.4 主视图、左视图、俯视图》教学设计一. 教材分析《苏科版数学七年级上册》第五章第四节主要介绍了主视图、左视图和俯视图的概念及它们之间的关系。
通过学习本节内容,学生能够理解三视图的定义,掌握它们之间的相互转化,并能运用三视图解决实际问题。
本节内容是学生空间想象力培养的重要环节,为后续学习立体几何打下基础。
二. 学情分析七年级的学生已经掌握了平面几何的基本知识,具备一定空间想象力。
但部分学生对三维空间的认识尚浅,对三视图的理解和运用有一定难度。
因此,在教学过程中,需要关注学生的个体差异,引导他们建立空间观念,提高空间想象力。
三. 教学目标1.知识与技能:使学生理解主视图、左视图、俯视图的概念,掌握它们之间的相互转化;2.过程与方法:培养学生的空间想象力,提高观察和思考问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,感受数学与现实生活的联系。
四. 教学重难点1.重点:主视图、左视图、俯视图的概念及它们之间的相互转化;2.难点:建立空间观念,理解三视图在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入三视图的概念,让学生在实际情境中感受数学知识;2.启发式教学法:引导学生主动探究、发现规律,提高学生的思维能力;3.小组合作学习:鼓励学生互相讨论、交流,共同解决问题,培养团队协作精神。
六. 教学准备1.教学课件:制作生动、直观的课件,帮助学生更好地理解三视图的概念;2.教学素材:准备一些现实生活中的图片或模型,引导学生将数学知识与实际生活联系起来;3.练习题:设计具有层次性的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些现实生活中的图片或模型,引导学生关注三维空间。
提问:“你们能看出这些图片或模型从不同角度看到的形状吗?”从而引入本节内容。
2.呈现(10分钟)介绍主视图、左视图、俯视图的定义,并通过课件展示它们之间的关系。
让学生观察并描述不同视图之间的转化。
苏科版七年级数学上册主视图、左视图、俯视图
宽
左视图
宽
俯视图
三个视图的大小关系?
棱柱
三个人一组,拿出准备好的 小立方体,一人搭,另两人 画出所搭几何体的三视图。
一起动动手吧!
例2、画出下列几何体的三视图
思考:小明、小华、小芳三位同学都
画了如图所示的四棱锥的俯视图。 你认为他们画的正确吗?
(小明)
(小华)
.
(小芳)
11 12
例3、如左图是由小立方块所搭 物体(相邻的两个小立方块有一 个面互相重合)的俯视图,小正 方形中的数字表示该位置小立方 块的个数。先搭出这个物体,再 画出它的主视图和左视图。
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
——苏轼《题西林壁》
房 子 的 平 面 图
售楼处
家 具 设 计 的 图 纸
小实验:
辩一辩:在桌子上摆放三件物品
(从上方垂直往下看)
请同学们以小组为单位,讨论下面一组图分别从哪个点看 到的?
CB
E
D
C
议一议:下面是一辆汽车从小明的面前 经过而拍摄的一组照片,请同学们思考汽 车进入镜头的先后顺序应是怎样?
主视图
左视图
学而不思则殆
回
头 一
你有哪些收获呢?
看 ,
大家共分享!
我
想
说
会当凌绝顶 一览众山小
(1) (2) (3) (4) (5)
(2)(1)(5)(4)(3)
从正面看
从上面看
从正面看
从左面看
从后面看
从右面看
人们从不同方向视察某个物体时, 可以看到不同的图形。
从主正视面图看 从左左视面图看
从俯上视面图看 从正面看到的图形称为主视图 从左面看到的图形称为左视图 从上面看到的图形称为俯视图
苏科版数学七年级上册《5.4主视图、左视图、俯视图》说课稿
苏科版数学七年级上册《5.4 主视图、左视图、俯视图》说课稿一. 教材分析《苏科版数学七年级上册》第五章第四节主要介绍了主视图、左视图、俯视图的概念及其关系。
通过本节课的学习,学生能够理解三视图的定义,掌握它们之间的相互转化,并能运用三视图解决实际问题。
教材从生活实例出发,引导学生认识三视图,并通过对简单几何体的观察,使学生体会三视图在描述几何体形状方面的作用。
二. 学情分析七年级的学生已经具备了一定的空间想象力,他们对几何图形有了一定的认识。
但学生在学习过程中,可能对主视图、左视图、俯视图的概念理解不够深入,对三视图之间的联系和转化较难把握。
因此,在教学过程中,教师需要关注学生的认知水平,善于引导学生在实践中掌握知识。
三. 说教学目标1.知识与技能:学生能够理解主视图、左视图、俯视图的概念,掌握它们之间的相互转化。
2.过程与方法:通过观察、实践,学生能够运用三视图描述几何体的形状,提高空间想象力。
3.情感态度与价值观:学生体会数学与生活的紧密联系,增强对数学的兴趣。
四. 说教学重难点1.重点:主视图、左视图、俯视图的概念及其相互转化。
2.难点:对三视图的理解及运用。
五. 说教学方法与手段本节课采用讲授法、实践法、讨论法等多种教学方法。
借助多媒体课件,直观展示几何体的三视图,帮助学生建立空间观念。
同时,引导学生通过观察、实践、交流,深化对知识的理解。
六. 说教学过程1.导入:以生活实例引入,让学生观察几何体的三视图,激发学生的学习兴趣。
2.新课导入:介绍主视图、左视图、俯视图的概念,引导学生理解三视图之间的关系。
3.实践操作:让学生分组观察几何体模型,尝试画出它们的三视图,巩固所学知识。
4.讲解与演示:通过多媒体课件,展示几何体的三视图,讲解三视图之间的转化过程。
5.课堂练习:设计一些具有代表性的练习题,让学生独立完成,检验学习效果。
6.总结与拓展:对本节课内容进行总结,引导学生思考三视图在实际问题中的应用。
5.4 主视图、左视图、俯视图 苏科版数学七年级上册素养提升卷(含解析)
第5章 走进图形世界5.4 主视图、左视图、俯视图基础过关全练知识点1 物体的三视图1.(2022江苏徐州期末)下图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是( )A.左视图和俯视图不变B.主视图和左视图不变C.主视图和俯视图不变D.主视图、左视图和俯视图都不变2.(2023江苏南京期末)下图是由几个相同的小正方体搭成的一个几何体,从上方看到的图是( )A B C D知识点2 画立体图形的三视图3.(2022江苏镇江期末)图①是由一些棱长为1 cm的小正方体组成的简单几何体.(1)请直接写出该几何体的表面积(含底部): .(2)从正面看到的平面图形如图②所示,请在图③④中分别画出从左向右、从上向下看到的平面图形.4.(2023江苏无锡期末)下图是由一些棱长为1 cm的小立方块组成的几何体.(1)请画出从正面、左面、上面看到的这个几何体的形状.(2)求该几何体的表面积.(3)如果把它拼成一个无空隙的正方体,那么至少还需要同样的小立方块 块.(4)如果保持从正面和上面看到的形状不变,最多可以再添加 个小立方块.知识点3 由三视图想象物体的形状5.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则搭成这个几何体的小正方体最多有 个.6.(2023江苏苏州期末)如图①所示的组合体的下面是一个长方体,上面是一个圆柱.(1)图②和图③是它的两个视图,在横线上分别填写两个视图的名称(填“主”“左”或“俯”);(2)根据两个视图中的尺寸,计算这个组合体的体积.(结果保留π)能力提升全练7.(2021宁夏中考,2,★☆☆)如图所示的三棱柱的主视图是( )8.