(完整版)2018兰州数学中考真题

合集下载

【初三英语试题精选】2018年兰州市中考数学试题(带答案和解释)

【初三英语试题精选】2018年兰州市中考数学试题(带答案和解释)

2018年兰州市中考数学试题(带答案和解释)甘肃省兰州市2018年中考数学真题试题
一、选择题本大题共15个小题,每小题4分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的
1已知,则下面结论成立的是( )
A B C D
【答案】A
考点比例的性质
2 如图所示,该几何体的左视图是( )
AB CD
【答案】D
【解析】
试题解析在三视图中,实际存在而被遮挡的线用虚线表示,
故选D.
考点简单组合体的三视图
3 如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于( )
A B C D
【答案】C.
考点解直角三角形的应用﹣坡度坡角问题.
4 如图,在中,,点在上,,则 ( )
A B C D
【答案】B
【解析】
试题解析∵在⊙O中, ,点D在⊙O上,∠CDB=25°,
∴∠AOB=2∠CDB=50°.
故选B.
考点圆周角定理.
5 下表是一组二次函数的自变量与函数值的对应值。

甘肃省兰州市2018年中考数学试卷(解析版)

甘肃省兰州市2018年中考数学试卷(解析版)

甘肃省兰州市2018年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分)1.-2018的绝对值是( C ).2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( A ).A.B.C.D.3.据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( C )A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元4.下列二次根式中,是最简二次根式的是( B ).A.18B.13C.27D.125如图,AB//CD,AD=CD,∠1=65°则∠2的度数是(A )A.50°B.60°C.65°D.70°6.下列计算正确的是( D )A.abaa532=⋅ B.1243aaa=⋅C.24226)3-baba=( D.22352aaaa=+÷7.如图,边长为4的等边△ABC中,D、E分别是AB、AC的中点,则△ADE的面积是(A )A.3B.23C.433D.328.如图,矩形ABCD中,AB=3,BC=4,BE//DF且BE与DF之间的距离为3,则AE的长度是(C)A.7B.83C.87D.859.如图,将口ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=(第7题)CAEDBABCDEF48°,∠CFD =40°,则∠E 为( B )112° C .122°D .92°10.关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( D ) A. a >1 B .a <1 C .a <1且a ≠-2 D .a >1且a ≠2D.解析:化简得x =a -1<0(x ≠-1)即a>1且a ≠2.11.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论: ①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有( B )A.①②③B.②③⑤C.②③④D.③④⑤B.解析:开口向下,a<0,与y 轴交点在上方,c>0,021>ab x x -=+,即b>0,故0<abc ;x =-1时,y =a -b +c<0,故b -a>c ;x =2时,y =4a +2b +c<0;a cx x =21是2到3之间的数x -1到0之间的数>-3,故3a<-c ;⑤式化解得,0)(2<+-+b a bm am ,0)1()1(2<b m a m -+-,无论m 大于1还是≤1,该式总成立,故⑤成立,即答案为B .12.如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、A.25-m 845<<-B.21-m 829<<-C.25-m 829<<-D.21-m 845<<- C.解析:在y =2457212+-x x 中,令y =0,解得x 1=9,x 2=5,∴点A ,B 的坐标分别为(9,0),(5,0).∵C 2是由C 1向左平移得到的,∴点D 的坐标为(1,0),C 2对应的函数解析式为y =23212--)(x =253212+-x x (1≤x≤5).当直线y =m x +21与C 2相切时,可知关于x 的一元二次方程253212+-x x =m x +21有两个相等的实数根,即方程x 2-7x +5-2m =0有两个相等的实数根,∴Δ=(-7)2-4×1×(5-2m )=0,解得m =829-.当直线y =m x +21过点B 时,可得0=m +⨯521,解得m =25-.如图,故当829-<m<25-,直线y =m x +21与C 1,C 2共有3个不同的交点.二、填空题:本大题共4小题,每小题3分,共24分. 13.因式分解:32y y x -= .y(x +y)(x -y)14.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .-1<x<3.15.如图,△ABC 的外接圆O 的半径为3,∠C =55°,则劣弧AB 的长是 .π211.13. 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是 .OA CB三、解答题(本大题共11小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.解:2-71)12(14=+--+=原式.18.解方程:02232=--x x . 解:移项,得3x 2-2x =2,配方,得3(x -31)2=37, 解得x 1=371+,x 2=371- .19.先化简,再求值:12)143(--÷---x x x x x ,其中21=x .解:原式=211442--⋅-+-x x x x x =2+x ,代入21=x 得原式=25.20. (6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:∠A 的角平分线作法.作图略. 21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.B学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数.解:(1)17,20%.310137%2613----÷=a =17,b =()%261310÷÷=20%;(2)10,10.由中位数和众数的定义即可得;(3)72°.360°⨯20%=72°; (4)120人.1205032000=⨯(人) 22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ). (1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.(2)4.解:一共12个点坐标,有三个点坐标在上面.23. (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B30°,60°.求CD 的高度.(结果保留根号)解:过B 点作CD 的垂线,垂足为F,设CD =x 米,则DF =(x -3)(米),BF =AC ,BF =)x(330tan 米=︒DE,AC =AE +CE=x CD 331830tan 18+=︒⋅+,即x x 33183+=, 解得,39=x ,即CD 长为93米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x≤30,且x 为整数)的销量为y 件.(1)直接写出y 与x 的函数关系式; (2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?解:(1)y =38+2x ;解析:y =40+2(x -1)=2x +38;(2)()()[]1580145382----+=x x w =()20412122+--x故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为2041元.25.(8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xk y =2的图像交于点A (1,2)和B (-2,m ). (1)求一次函数和反比例函数的表达式; (2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE//x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.解:(1)xy x y 2;121=+=(3)()),1(0,2+∞- (3)C 点的坐标为()()1-3-11,31,和-+;解析:易知D (1,-1),设C 点坐标为(x ,-1),故AC =223)1(+-x ,BC =1-x ,由AC =2BC 可知,224BC AC =,即()()2221431-=+-x x ,解得313121-=+=x x ,,故C 点的坐标为()()1-3-11,31,和-+.26.(8分)如图,在∆ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G .连接AD 、CF . (1)求证:四边形AFCD 是平行四边形; (2)若GB =3,BC =6,BF =23,求AB 的长. 证明(1).//)(//是平行四边形四边形又△△又∵的中点是∵AFCD CDAF CD AF ASA CED AEF CEAE CED AEF DCE FAE CD AF CE AE AC E ∴=∴≅∴=∠=∠∠=∠∴=∴(2)6,29,29//=+=∴====∴BF AF AB CD AF CD CD BF GC GB GCD GBF CDBF 又代入数值,可得∽△易得△∵即AB 的长为6. 27.(9分)如图,AB 为圆O 的直径,C 为圆O 上的一点,D 为BA 延长线上的一点,B ACD ∠=∠.(1)求证:DC 为圆O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F ,且CEF ∠=45°,圆O 的半径为5,53sin =B ,求CF(1)连接OC ,DD.909090的切线是圆的直径是圆∵∵O CD CD OC OCA DAC OCB OCA ACB O AB OCB OBC OCOB ∴⊥∴︒=∠+∠∴︒=∠+∠∴︒=∠∴∠=∠∴= (2)解析:由∠CEF =45°,∠ACB =90°,可知,∠CFE =∠CEF =45°,即CF =CE . 由53sin =B ,可得AC =6,由勾股定理得,BC =8,设CF =CE =x ,由∠CDE =∠BDF ,∠ECD =∠FBD ,可知,△CED 相似于△BFD ,即①x xCD FD CE BF -==8,由∠CFD =∠AED ,∠EDA =∠FDC ,可知△CFD 相似于△AED ,即②x x ED FD AE CF -==6,联立①②得,724=x ,即CF 的长为724.28.(12分)如图,抛物线42-+=bx ax y 经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC . (1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.解:(1)将A ,B 两点的坐标分别代入, 得⎩⎨⎧-=-+=--,44525,0439b a b a解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y .(2)证明:设直线AB 的表达式为y =kx +b’,第28题图则⎩⎨⎧-=+=+-,4'5,0'3b k b k解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k故直线AB 的表达式为y =2321--x . 设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-). 易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489, 解得m =-9, 故此时点M 的坐标为(25,-9). 当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11).。