(2022江苏南通中考,5,★☆☆)下图是由5个相同的正方体搭成的立体图形,则它的主视图为( )A BC D9.(2021四川攀枝花中考,4,★☆☆)下图是一个几何体的三视图,则这个几何体是( )A.圆锥B.圆柱C.三棱柱D.三棱锥10.(2022辽宁阜新中考,2,★☆☆)下列四个几何体中,俯视图和左视图相同的是( )A B C D11.(2022江苏南京六合期末,11,★★☆)某几何体的三视图如图所示,它由大小相同的小正方体木块堆成,每个小正方体木块的棱长都是1 cm,则该几何体的表面积是 cm2.12.(2021云南中考,11,★★☆)下列图形是某几何体的三视图.已知主视图和左视图是两个全等的长方形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为 .13.【新中考】(2022青海中考,13,★★☆)由若干个相同的小正方体构成的几何体的三视图如图所示,那么构成这个几何体的小正方体的个数是 .14.(2022江苏无锡锡山期末,20,★★☆)用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形里的字母表示在该位置小立方体的个数,请解答下列问题:(1)求a,b,c的值;(2)这个几何体最少由几个小立方体搭成,最多由几个小立方体搭成?(3)当d=2,e=1,f=2时,画出这个几何体的左视图.素养探究全练15.【空间观念】中央电视台曾有一个非常受欢迎的娱乐节目《墙来啦!》,选手需按墙上的空洞形状摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同的“姿势”穿过“墙”上的三个空洞(如图),则该几何体为( )A B C D16.【空间观念】(2023江苏扬州期中)用小正方体搭成一个几何体,使得从正面、上面看该几何体得到的图形如图所示.这样的几何体只有一种吗?(1)它最多需要多少个小正方体?(2)它最少需要多少个小正方体?请分别画出这两种情况下从左面看该几何体得到的图形.答案全解全析基础过关全练1.A 去掉1号小正方体,俯视图不变,左视图不变,主视图改变.2.D 3.解析 (1)这个几何体的表面积为[(6+4+6)×2+2]×12=34(cm2),故答案为34 cm2.(2)这个几何体的左视图、俯视图如下:4.解析 (1)如图所示:(2)(1×1)×(6×2+6×2+6×2+2)=1×38=38(cm2).故该几何体的表面积是38 cm2.(3)3×3×3-10=27-10=17(块).答:至少还需要同样的小立方块17块.(4)保持从正面和上面看到的形状不变,最多可以再添加3个小立方块.5.6解析 由主视图和俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,所以搭成这个几何体的小正方体最多有4+2=6个.6.解析 (1)如图所示:(2)2×5×8+π×(2÷2)2×6=80+π×1×6=80+6π.答:这个组合体的体积是80+6π.能力提升全练7.C 主视图即从正面看到的图形,从正面看三棱柱,中间有一条看得见的棱,因此主视图中间有一条实线,故选C.8.A 主视图是从正面看到的图形,所看到的图形与选项A中的图形相同,故选A.9.A 俯视图为圆形的几何体有球、圆柱、圆锥等,结合主视图和左视图为三角形可得此几何体为圆锥.10.D 俯视图、左视图分别是从物体上面、左面看到的图形.选项D 中的俯视图与左视图都是正方形,故本选项符合题意.11.18解析 该几何体中小正方体木块有4个,其表面积是[3×2+3×2+3×2]×12=18(cm2).12.3π解析 由题意可知此几何体为圆柱,底面圆的半径是1,高是3,所以这个几何体的体积为π×12×3=3π.13.5解析 根据三视图,想象出每个位置正方体的数目:所以,构成这个几何体的小正方体的个数是1+2+1+1=5.14.解析 (1)由主视图可得,俯视图中最右边的小正方形处有3个小立方体,中间一列的两个正方形处各有1个小立方体,∴a=3,b=1,c=1. (2)若d,e,f处有一处有2个小立方体,其余两处各有1个小立方体,则该几何体最少由9个小立方体搭成;若d,e,f处各有2个小立方体,则该几何体最多由11个小立方体搭成.(3)当d=2,e=1,f=2时,这个几何体的左视图如图所示:素养探究全练15.A A.主视图为正方形,左视图为三角形,俯视图为圆,故A选项符合题意;B.主视图,左视图,俯视图分别为三角形,三角形,带圆心的圆,故B选项不符合题意;C.主视图,左视图,俯视图分别为正方形,正方形,正方形,故C选项不符合题意;D.主视图,左视图,俯视图分别为三角形,三角形,有对角线的长方形,故D选项不符合题意.故选A.16.解析 这样的几何体不止一种.(1)最多需要6+6+2=14个.(2)最少需要4+4+2=10个.最多时的左视图如图(1).最少时的左视图如图(2)(答案不唯一).图(1) 图(2)。
苏科版数学七年级上册教学设计《5-4主视图、左视图、俯视图(第2课时)》
苏科版数学七年级上册教学设计《5-4主视图、左视图、俯视图(第2课时)》一. 教材分析《5-4主视图、左视图、俯视图(第2课时)》这部分内容是苏科版数学七年级上册的教学内容。
这部分内容主要让学生了解主视图、左视图、俯视图的概念,以及它们之间的关系。
通过这部分的学习,学生能够更好地理解三维空间中的物体的形状和结构。
二. 学情分析学生在学习这部分内容时,可能对三维空间的概念还不够清晰,对主视图、左视图、俯视图的关系也可能理解不够。
因此,在教学过程中,需要引导学生通过实际操作,观察和分析主视图、左视图、俯视图之间的关系,从而加深他们对这部分内容的理解。
三. 教学目标1.让学生了解主视图、左视图、俯视图的概念,以及它们之间的关系。
2.培养学生观察、分析和解决问题的能力。
3.提高学生对数学的兴趣和信心。
四. 教学重难点1.重点:主视图、左视图、俯视图的概念和它们之间的关系。
2.难点:如何通过观察和分析主视图、左视图、俯视图之间的关系,来理解三维空间中的物体的形状和结构。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和分析实际问题,来理解和掌握主视图、左视图、俯视图的概念和它们之间的关系。
2.利用多媒体辅助教学,通过展示实际物体的主视图、左视图、俯视图,帮助学生直观地理解这部分内容。
3.学生进行小组讨论和合作交流,培养学生的团队合作能力和沟通能力。
六. 教学准备1.准备实际物体的主视图、左视图、俯视图的图片,用于展示和分析。
2.准备一些练习题,用于巩固学生对这部分内容的理解。
七. 教学过程通过展示一些实际物体的主视图、左视图、俯视图的图片,引导学生观察和分析,引发学生对这部分内容的兴趣。
2.呈现(10分钟)介绍主视图、左视图、俯视图的概念,并通过具体的例子,解释它们之间的关系。
让学生通过观察和分析,理解三维空间中的物体的形状和结构。
3.操练(10分钟)让学生通过观察和分析实际物体的主视图、左视图、俯视图,来理解它们之间的关系。
新苏科版七年级上册5.4主视图左视图俯视图(1)学案
新苏科版七年级上册5.4主视图左视图俯视图(1)学案
【学习目标】经历从不同方向观察的活动过程,初步体会从不同方向看同一个物体所看到的形状往往是不同的,发展空间观念;能识别简单物体的三个视图。
【学习重点】识别简单物体的三个视图。
【学习过程】
『问题情境』
猜谜语:一个物体,前看后看,左看右看,上看下看,看来看去都一样,这个物体可能是什么立体图形?
想一想:小伟的谜底是球,小明的谜底是圆柱,你认为谁的谜底对,为什么?
『例题讲评』
例1、画一画画出从正面、左面、上面看图中的圆柱看到的图形?
正面左面上面
例2、猜一猜图的右边三个图形,分别是从哪些方向看左图中物体得到的?
(1)从看(2)从看(3)从看
例3、练一练画出下列两物体的三视图。
A B C D 随堂练习: 1
.如图是一个物体的三视图,则它是( )
A .六棱柱
B .六棱锥
C .六面体
D .不能确定
2.桌上放着一个圆柱形茶叶盒与一盒餐巾纸(如上右图所示),它们的俯视图应是( )
A B C D
3.从不同方向观察如图所示的几何体,不可能看到的是( )
A B C D 4.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )
5.画出图中两物体的三视图。
苏科新版七年级上学期《5.4+主视图、左视图、俯视图》
苏科新版七年级上学期《5.4 主视图、左视图、俯视图》一.选择题(共4小题)1.下列立体图形中,主视图是三角形的是()A.B.C.D.2.如图,该几何体的俯视图是()A.B.C. D.3.下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球4.如图所示的几何体的左视图为()A.B.C.D.二.填空题(共3小题)5.在画三视图时应遵循;;原则.6.如图是某个几何体的主视图、左视图、俯视图,则该几何体是.7.观察下面的几何体,从上面看到的是,从左面看到的是.从正面看到的是.三.解答题(共5小题)8.分别画出图中几何体的主视图、左视图、俯视图.9.连线:将图中四个物体与(下面一排中)其相应的俯视图连接起来.10.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为(3)在不改变主视图和俯视图的情况下,最多可添加块小正方体.11.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).12.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.苏科新版七年级上学期《5.4 主视图、左视图、俯视图》参考答案与试题解析一.选择题(共4小题)1.下列立体图形中,主视图是三角形的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【解答】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.【点评】本题考查了简单几何体的三视图,圆锥的主视图是三角形.2.如图,该几何体的俯视图是()A.B.C. D.【分析】找到从几何体的上面所看到的图形即可.【解答】解:从几何体的上面看可得,故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.3.下列几何体中,主视图与俯视图不相同的是()A.正方体B.四棱锥C.圆柱D.球【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不同.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.如图所示的几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是上大下小等宽的两个矩形,矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.二.填空题(共3小题)5.在画三视图时应遵循长对正;高平齐;宽相等原则.【分析】画三视图的具体画法是:①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.【解答】解:在画三视图时应遵循长对正,高平齐,宽相等原则.【点评】本题主要考查了三视图的画法,画物体的三视图的口诀为:主、俯长对正;主、左高平齐;俯、左宽相等.6.如图是某个几何体的主视图、左视图、俯视图,则该几何体是圆锥.【分析】根据三视图即可判断该几何体.【解答】解:由于主视图与左视图是三角形,俯视图是圆,故该几何体是圆锥,故答案为:圆锥.【点评】本题考查了三视图,解题的关键是熟练掌握几种常见几何体的三视图,本题属于基础题型.7.观察下面的几何体,从上面看到的是③,从左面看到的是②.从正面看到的是①.【分析】根据该几何体的三视图定义可得.【解答】解:该几何体从上边看到的是③,从左边看到的是②,从正面看到的是①,故答案为:③,②,①.【点评】此题主要考查了作三视图,正确把握观察角度进而得出是解题关键.三.解答题(共5小题)8.分别画出图中几何体的主视图、左视图、俯视图.【分析】从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.【解答】解:【点评】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.9.连线:将图中四个物体与(下面一排中)其相应的俯视图连接起来.【分析】俯视图是从物体上面所看到的图形,可根据各立体图形的特点进行判断.【解答】解:如图所示:【点评】考查学生对俯视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.10.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为32(3)在不改变主视图和俯视图的情况下,最多可添加1块小正方体.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,3;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.【解答】解:(1)它的主视图和左视图,如图所示,(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32,故答案为32.(3)在不改变主视图和俯视图的情况下,最多可添加1个小正方体,故答案为1.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.11.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的侧面积即可.【解答】解:(1)该几何体是圆柱;(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4,高为10,∴该几何体的侧面积为2πrh=2π×2×10=40πcm2.【点评】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的侧面积的计算方法.12.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加2个小正方体.【分析】(1)直接利用三视图的画法进而得出答案;(2)利用几何体的形状进而得出其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【解答】解:(1)如图所示:(2)几何体表面积:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米);(3)最多可以再添加2个小正方体.故答案为:2.【点评】此题主要考查了画三视图以及几何体的表面积,正确得出三视图是解题关键.。
苏科版七年级数学上册 主视图、左视图、俯视图(课件)
所以这个几何体最多有10个正方体组成.故答案为8,10.