2018年兰州市中考数学试题

2018年兰州市中考数学试题

2018年兰州市初中毕业生学业考试数 学(A )注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上. 参考公式:二次函数顶点坐标公式:(a b2-,ab ac 442-)一、选择题:本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由八个相同的小正方体组合而成的几何体,其左视图是2.“兰州市明天降水概率是30%”,对此消息下列说法中正确的是 A .兰州市明天将有30%的地区降水 B .兰州市明天将有30%的时间降水C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水3.二次函数3122+--=)(x y 的图象的顶点坐标是 A .(1,3) B .(1-,3)第1题图ABCDC .(1,3-)D .(1-,3-)4.⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,圆心距O 1O 2=3cm ,这两圆的位置关系是 A .相交 B .内切C .外切D .内含5.当0>x 时,函数xy 5-=的图象在 A .第四象限 B .第三象限C .第二象限D .第一象限6.下列命题中是假命题的是A .平行四边形的对边相等B .菱形的四条边相等C .矩形的对边平行且相等D .等腰梯形的对边相等7.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人A .平均数是58B .中位数是58C .极差是40D .众数是608.用配方法解方程0122=--x x 时,配方后所得的方程为A .012=+)(xB .012=-)(xC .212=+)(xD .212=-)(x9.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222c b a =+,那么下列结论正确的是A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b10.据调查,2018年5月兰州市的房价均价为7600元/m 2,2018年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为A .8200%)1(76002=+xB .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x11.已知A (1-,1y ),B (2,2y )两点在双曲线xm y 23+=上,且21y y >,则m 的取值范围是 A .0>mB .0<mC .23->mD .23-<m12.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水的最大深度为2cm A .3cm B .4cm C .5cmD .6cm13.二次函数)0(2≠++=a c bx ax y 不正确的是 A .042>-ac bB .0>aC .0>cD .02<-ab14.圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为 A .3cm B .6cm C .9cm D .12cm 15.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为二、填空题:本大题共5小题,每小题4分,共20分. 16.某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 .A B C D第15题图17.若041=-+-a b ,且一元二次方程02=++b ax kx 有实数根,则k 的取值范围是 . 18.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒时,点E 在量角器上对应的读数是 度.19.如图,在直角坐标系中,已知点A (3-,0)、B (0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2018 的直角顶点的坐标为 .20.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线k x y +=221与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分)(1)计算:01201314.330sin 21)()(-++---π (2)解方程:0132=--x x第20题图第18题图ACB22.(本小题满分5分)如图,两条公路OA 和OB 相交于O 点,在∠AOB 的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路OA 、OB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.(要求:不写作法,保留作图痕迹,写出结论.)23.(本小题满分6分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题: (1)样本中喜欢B 项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ; (2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?24.(本小题满分8分)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧项AB1CD 2345A 44%D C B28%8%第23题图(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:4.12≈,7.13≈,结果保留整数.)25.(本小题满分9分)已知反比例函数xk y =1的图象与一次函数b ax y +=2的图象交于点A (1,4)和点B (m ,2-).(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出1y >2y 时自变量x 的取值范围; (3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.DBN 第24题图第25题图第26题图图1AOB C DE图2AOB26.(本小题满分10分)如图1,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8.以OB 为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.27.(本小题满分10分)如图,直线MN 交⊙O于A 、B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E . (1)求证:DE 是⊙O 的切线; (2)若DE =6cm ,AE =3cm ,求⊙O 的半径.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,A 、B 为x轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C 2:m mx mx y 322--=(m <0)的顶点.(1)求A 、B 两点的坐标; (2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值.N 第27题图第28题图2018年兰州市初中毕业生学业考试 数学(A )参考答案及评分参考本答案仅供参考,阅卷时会制定具体的评分细则和评分标准。

甘肃省兰州市2018年中考数学试题(解析)

甘肃省兰州市2018年中考数学试题(解析)