)
由三视图还原几何体
2.某几何体的三视图如图所示,因此几何体是( )
A.长方形
B.圆柱
C.球
D.正三棱柱
3.由若干个相同的小正方体搭成的一个几何体的主视图和俯
视图如图所示,则组成这个几何体的小正方体的个数最多有
(3)3×4×3=36cm2,
∴这个几何体的侧面积为36 cm2
课后回顾
课后回顾
01
02
03
A.4
B.5
C.6
D.7
【解析】
由主视知这个几何体共有2层,由俯视图易得最底层有4个小正方体,由主视图可得二
层最多有2个小正方体,第那么搭成这个几何体的小正方体最多为4+2=6个。故选C。
三视图的相关计算
4.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那
么这个立体图形的表面积是(
情景引入
题西林壁
横看成岭侧成峰,
远近高低各不同。
不识庐山真面目,
只缘身在此山中。
你知道这是为什么吗?
探索与思考
下图为某产品的设计图,你能指出这些设计图是从哪几个方向来描绘物体的吗?
视图
当我们从某一方向观察一个物体时,所看到的图形叫做物体的一个
视图。视图也可以看作物体在某一个方向的光线下的正投影,对于同
∴设高为h,则5×3×h=30,解得:h=2,
∴它的表面积是:5×3×2+5×2×2+3×2×2=30+20+12=62.
6 如图是一个几何体从三个方向看所得到的形状图.
苏科版数学七年级上册教学设计《5-4主视图、左视图、俯视图(第1课时)》
苏科版数学七年级上册教学设计《5-4主视图、左视图、俯视图(第1课时)》一. 教材分析《5-4主视图、左视图、俯视图(第1课时)》这部分内容是苏科版数学七年级上册的重点内容。
它主要介绍了三视图的概念及其之间的关系。
通过学习,学生能够理解并掌握主视图、左视图、俯视图的定义,能够根据物体的形状描述出它的三视图,并能够通过三视图来还原物体的形状。
这一部分内容为后续学习立体几何打下基础。
二. 学情分析七年级的学生已经具备了一定的空间想象能力,但是对于三视图的概念和应用可能还比较陌生。
因此,在教学过程中,需要引导学生从实际生活中的例子出发,培养他们的空间想象能力,帮助他们理解和掌握三视图的概念。
三. 教学目标1.知识与技能:学生能够理解主视图、左视图、俯视图的概念,能够根据物体的形状描述出它的三视图,并能够通过三视图来还原物体的形状。
2.过程与方法:通过观察实际生活中的例子,培养学生的空间想象能力,帮助他们理解和掌握三视图的概念。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决实际问题的能力。
四. 教学重难点1.重点:学生能够理解并掌握主视图、左视图、俯视图的定义,能够根据物体的形状描述出它的三视图,并能够通过三视图来还原物体的形状。
2.难点:学生能够灵活运用三视图的概念来解决实际问题。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过观察实际生活中的例子,引导学生培养空间想象能力;通过分析典型案例,让学生深入理解和掌握三视图的概念;通过小组合作学习,促进学生之间的交流和合作,提高他们解决实际问题的能力。
六. 教学准备1.准备相关的教学案例和图片,用于引导学生观察和思考。
2.准备教学课件,用于辅助讲解和展示。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些实际生活中的例子,如房屋、车辆等,引导学生观察并思考:如果你要从不同的角度去观察这些物体,你能够看到什么?从而引出主视图、左视图、俯视图的概念。
苏科版数学七年级上册5.4《主视图、左视图、俯视图》教学设计1
苏科版数学七年级上册5.4《主视图、左视图、俯视图》教学设计1一. 教材分析《苏科版数学七年级上册5.4《主视图、左视图、俯视图》》这一节内容,主要让学生掌握三视图的概念,了解主视图、左视图、俯视图之间的关系,并能够熟练地进行图形的转换。
教材通过实例的展示,引导学生观察、思考,从而发现并掌握三视图的绘制方法。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和图形认知能力,他们对平面图形有一定的了解。
但是,对于三维图形和三视图的概念,可能还比较陌生。
因此,在教学过程中,教师需要通过生动的实例和直观的演示,帮助学生建立起三视图的空间形象,使他们能够更好地理解和掌握这一部分内容。
三. 教学目标1.了解主视图、左视图、俯视图的概念,知道它们之间的关系。
2.能够根据物体的三视图,还原出物体的形状。
3.能够运用三视图的知识,解决一些实际问题。
四. 教学重难点1.重点:主视图、左视图、俯视图的概念及它们之间的关系。
2.难点:如何根据三视图还原出物体的形状,以及如何运用三视图解决实际问题。
五. 教学方法1.情境教学法:通过实例的展示,让学生在实际情境中感受三视图的概念,提高他们的空间想象力。
2.合作学习法:引导学生分组讨论,共同探讨三视图的绘制方法,提高他们的合作能力。
3.实践操作法:让学生动手操作,实际绘制一些简单物体的三视图,增强他们的实践能力。
六. 教学准备1.准备一些常见物体的三视图图片,如圆柱、正方体等。
2.准备一些绘图工具,如直尺、圆规等。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些常见物体的三视图图片,引导学生观察、思考,让学生初步了解三视图的概念。
2.呈现(10分钟)教师通过讲解和演示,详细介绍主视图、左视图、俯视图的概念,以及它们之间的关系。
同时,让学生动手绘制一些简单物体的三视图,加深他们对三视图的理解。
3.操练(10分钟)教师提出一些练习题,让学生分组讨论,共同完成。
苏科版数学七年级上册5.4《主视图、左视图、俯视图》教学设计2
苏科版数学七年级上册5.4《主视图、左视图、俯视图》教学设计2一. 教材分析《苏科版数学七年级上册5.4《主视图、左视图、俯视图》》这一节主要让学生了解主视图、左视图、俯视图的概念,以及它们之间的关系。