甘肃省兰州市2018年中考数学试题(解析)部门: xxx时间: xxx制作人:xxx整理范文,仅供参考,可下载自行修改2018年兰州市中考数学试题一、单项选择题<每小题4分,共60分)1.sin60°的相反数是【】A.-错误! B.-错误! C.-错误!D.-错误!w5mEXfWAqz2.近视眼镜的度数y(度>与镜片焦距x(m>成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为【】w5mEXfWAqz A.y=错误! B.y=错误! C.y=错误!D.y=错误!w5mEXfWAqz3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是【】A.相交 B.外切 C.外离D.内含w5mEXfWAqz4.抛物线y=-2x2+1的对称轴是【】A.直线x=错误! B.直线x=-错误! C.y轴D.直线x=2w5mEXfWAqz5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为【】A.6 B.8 C.12 D.246.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为【】w5mEXfWAqzA.π B.1 C.2 D.错误!w5mEXfWAqz7.抛物线y=(x+2>2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是【】A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是【】w5mEXfWAqzA.0.2 B.0.3 C.0.4D.0.5w5mEXfWAqz9.在反比例函数y=错误!(k<0>的图象上有两点(-1,y1>,(-错误!,y2>,则y1-y2的值是【】w5mEXfWAqzA.负数 B.非正数 C.正数D.不能确定w5mEXfWAqz10.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为xm,则可列方程为【】w5mEXfWAqzA.x(x-10>=200 B.2x+2(x-10>=200C.x(x+10>=200 D.2x+2(x+10>=20011.已知二次函数y=a(x+1>2-b(a≠0>有最小值,则a、b的大小关系为【】A.a>b B.a<b C.a=b D.不能确定w5mEXfWAqz12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s>(0≤t<3>,连接EF,当△BEF是直角三角形时,t(s>的值为【】w5mEXfWAqzA.错误! B.1 C.错误!或1 D.错误!或1或错误!w5mEXfWAqz13.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】w5mEXfWAqzA.130° B.120° C.110° D.100°w5mEXfWAqz14.二次函数y=ax2+bx+c(a≠0>的图象如图所示,若|ax2+bx+c|=k(k≠0>有两个不相等的实数根,则k的取值范围是【】w5mEXfWAqzA.k<-3 B.k>-3 C.k<3 D.k>3w5mEXfWAqz15.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位:N>与铁块被提起的高度x(单位:cm>之间的函数关系的大致图象是【】w5mEXfWAqzA.B.C.D.二、填空题<每小题4分,共20分)16.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.w5mEXfWAqz17.如图,点A在双曲线y=错误!上,点B在双曲线y=错误!上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.w5mEXfWAqz18.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.w5mEXfWAqz19.如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0>,则x的取值范围是.w5mEXfWAqz20.如图,M为双曲线y=错误!上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.w5mEXfWAqz三、解答题<本大题8小题,共70分)21.已知x是一元二次方程x2-2x+1=0的根,求代数式错误!÷错误!的值.w5mEXfWAqz22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1>,虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角,一般情况下,倾角越小,楼梯的安全程度越高;如图(2>设计者为了提高楼梯的安全程度,要把楼梯的倾角1减至2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4m,∠1=40°,∠2=36°,求楼梯占用地板增加的长度(计算结果精确到0.01m,参考数据:tan40°=0.839,tan36°=0.727>.w5mEXfWAqz23.如图(1>,矩形纸片ABCD,把它沿对角线BD向上折叠,(1>在图(2>中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法>;(2>折叠后重合部分是什么图形?说明理由.24.5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4∶17∶15.结合统计图回答下列问题:w5mEXfWAqz(1>这次共抽取了多少名学生的一分钟跳绳测试成绩?(2>若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3>如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?25.如图,定义:若双曲线y=错误!(k>0>与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=错误!(k>0>的对径.w5mEXfWAqz(1>求双曲线y=错误!的对径;(2>若双曲线y=错误!(k>0>的对径是10错误!,求k的值;w5mEXfWAqz(3>仿照上述定义,定义双曲线y=错误!(k<0>的对径.26.如图,Rt△AB C中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E 是BC的中点,连接DE、OE.w5mEXfWAqz(1>判断DE与⊙O的位置关系并说明理由;(2>若tanC=错误!,DE=2,求AD的长.27.若x1、x2是关于一元二次方程ax2+bx+c(a≠0>的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-错误!,x1•x2=错误!.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0>的图象与x轴的两个交点为A(x1,0>,B(x2,0>.利用根与系数关系定理可以得到A、B连个交点间的距离为:w5mEXfWAqzAB=|x1-x2|====.参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0>的图象与x轴的两个交点A(x1,0>、B(x2,0>,抛物线的顶点为C,显然△ABC为等腰三角形.w5mEXfWAqz(1>当△ABC为直角三角形时,求b2-4ac的值;(2>当△ABC为等边三角形时,求b2-4ac的值.28.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0>、(0,4>,抛物线y=错误!x2+bx+c经过点B,且顶点在直线x=错误!上.w5mEXfWAqz(1>求抛物线对应的函数关系式;(2>若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;w5mEXfWAqz(3>在(2>的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4>在(2>、(3>的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合>,过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.w5mEXfWAqz2018年甘肃省兰州市中考数学试卷参考答案与试题解读一、单项选择题(每小题4分,共60分>.1.sin60°的相反数是( >A.B.C.D.考点:特殊角的三角函数值。

2018兰州中考数学试卷真题

2018兰州中考数学试卷真题

2018兰州中考数学试卷真题解析与解答一、选择题1. 设A={0, 1, 2, 3, 4, 5},B={1, 3, 5, 7, 9},则A∪B=_________。

(A) {0, 1, 2, 3, 4, 5, 7, 9}(B) {0, 1, 2, 3, 4, 5}(C) {1, 3, 5}(D) {0, 2, 4, 7, 9}解答:选择(A) {0, 1, 2, 3, 4, 5, 7, 9}。

根据集合的并运算定义,A∪B表示A和B的元素的集合。

A={0, 1, 2, 3, 4, 5},B={1, 3, 5, 7, 9},将A和B的元素合并得到{0, 1, 2, 3, 4, 5, 7, 9},故选(A)。

2. 若正方形ABCD的边长为10cm,则其对角线AC的长度为_________cm。

(A) 5√2(B) 10√2(C) 10(D) 20解答:选择(B) 10√2。

对角线AC的长度等于正方形边长的√2倍,即AC=10√2,故选(B)。

3. 在三角形ABC中,∠B=90°,AB=10cm,BC=12cm,则AC的长度为_________cm。

(A) 22(B) 7(C) 6(D) 5解答:选择(A) 22。

根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

AB为直角三角形的斜边,AB^2=BC^2+AC^2,代入已知数据得10^2=12^2+AC^2,解得AC=√(10^2-12^2)=√(100-144)=√(-44)∈无解。