通过观察长方体和正方体的三视图,让学生能够识别和理解三视图所反映的物体的形状。
教材通过丰富的图片和实例,让学生在实际操作中掌握三视图的知识,培养学生的空间想象能力和抽象思维能力。
二. 学情分析七年级的学生已经具备了一定的几何知识,对立体图形有一定的了解。
但是,对于主视图、左视图、俯视图的概念以及它们之间的关系,可能还比较模糊。
因此,在教学过程中,需要通过大量的实例和操作,让学生深入理解三视图的知识。
三. 教学目标1.知识与技能:让学生掌握主视图、左视图、俯视图的概念,能够识别和理解三视图所反映的物体的形状。
2.过程与方法:通过观察、操作、思考,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。
四. 教学重难点1.重点:主视图、左视图、俯视图的概念及其关系。
2.难点:如何通过三视图识别和理解物体的形状。
五. 教学方法1.情境教学法:通过丰富的图片和实例,让学生在实际操作中掌握三视图的知识。
2.小组合作学习:引导学生进行观察、讨论,培养学生的团队合作意识和探究精神。
3.启发式教学:教师提问,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.准备长方体和正方体的模型,以及它们的三视图图片。
2.准备投影仪或大屏幕,用于展示图片和实例。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用图片和实例,引导学生观察长方体和正方体的三视图,让学生初步了解主视图、左视图、俯视图的概念。
2.呈现(10分钟)展示长方体和正方体的三视图,让学生直观地感受三视图之间的关系。
教师引导学生观察、思考,总结出主视图、左视图、俯视图的特点和规律。
苏科版七年级上册 主视图、左视图、俯视图课件
答:最多要28个小立方体;
42 3 3
4 13 41 2 13 41 21 1.下图是某些小正方块的组合体的主视图和左视图,那么做
成这样的组合体最少要多少小立方体,最多要多少个小立方体?
试画出对应的俯视图.
主视图
左视图 答:最少要9个小立方体;
对应的俯视图为: 3 3 1或
画出下列组合体的俯视图,并在俯视图上标出对应位置 上小立方体块的个数.
1 3 12 1
2 111 3
3 121
1 1
主视图
如图是几个小立方体所 搭成的几何体的俯视图, 小正方形中的数字表示 该位置小立方体块的个 数,请搭出这个物体,并 画出相应的主视图和左 视图.
13 2
2 121
3 1
左视图
2 2 31
初中数学 七年级(上册)
5.4 主视图、左视图、俯视图(2)
给出某些视图,你能想象出相应的几何体吗? 1.已知一个几何体的一个视图: (1)主视图是圆的几何体可能是什么? (2)俯视图是长方形的几何体可能是什么? (3)左视图是三角形的几何体可能是什么?
给出某些视图,你能想象出相应的几何体吗? 2.根据下图所示物体的主视图、左视图、俯视图, 想象这些 物体的形状,说出相应几何体的名称.
圆柱
.
圆锥
正方体 长方体
球体
根据下图所示物体的主视图、左视图、俯视图, 想象这两个物体的形状.
.
(1)
(2)
你想象出的物体是下图中的哪两个物体?
(1)
(2)
(3)
(4)
下列组合体共有多少个小正方体? 你能画出这个组合体 的俯视图吗?
共有12个小正方体.
4 21 22 1
5江苏科技版初中数学七年级上册精品教案.4 主视图、左视图、俯视图
5.4 主视图、左视图、俯视图【教学目标】知识与技能:能识别简单物体的三种形状图,会画立方体及其简单组合体的三种形状图,能根据三种形状图描述基本几何体或实物原形,会根据某几何体的某两种形状图,找出满足条件的小正方体的数量.过程与方法:经历“从不同方向观察物体”的活动过程,在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;通过观察和动手操作,经历和体验组合体及从上面看的形状图中数字的变化导致三种形状图的变化的过程,培养学生的实验操作能力,进一步提高空间想象能力.情感态度与价值观:培养学生重视实践、善于观察、主动探索、勇于发现、合作交流的品质.【重难点】重点:会画立方体及其简单组合体的三视图.难点:根据俯视图及其相应位置的立方体的数量,画出主视图和左视图.【教学过程】活动一:创设情境,导入新课横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.这一首苏东坡的诗体现了观察庐山的几种方式:横看、侧看、远看、近看、身处山中看,也说明了观察物体是有讲究的,本节课我们就来学习和探究观察物体的方法.从而引出课题“从三个方向看物体的形状”.活动二:实践探究,交流新知1.桌上放着一个长方体和1个圆柱,从不同方向观察这两个物体,指出右边的3幅图分别是从哪一个方向看到的?2.桌上放着一个长方体、一个棱锥和一个圆柱,请说出下面的三幅图分别是从哪个方向看到的?3.观察右表中所示物体,并将看到的图形填入表中.概括:任何一个物体都有长、宽、高三个方向的尺寸.主视图反映物体的长度和高度;俯视图反映物体的长度和宽度;左视图反映物体的高度和宽度.由于三个视图反映的是同一个物体,所以每两个视图之间必有一个相同的度量.因此得到:主、俯视图等长“长对正”;主、左视图等高“高平齐”;俯、左视图等宽“宽相等”.【当堂反馈】1.如左图,你知道下面的三幅图分别是从哪个方向看到的吗?你能说出这三幅视图的名称吗?2.画出图中两个物体的主视图、左视图、俯视图.【课后小结】谈谈你在本节课的收获.通过学习从不同方向看物体,对你有何启示?【教学反思】。
苏科版七年级数学上册教案《主视图、左视图、俯视图》
《主视图、左视图、俯视图》在学生了解生活中的立体图形,立体图形的展开与折叠及截一个几何体等内容之后,安排本节内容,力图拓宽学生的思维,丰富学生对图形世界的认识。