因此,根据常识得知题目存在错误。

二、填空题1. 若已知x=3和y=4,则x+y=_________。

解答:填7。

根据已知数据,可直接计算x+y=3+4=7。

2. 若已知x=2,则x^2+2x=_________。

解答:填10。

将已知的x=2代入表达式x^2+2x中,得到2^2+2×2=4+4=8。

三、解答题1. 有一个数字比它的三分之一大5,求这个数字。

最新-2018年兰州市中考试题新课标 精品

最新-2018年兰州市中考试题新课标 精品

兰州市2018年中考试题(数学)一、选择题(本题共12个小题,每小题3分,共计36分。

每小题所列的四个选项中,只有一个选项符合题目要求。

请将符合题目要求的选项的序号字母填写在相应小题后面的括号内。

) 1.函数y=42113-+-x x 的自变量x的取值范围是( ) A.x≥1且x≠2 B.x≠2 C.x>1且x≠2 D. 全体实数 2.已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于( )A.-1 B.0 C.1 D.23.如果sin2α+sin2300=1 那么锐角α的度数是( ) A.150B.300C.450D.6004.已知⊙O的半径OA=6,扇形OAB的面积等于12π,则弧AB 所对的圆周角的度数是( )A.1200B.900C.600D.3005.一次函数y=kx+b 满足kb>0 且y随x的增大而减小,则此函数的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.已知实数x满足01122=+++x x x x ,那么x x 1+的值是( )A.1或-2 B.-1或2 C.1 D.-27.已知关于x的一元二次方程x2-2(R+r)x+d2=0没有实数根,其中R、r分别为⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是( )A.外离 B.相交 C.外切 D.内切8.如图1是某报记者在抽样调查了一些市民八小时以外用于读书的时间(单位:分钟)后,绘制的频率分布直方图,图中从左向右的前六个长方形的面积之和为0.95 200~230分钟这一组的频数是10,此次抽样的样本容量是()A.100B.200C.500D.109.扇形的半径为30cm,圆心角为1200,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cmB.20cmC.10πcmD.20πcm10.如图3把一个正方形三次对折后沿虚线剪下,则所得图形大致是()11.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是()A.4B.5C.6D.712.四边形ABCD为直角梯形,CD∥AB,CB⊥AB且CD=1AB,若直线L⊥AB,直线L截这个梯形所得的位于此直线左方的BC=2图形面积为y,点A到直线L的距离为x,则y与x关系的大致图象为()二、填空题(每小题2分,共16分,请把答案填在题中的横线上) 13.在实数范围内分解因式:x2+x-1=_____ 14.锐角A满足2sin(A-150)=3 则∠A=____15.某公司成立3年以来,积极向国家上交利税,由第一年的200万元,增长到800万元,则平均每年增长的百分数是____16.工程上常用钢珠来测量零件上小孔的直径。