本节的教学任务是:首先初步体会从不同方向观察同一物体可能看到不同结果,能画出简单的三种形状图;然后经历由搭建模型、观察模型、画出三种形状图,到脱离模型、由数(从上面看的形状图及其相应位置的立方体的数量)悟形(立体图形)、由形(立体图形)悟形(形状图)、搭模验证等过程。
本节教学任务的目的实际上是为了较好地发展学生的空间想象能力、空间观念,而为了实现这个目标,需要让学生进行适当的说理,相对清晰地表达自己的思维,发展学生的表达能力和推理能力。
【知识与能力目标】1、初步体会从不同方向观察同一物体可能看到不同的结果;2、能识别简单物体的三视图,会画简单立方体及其简单组合的三视图。
【过程与方法目标】1、经历从不同方向观察物体的活动过程,发展空间观念,积累活动经验;2、能在与他人交流的过程中,合理清晰地表达自己的思维过程。
【情感态度价值观目标】有意识地培养学生学习数学的积极情感,激发对空间与图形学习的好奇心,初步形成与他人合作交流的意识。
【教学重点】1.会画简单物体的主视图、左视图和俯视图。
2.能由三视图画出简单的几何体。
【教学难点】利用空间想象力,由已知搭建的几何体的三视图,想象出一些简单物体的形状,进一步感知立体图形与平面图形的关系.多媒体课件一、导入横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.——苏轼从不同的方向观察同一个事物,可能会看到不同的结果.二、讲解1、想一想:(1)桌面上放着一个圆柱和一个长方体,请说出下面三幅图分别是从哪一个方向看到的?(2)桌上放着一个长方体、一个棱锥和一个圆柱,请说出下面的三幅图分别是从哪个方向看到的?2、试一试:观察表中所示的物体,并将看到的图形画入表中.3、定义:人们从不同的方向观察某个物体,可以看到不同的图形.一般地,我们把:从正面看到的图形,称为主视图;从左面看到的图形,称为左视图;从上面看到的图形,称为俯视图.4、做练习1、2题.5、三个视图的位置要求:先画主视图,左视图画在主视图的右边,俯视图画在主视图下面.尺寸要求:主俯长对正,主左高平齐,俯左宽相等.6、做一做:画出下面图形的主视图、左视图、俯视图.思路点拨:(1)主视图反映原图的长和高;(2)左视图反映原图的高和宽;(3)俯视图反映原图的长和高.7、完成练习3、4、5.三、练习1、把如图所示物体的主视图、左视图、俯视图的名称填在相应的括号内.2、分别画出图中三个物体的主视图、左视图、俯视图.解:(1)如图:(2)如图:(3)如图:3、根据图中所示物体的主视图、左视图、俯视图,想象这些物体的形状.你想象出的物体是下图的哪两个物体?4、工人师傅要制作一个密封容器,如图是它的主视图、左视图、俯视图.试描述这个容器的形状,并画出它的表面展开图.解:这个容器的主视图、左视图都是长方形,俯视图是正方形,由图可以想象出它是棱柱体,如图所示.5、如图是一个零件的三视图,试描述出这个零件的形状.解:这个零件由两部分组成:上面是一个圆柱,下面是一个长方体,圆柱立于长方体的中央(如下图).四、总结:知识:(1)从不同方向观察某个物体时,可以看到不同的图形.(2)能识别和画出简单几何体的主视图、左视图、俯视图.略。
5.4主视图左视图俯视图七年级数学上册讲义(苏科版)(原卷版)
主视图、左视图、俯视图知识点一、三个视图1.三个视图的概念:人们从不同的方向观察某个物体,可以看到不同的图形,一般地,我们把从正面看到的图形称为主视图;从左面看到的图形,称为左视图;从上面看到的图形,称为俯视图.2.常见几何体的三个视图三个视图分别从不同的方向表示物体的形状特征,单独的一个视图难以全面地反映物体的形状特征,只有三者结合起来才能较全地反映物体的形状.例:下列立体图形中,左视图与主视图不同的是()A.正方体B.圆柱C.圆锥D.球【解答】B【解析】A.左视图与主视图都是正方形,故选项A不合题意;B.左视图是圆,主视图都是矩形,故选项B符合题意;C.左视图与主视图都是三角形;故选项C不合题意;D.左视图与主视图都是圆,故选项D不合题意;故选B.知识点二、画几何体的三个视图1.三个视图的画法(1)确定主视图的位置,画出主视图,主视图反映物体的长和高;(2)在主视图的正下方画出俯视图,俯视图反映物体的长和宽,注意与主视图“长对正”,即长相等;(3)在主视图的正右方画出左视图,左视图反映物体的高和宽,注意与主视图“高平齐”,与俯视图“宽相等”.2.画三个视图的规定在画几何体的主视图、左视图或俯视图时,看得见的部分轮廓线要画成实线,因被其他部分遮挡而看不见的部分轮廓线要画成虚线.(1)在画图时,如果看不见的轮廓线(虚线)与看得见的轮廓线(实线)重叠,那么这时虚线不需要画出;(2)虚线也是反映物体形状的重要部分,不可不画.例:如图,下列关于物体的主视图画法正确的是()A.B.C.D.【解答】C【解析】物体的主视图画法正确的是:.故选C.知识点三、由三个视图确定几何体的形状1.由三个视图描述几何体的方法:由三个视图想象几何体的形状,应先分别根据主视图、俯视图和左视图想象立体图形的正面、上面和左面,然后综合起来考虑整体图形;2.由三个视图还原几何体,首先,应该清楚常见几何体的三个视图;其次,对于稍复杂的视图,要能将其简化为几个简单的图形;最后,根据物体的三个视图想象还原物体的形状;3.一个摆好的几何体的三个视图是唯一的,但从一个视图反过来考虑几何体时,它有多种可能性,如主视图是正方形的几何体可能是直棱柱、长方体、圆柱等.例:诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.如图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是()A.是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管B.是圆柱形物体和球形物体的组合体,里面有两个平行的空心管C.是圆柱形物体,里面有两个垂直的空心管D.是圆柱形物体,里面有两个平行的空心管【解答】D【解析】应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状,由图可得,该物体是圆柱形物体,里面有两个平行的空心管,故选D.