甘肃省兰州市2018年中考数学试卷(含答案)【真题】

甘肃省兰州市2018年中考数学试卷(含答案)【真题】

甘肃省兰州市2018年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分) 1.-2018的绝对值是( C ).2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( A ).A .B .C .D .3.据中国电子商务研究中心(100EC .CN )发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( C ) A.1159.56×108元 B.11.5956×1010元 C.1.15956×1011元 D.1.15956×108元4.下列二次根式中,是最简二次根式的是( B ).A.18B.13C.27D.12 5如图,AB//CD,AD =CD ,∠1=65°则∠2的度数是( A ) A .50° B .60° C .65° D .70°6.下列计算正确的是( D )A.ab a a 532=⋅B.1243a a a =⋅C.24226)3-b a b a =( D.22352a a a a =+÷ 7.如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 的面积是( A )A.3B.23 C.433 D.328.如图,矩形ABCD 中,AB =3,BC =4,BE//DF 且BE 与DF 之间的距离为3,则AE 的长度是( C ) A. 7 B .83 C .87 D .859.如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =(第7题)C AE D BABCDEF48°,∠CFD =40°,则∠E 为( B )B .112°C .122°D .92°10.关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( D ) A. a >1 B .a <1 C .a <1且a ≠-2 D .a >1且a ≠2D.解析:化简得x =a -1<0(x ≠-1)即a>1且a ≠2.11.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论: ①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有( B )A.①②③B.②③⑤C.②③④D.③④⑤B.解析:开口向下,a<0,与y 轴交点在上方,c>0,021>ab x x -=+,即b>0,故0<abc ;x =-1时,y =a -b +c<0,故b -a>c ;x =2时,y =4a +2b +c<0;a cx x =21是2到3之间的数x -1到0之间的数>-3,故3a<-c ;⑤式化解得,0)(2<+-+b a bm am ,0)1()1(2<b m a m -+-,无论m 大于1还是≤1,该式总成立,故⑤成立,即答案为B .12.如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、A.25-m 845<<-B.21-m 829<<-DC.25-m 829<<-D.21-m 845<<- C.解析:在y =2457212+-x x 中,令y =0,解得x 1=9,x 2=5,∴点A ,B 的坐标分别为(9,0),(5,0).∵C 2是由C 1向左平移得到的,∴点D 的坐标为(1,0),C 2对应的函数解析式为y =23212--)(x =253212+-x x (1≤x≤5).当直线y =m x +21与C 2相切时,可知关于x 的一元二次方程253212+-x x =m x +21有两个相等的实数根,即方程x 2-7x +5-2m =0有两个相等的实数根,∴Δ=(-7)2-4×1×(5-2m )=0,解得m =829-.当直线y =m x +21过点B 时,可得0=m +⨯521,解得m =25-.如图,故当829-<m<25-,直线y =m x +21与C 1,C 2共有3个不同的交点.二、填空题:本大题共4小题,每小题3分,共24分. 13.因式分解:32y y x -= .y(x +y)(x -y)14.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .-1<x<3.15.如图,△ABC 的外接圆O 的半径为3,∠C =55°,则劣弧AB 的长是 .π211.13. 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是 .OA CB三、解答题(本大题共11小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.解:2-71)12(14=+--+=原式.18.解方程:02232=--x x . 解:移项,得3x 2-2x =2,配方,得3(x -31)2=37, 解得x 1=371+,x 2=371- .19.先化简,再求值:12)143(--÷---x x x x x ,其中21=x .解:原式=211442--⋅-+-x x x x x =2+x ,代入21=x 得原式=25.20. (6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:∠A 的角平分线作法.作图略. 21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.B学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数.解:(1)17,20%.310137%2613----÷=a =17,b =()%261310÷÷=20%;(2)10,10.由中位数和众数的定义即可得;(3)72°.360°⨯20%=72°; (4)120人.1205032000=⨯(人) 22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ). (1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.(2)4.解:一共12个点坐标,有三个点坐标在上面.23. (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 30°,60°.求CD 的高度.(结果保留根号)解:过B 点作CD 的垂线,垂足为F,设CD =x 米,则DF =(x -3)(米),BF =AC ,BF =)x(330tan 米=︒DE,AC =AE +CE=x CD 331830tan 18+=︒⋅+,即x x 33183+=,解得,39=x ,即CD 长为93米. 24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x≤30,且x 为整数)的销量为y 件.(1)直接写出y 与x 的函数关系式; (2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?解:(1)y =38+2x ;解析:y =40+2(x -1)=2x +38;(2)()()[]1580145382----+=x x w =()20412122+--x故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为2041元.25.(8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xk y =2的图像交于点A (1,2)和B (-2,m ). (1)求一次函数和反比例函数的表达式; (2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE//x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.解:(1)xy x y 2;121=+=(3)()),1(0,2+∞-Y ;解析:观察图像可知;(3)C 点的坐标为()()1-3-11,31,和-+;解析:易知D (1,-1),设C 点坐标为(x ,-1),故AC =223)1(+-x ,BC =1-x ,由AC =2BC 可知,224BC AC =,即()()2221431-=+-x x ,解得313121-=+=x x ,,故C 点的坐标为()()1-3-11,31,和-+.26.(8分)如图,在∆ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G .连接AD 、CF . (1)求证:四边形AFCD 是平行四边形; (2)若GB =3,BC =6,BF =23,求AB 的长. 证明(1).//)(//是平行四边形四边形又△△又∵的中点是∵AFCD CDAF CD AF ASA CED AEF CEAE CED AEF DCE FAE CD AF CE AE AC E ∴=∴≅∴=∠=∠∠=∠∴=∴(2)6,29,29//=+=∴====∴BF AF AB CD AF CD CD BF GC GB GCD GBF CDBF 又代入数值,可得∽△易得△∵即AB 的长为6. 27.(9分)如图,AB 为圆O 的直径,C 为圆O 上的一点,D 为BA 延长线上的一点,B ACD ∠=∠.(1)求证:DC 为圆O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F ,且CEF ∠=45°,圆O 的半径为5,53sin =B ,求CF(1)连接OC ,DD.909090的切线是圆的直径是圆∵∵O CD CD OC OCA DAC OCB OCA ACB O AB OCB OBC OCOB ∴⊥∴︒=∠+∠∴︒=∠+∠∴︒=∠∴∠=∠∴= (2)解析:由∠CEF =45°,∠ACB =90°,可知,∠CFE =∠CEF =45°,即CF =CE . 由53sin =B ,可得AC =6,由勾股定理得,BC =8,设CF =CE =x ,由∠CDE =∠BDF ,∠ECD =∠FBD ,可知,△CED 相似于△BFD ,即①x xCD FD CE BF -==8,由∠CFD =∠AED ,∠EDA =∠FDC ,可知△CFD 相似于△AED ,即②x x ED FD AE CF -==6,联立①②得,724=x ,即CF 的长为724.28.(12分)如图,抛物线42-+=bx ax y 经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC . (1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.解:(1)将A ,B 两点的坐标分别代入, 得⎩⎨⎧-=-+=--,44525,0439b a b a解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y .(2)证明:设直线AB 的表达式为y =kx +b’,第28题图则⎩⎨⎧-=+=+-,4'5,0'3b k b k解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k故直线AB 的表达式为y =2321--x . 设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-). 易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489,解得m =-9, 故此时点M 的坐标为(25,-9). 当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11).。

2018甘肃兰州有关中考数学试题_解析版

2018甘肃兰州有关中考数学试题_解析版

2018有关中考数学试题-解析版一、选择题(本题15小题,每小题4分,共60分)1、(2011•)下列方程中是关于x的一元二次方程的是()A、B、ax2+bx+c=0 C、(x﹣1)(x+2)=1 D、3x2﹣2xy﹣5y2=0考点:一元二次方程的定义。

专题:方程思想。

分析:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:A、由原方程,得x4+1=0,未知数的最高次数是4;故本选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C、由原方程,得x2+x﹣3=0,符号一元二次方程的要求;故本选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故本选项错误.故选C.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2、(2011•)如图,某反比例函数的图象过点M(﹣2,1),则此反比例函数表达式为()A、y=B、y=﹣C、y=D、y=﹣考点:待定系数法求反比例函数解析式。

专题:待定系数法。

分析:利用待定系数法,设,然后将点M(﹣2,1)代入求出待定系数即可.解答:解:设反比例函数的解析式为(k≠0),由图象可知,函数经过点P(﹣2,1),∴1=,得k=﹣2,∴反比例函数解析式为y=﹣.故选B.点评:本题考查了待定系数法求反比例函数的解析式:图象上的点满足解析式,满足解析式的点在函数图象上.利用待定系数法是求解析式时常用的方法.3、(2011•)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A、20°B、30°C、40°D、50°考点:切线的性质;圆周角定理。