巩固练习一.选择题1.如图是一个放置在水平试验台上的锥形瓶,它从上面看到的形状图为()A.B.C.D.2.下列大小相同的5个正方体搭成的几何体如右图所示,从上面看到的几何体形状图是()A.B.C.D.3.如图是由七个完全相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.4.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.正方体B.圆柱C.直三棱柱D.圆锥5.如图所示的钢块零件的主视图为()A.B.C.D.6.如图是从三个方向看到的几何体的形状图,则这个几何体的形状是选项中的()A.B.C.D.7.一个几何体的三视图如图所示,则这个几何体的表面积是()A.18πB.20πC.16πD.14π8.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶二.填空题9.用小立方体搭一个几何体,分别从它的正面、上面看到的形状如图所示.这样的几何体最少需个小立方体;最多需要个小立方体.10.如图所示的是一个几何体从正面和从上面看到的图形,该几何体的体积是.11.如图是一个几何体从三个不同方向看到的形状图,根据图中数据,可得该几何体的体积是.12.一个几何体是由一些完全相同的小立方块搭成的,从正面和上面看到的图形如图所示,则搭成这个几何体最多需这样的小方块个.13.如图所示是一个几何体的三视图,若这个几何体的体积是6,则它的表面积是.14.图是由几块相同的小正方体搭成的立体图形的三视图,则这堆立体图形中小正方体共有.15.若一个几何体的从正面、左面、上面看到的形状都相同,则这个几何体可能是.(至少填两种图形)16.一个几何体由若干大小相同的小立方块搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数.若一个小立方块的体积为1,则这个几何体的表面积为.三.解答题17.如图,分别画出从正面、左面和上面观察几何体看到的形状图.18.在平整的地面上,有一个由若干个完全相同的小立方块搭成的几何体,如图所示,请画出这个几何体从三个方向看到的形状图,若每个小立方块的棱长为1cm,那么该几何体的表面积为.19.画出如图几何体从不同方向看到的形状图.20.如图,由几个棱长为1的正方体组成的一个几何体.①请在方格纸中用实线画出这个几何体从不同方向看到的图形;②该几何体的表面积是平方单位(包括底面积).21.已知如图为一几何体从三个方向看到的形状图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)根据图中所给的数据,求这个几何体的侧面积.22.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.23.如图是由若干个小正方体搭成的几何体的俯视图,其上的数字表示该位置上小正方体的个数,其中每个小正方体的棱长为3厘米.(1)求这个几何体的表面积(含底面);(2)请按要求在方格内分别画出从这个具何体的两个不同方向看到的视图.24.如图是由棱长都为1cm的6块小正方体组成的简单几何体.请在方格中画出该几何体的三个视图.25.如图是由7个相同小正方体组成的几何体,(1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;(2)图中共有个小正方体.(3)已知每个小正方体的棱长为1cm,则该几何体的表面积为cm2.26.由13个完全相同的小正方体搭成的物体如图所示.(1)请在方格图中分别画出该物体的左视图和俯视图;(2)在保持物体左视图和俯视图不变的情况下,图中的小正方体最多可以拿走个.27.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6.小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,问这个正方体各个面上的数字对面各是什么数字?28.如图①是一张长为20cm,宽为12cm的长方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题(1)折成的无盖长方体盒子的容积V=cm3;(用含x的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大?x/cm12345V/cm3180252192(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.。
苏科七年级数学上册5.4 《主视图、左视图、俯视图(2)》课件1
你能描述出符合下列三视图的几何体吗?
主视图 左视图 俯视图 主视图 左视图 俯视图
从上面看
尝试画出图中几何 体的三视图 从左面看
从正面看
主视图 左视图
俯视图
长对正 高平齐 宽相等
画出下面几何体的三视图
主视图 左视图
俯视图
画出下面几何体的三视图
主视图 左视图
俯视图
动 如图是由几个小立方块所 动 搭成的几何体的俯视图, 脑 小正方形中的数字表示在
5.4 主视图、左视图、 俯视图(2)
1
2
3
4
5
6
主 视 图
左 视 图
俯 视 图
请画出下列几何体的三视图:
主视图 左视图
俯视图
请画出下列几何体的三视图:
主视图 左视图
俯视图
下图是小明拍摄的蒙古包的照片。他 认为它可以看成如图所示的几何体, 请你画出这个几何体的三视图。
主视图 左视图 俯视图
主视图 左视图 俯视图
试一试用相同的小正方体搭出符合 下列三视图的几何体:
主视图 左视图 俯视图
想一想:有几种不同的搭法?最多用 了多少个小正方体?最少呢?
主视图
用小立方块搭一个几何体, 使得它的主视图和俯视图如图所 示,这样的几何体只有一种吗? 它最多需要多少个小立方块?最 少需要多少个小立方块?