2018年甘肃省兰州市中考数学试卷-答案

2018年甘肃省兰州市中考数学试卷-答案

兰州市2018年初中学业水平考试 数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2018-的绝对值是:2018.故选:C.【考点】绝对值2.【答案】A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A .【考点】简单组合体的三视图3.【答案】C【解析】1 159.56亿元=111.1595610⨯元,故选:C .【考点】用科学记数法表示较大的数. 4.【答案】B【解析】A ,错误;B 是最简二次根式,正确;C =,错误;D =,错误;故选:B .【考点】最简二次根式的定义.5.【答案】A【解析】解:∵AB CD ∥,∴165ACD ∠=∠=o ,∵AD CD =,∴65DCA CAD ∠=∠=o ,∴∠2的度数是:180656550--=o o o o .故选:A .【考点】平行线的性质和等腰三角形的性质.6.【答案】D【解析】解:A 、236a b ab ⋅=,故此选项错误;B 、347a a a ⋅=,故此选项错误;C 、2242(3)9a b a b -=,故此选项错误;D 、42222a a a a ÷+=,正确.故选:D .【考点】单项式乘以单项式以及积的乘方运算和合并同类项.7.【答案】A【解析】解:∵等边ABC △的边长为4,∴24ABC S ==△ ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE//BC ,1 2DE BC =,1 2AD AB =,12AE AC =, 即12AD AE DE AB AC BC ===, ∴△ADE ∽△ABC ,相似比为12, 故ADE S △:ABC △=1:4,即11 44ADE ABC S S ==⨯=△△, 故选:A . 【考点】等边三角形的性质、相似三角形性质及三角形的中位线定理.8.【答案】C【解析】解:如图所示:过点D 作DG BE ⊥,垂足为G ,则3GD =.∵A G AEB GED AB GD 3∠∠∠∠====,,,∴AEB GED △≌△.∴AE EG =.设AE EG x ==,则4ED x =-,在Rt DEG △中,2222223(4)ED GE GD x x =++=-,,解得:78x =.故选:C .【考点】矩形的性质、勾股定理的应用9.【答案】B【解析】解:∵AD//BC ,∴∠ADB=∠DBC ,由折叠可得∠ADB=∠BDF ,∴∠DBC=∠BDF ,又∵40DFC ∠=o ,∴20DBC BDF ADB ∠=∠=∠=o ,又∵48ABD ∠=o ,∴△ABD 中,1802048112A =--=o o o o ,∴112E A ∠=∠=o ,故选:B .【考点】平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用.10.【答案】D【解析】解:分式方程去分母得:12x x a +=+,即1x a =-,根据分式方程解为负数,得到10a -<,且11a -≠-,解得:a >1且a ≠2.故选:D .【考点】分式方程的解11.【答案】B【解析】解:①∵对称轴在y 轴的右侧,∴0ab <,由图象可知:0c >,∴0abc <,故①不正确;②当1x =-时,0y a b c =-+<,∴b a c ->,故②正确;③由对称知,当x =2时,函数值大于0,即420y a b c =++>,故③正确; ④∵12b x a=-=, ∴2b a =-,∵0a b c -+<,∴20a a c ++<,3a c <-,故④不正确;⑤当x =1时,y 的值最大。

2018年甘肃省兰州市中考数学试题及解析

2018年甘肃省兰州市中考数学试题及解析
2018 年甘肃省兰州市中考数学试卷(A 卷)
一、选择题(共 15 小题,每小题 4 分,满分 60 分)
1.(4 分)(2018•兰州)下列函数解析式中,一定为二次函数的是( )
A.y=3x﹣1
B.y=ax2+bx+c
C.s=2t2﹣2t+1
D.y=x2+
2.(4 分)(2018•兰州)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是 ()
A.
B.
C.
D.
二、填空题(共 5 小题,每小题 4 分,满分 20 分)
16.(4 分)(2018•兰州)若一元二次方程 ax2﹣bx﹣2018=0 有一根为 x=﹣1,则 a+b=

17.(4 分)(2018•兰州)如果 = = =k(b+d+f≠0),且 a+c+e=3(b+d+f),那么 k=
A.
B.
C.
D.
9.(4 分)(2018•兰州)如图,已知经过原点的⊙P 与 x、y 轴分别交于 A、B 两点,点 C 是劣弧 OB 上一点, 则∠ACB=( )
A.80°
B.90°
C.100°
D.无法确定
10.(4 分)(2018•兰州)如图,菱形 ABCD 中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为 E,F,连 接 EF,则的△AEF 的面积是( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17 D.(x﹣4)2=15
7.(4 分)(2018•兰州)下列命题错误的是( )
A.对角线互相垂直平分的四边形是菱形 B. 平行四边形的对角线互相平分 C. 矩形的对角线相等 D.对角线相等的四边形是矩形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
E
B 2018年兰州市初中学业水平考试
数学A
一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的选项中,只有一项是符合题目要求的.
1.-2018的绝对值是
A.
1
2018 B.-2018 C.2018 D.
1
2018
2.如图是由5个完全相同的小正方形搭成的几何体,则该几何体的主视图是()
A.
3.据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学计数法可表示为()
A.1159.56×108 元
B.11.5956×1010元
C.1.15956×1011
D.1.15956×1010
4.下列二次根式中,是最简二次根式的是()
A. B. C. D.
5.如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()
A.50°
B.60°
C. 65°
D.70°
6.下列计算正确的是()
A.2a.3b=5ab B . a4b7=a11 C.(-3a3b)3=6a7b3 D.a3+a3+a3=2a3
7.如图,边长为4的等边三角形ABC中,D、E分别为AB、AC的中点,则∆ADE的面积是()
A. B.
2
C.
4
D.
第7题图第8题图第9题图
8.如图,矩形ABCD中,AB=3,BC=4,BE∥DF且BE与DF之间的距离为3,则AE的长是()
A. B.
3
8
C.
7
8
D.
5
8
9.如图,将ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48°,∠CDF=40°,则∠E为()
A.102°
B.112°
C. 122°
D.92°
x
B
A
10.关于x的分式方程
2
1
1
x a
x
+
=
+
的解为负数,则a的取值范围为()
A.a>1
B.a<1
C. a<1且a≠-2
D. a>1且a
11.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5
①abc>0; ②b-a>c; ③4a+2b+c>0; ④3a>-c; ⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有()
A.①②③
B. ②③⑤
C. ②③④
D. ③④⑤
12.如图,抛物线y=2
145
7
22
x x
-+与x轴交于A、B,抛物线在x轴及其下
方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B、D.若直线y=
1
2
x m
+与C1、C2其有三个不同的交点,则m的取值范围是()
A.
45
8
-<m<
5
2
- B.
29
8
-<m<
1
2
-
C.
29
8
-<m<
5
2
- D.
45
8
-<m<
1
2
-
二、填空题:本大题共4小题,每小题4分,共16分.
13.因式分解:x2y-y3= .
15.如图∆ABC的外接圆O的半径为3,∠C=55° 则劣弧AB的长是.
16.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF. 若正方形的边长为6,则线段CF的最小值是.
三、解答题:本大共12小题,其86分,解答时写出必要的文字说明,证明过程或演算步骤.
17.(5分)计算:(
1
2
-)-1+(x-3)0 +1°.
18.(5分)解方程:3x2-2x-2=0.
19.(5分)先化简,再求值:(x-
34
1
x
x
-
-
)+
2
1
x
x
-
-
,其中x=
1
2
.
20.(6分)如图,在Rt∆ABC中.
(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;
(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
4次及以上
C 21.(7分)学校开展“书香校园”的活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.
学生借阅图书的次数统计表 学生借阅图书的次数统计图
请你根据统计图表中的信息,解答下列问题: (1)a= ,b= ;
(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;
(4)若该校共有2 000名学生,根据调查结量,估计该校学生在一周内借阅图书“4次及以上”的人数.
22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们形状,大小完全相同.李强从布袋里随机取出一个小球.记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M 的坐标(x,y ). (1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x,y )在函数y=x+1的图象上的概率.
23.(7分)如图,斜坡BE ,坡顶B 到水平面的距离AB 为3m ,坡区AE 为18m.在点B 处,E 处分别测得CD 顶部点D 的仰角为30°,60°.求CD 的高(结果保留根号).
24(7分)某商家销售一款商品,进价每件80元,售价每件145元.每天销售40件,每销
售一件需 支付商场管理费5元.未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元.通过市场调查发现,该商品单价每降1元,每天销售量增加2件.设第x 天(1 ≤x≤30且x 为整数)的销量为y 件. (1) 直接写出y 与x 的函数关系式; (2) 设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最
大?最大利润是多少元?
x
D
D
B x
25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b 的图象与反比例函数y 2=k x
的图象交于点A (1,2)和B (-2,m ) (1) 求一次函数和反比例函数的表达式; (2) 请直接写出y 1>y 2时,x 的取值范围;
(3) 过点B 作BE x 轴,AD ⊥BE 于点D ,点C 是直线BE (4) 若AC=2CD ,求点C 的坐标.
26.(8分)如图,在∆ABC 中,过点C 作CD AB,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G.连接AD 、CF. (1)求证:四边形AFCD 是平行四边形; (2)若GB=3,BC=6,BF=3
2
,求AB 的长.
27.(9分)如图AB 为⊙O 的直径,C 为⊙O 上一点,D 为BA 延长线上一点,∠ACD=∠B. (1)求证:DC 为⊙O 的切线;
(2)线段DF 分别交AC 、BC 于点E 、F 且∠CEF=45°,⊙O 的半径为5,sinB=3
5
,求CF 的长.
28.如图,抛物线y=ax2+bx -4经过A (-3,0),B(5,-4)两点,与y 轴交于点C ,连接AB 、AC 、BC.
(1)求抛物线的表达式; (2)求证:AB 平分∠CAO ;
(3)抛物线的对称轴上是否存在点M ,使得∆ABM 以AB 边的直角三角形.若存在,求出点M 的坐标;若不存在,请说明理由.。

相关文档
最新文档