侧视图:
第二列的方块有 2 个,
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月22日星期五2022/4/222022/4/222022/4/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/222022/4/222022/4/224/22/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/222022/4/22April 22, 2022
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4主视图、左视图、俯视图一.选择题1.下面几个几何体,主视图是圆的是()A.B.C.D.2.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.3.下列几何体中,主视图和俯视图都为矩形的是()A.B.C. D.4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A. B. C.D.5.下列几何体中,哪一个几何体的三视图完全相同()A.球体 B.圆柱体C.四棱锥D.圆锥6.如图所示,是一个空心圆柱,它的俯视图是()A.B.C.D.7.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.8.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A.B.C.D.9.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.10.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.11.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④12.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.13.一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+4二.填空题14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.15.某几何体的三视图如图所示,则这个几何体的名称是.16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.17.如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有块.18.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是.19.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x= ,y= .20.如图是某个几何体的三视图,该几何体是.21.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=10cm,AB=6cm,则这个正六棱柱的侧面积为cm2.22.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.23.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有桶.三.解答题24.如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.25.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?26.画图题:(1)如图1是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形从正面看,左面看,上面看的方向.(2)如图2是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的从正面看和上面看到的图形.27.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm )12 22+1.5 32+3 42+4.5 … …(1)当桌子上放有x (个)碟子时,请写出此时碟子的高度(用含x 的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.28.如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为 ;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加 个小正方体.29.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图,方格中的数字表示该位置的小立方块的个数.(1)请在图方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为个平方单位.(包括面积)参考答案与解析一.选择题1.(2016•天门)下面几个几何体,主视图是圆的是()A.B.C.D.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.【点评】本题考查了几何体的三视图,解决本题的关键是得出各个几何体的主视图.2.(2016•鄂州)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.【分析】从左面看会看到该几何体的两个侧面.【解答】解:从左边看去,应该是两个并列并且大小相同的矩形,故选B.【点评】本题考查了几何体的三视图及空间想象能力.3.(2016•西宁)下列几何体中,主视图和俯视图都为矩形的是()A.B.C. D.【分析】分别确定四个几何体从正面和上面看所得到的视图即可.【解答】解:A、此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B、此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C、此几何体的主视图是矩形,俯视图是圆,故此选项错误;D、此几何体的主视图是梯形,俯视图是矩形,故此选项错误;故选:B.【点评】此题主要考查了简单几何体的三视图,注意所有的看到的棱都应表现在三视图中.4.(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.【点评】本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.5.(2016•衡阳)下列几何体中,哪一个几何体的三视图完全相同()A.球体 B.圆柱体C.四棱锥D.圆锥【分析】根据各个几何体的三视图的图形易求解.【解答】解:A、球体的三视图都是圆,故此选项正确;B、圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,故此选项错误;C、四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,故此选项错误;D、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故此选项错误.故选:A.【点评】此题主要考查了简单几何体的三视图,本题只要清楚了解各个几何体的三视图即可求解.6.(2016•阜新)如图所示,是一个空心圆柱,它的俯视图是()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:它的俯视图为:故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.7.(2016•金华)从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A.B.C.D.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,∴该几何体的左视图为:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.8.(2016•绥化)如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个正方形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.9.(2016•常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.(2016•日照)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选B.【点评】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.11.(2016•宁德)如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④【分析】根据题意得到原几何体的主视图,结合主视图选择.【解答】解:原几何体的主视图是:.故取走的正方体是①.故选:A.【点评】本题考查了简单组合体的三视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.12.(2016•泰州)如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.【分析】该几何体的左视图为一个矩形,俯视图为矩形.【解答】解:该几何体的左视图是边长分别为圆的半径和厚的矩形,俯视图是边长分别为圆的直径和厚的矩形,故选D.【点评】本题考查了简单几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.13.(2016•呼和浩特)一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4 D.3π+4【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【解答】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.【点评】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.二.填空题14.(2016•盐城)如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为5 .【分析】根据立体图形画出它的主视图,再求出面积.【解答】解:主视图如图所示,∵由6个棱长均为1的正方体组成的几何体,∴主视图的面积为5×12=5,故答案为5.【点评】此题是简单组合体的三视图,主要考查了立体图的主视图,解本题的关键是画出它的主视图.15.(2016•南通)某几何体的三视图如图所示,则这个几何体的名称是圆柱.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.16.(2016•荆州)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17.如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有9 块.【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二、三层正方体的个数,相加即可.【解答】解:综合主视图,俯视图,左视图,底层有2+2+1=5个正方体,第二层有3个正方体,第三层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5+3+1=9个.故答案为:9.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.18.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是7 .【分析】根据从左面看得到的图形是左视图,从前面看的到的视图是主视图,再根据面积求出面积的和即可.【解答】解:该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为:7.【点评】本题考查了简单几何体的三视图,确定左视图、主视图是解题关键.19.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x= 1或2 ,y= 3 .【分析】俯视图中的每个数字是该位置小立方体的个数,结合主视图2列中的个数,分析其中的数字,从而求解.【解答】解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3.故答案为:1或2;3.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.注意找到该几何体的主视图中每列小正方体最多的个数.20.如图是某个几何体的三视图,该几何体是三棱柱.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故答案为:三棱柱.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.21.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=10cm,AB=6cm,则这个正六棱柱的侧面积为120 cm2.【分析】根据AE的长,求底面正六边形的边长,用正六边形的周长×AD,得正六棱柱的侧面积.【解答】解:如图,正六边形的边长为AC、BC,CE垂直平分AB,由正六边形的性质可知,∠ACB=120°,∠A=∠B=30°,AE=AB=3,所以,AC===2,正六棱柱的侧面积=6AC×AD=6×2×10=120cm2.故答案为:120.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.22.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要19 个小立方体,王亮所搭几何体的表面积为48 .【分析】首先确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.【解答】解:∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵张明用17个边长为1的小正方体搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为19,48.【点评】本题考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键,难度不大.23.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有9 桶.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得第一层有4桶,第二层最少有3桶,第三层有2桶,所以至少共有9桶.故答案为9.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.三.解答题(共6小题)24.如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.【分析】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【解答】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【点评】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.25.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?【分析】(1)由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(2)可在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,相加即可求解.【解答】解:(1)画图如下:(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.【点评】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.26.画图题:(1)如图1是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形从正面看,左面看,上面看的方向.(2)如图2是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的从正面看和上面看到的图形.【分析】(1)从正面看从左往右2列正方形的个数依次为3,1;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右2列正方形的个数依次为2,1;画出从正面,左面,上面看,得到的图形即可.(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.27.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的高度(单位:cm)碟子的个数1 22 2+1.53 2+34 2+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.【分析】由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1).【解答】解:由题意得:(1)2+1.5(x﹣1)=1.5x+0.5(2)由三视图可知共有12个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)【点评】考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.28.如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为28 ;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加 2 个小正方体.【分析】(1)有顺序的计算上下面,左右面,前后面的表面积之和即可;(2)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(3)根据保持这个几何体的主视图和俯视图不变,可知添加小正方体是中间1列前面的2个,依此即可求解.【解答】解:(1)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28×1=28故该几何体的表面积(含下底面)为2.(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体.故答案为:28;2.【点评】考查了作图﹣三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.29.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图,方格中的数字表示该位置的小立方块的个数.(1)请在图方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为24 个平方单位.(包括面积)【分析】(1)根据几何体的形状分别根据三视图观察的角度得出答案;(2)利用几何体的形状,结合各层表面积求出即可.【解答】解:(1)如图所示:。