高中三角函数知识点总结(人教版)
高中数学-三角函数公式汇总
高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。
三角函数公式大全高中
三角函数公式大全高中一、同角三角函数的基本关系。
1. 平方关系。
- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。
- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。
1. 终边相同的角的三角函数值相等。
- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值关系。
- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y = x对称的角的三角函数值关系(α与(π)/(2)-α)- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα4. 关于y轴对称的角的三角函数值关系(α与π-α) - sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα5. 关于原点对称的角的三角函数值关系(α与π+α) - sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα6. α与(3π)/(2)-α的三角函数关系。
- sin((3π)/(2)-α)=-cosα- cos((3π)/(2)-α)=-sinα- tan((3π)/(2)-α)=cotα7. α与(3π)/(2)+α的三角函数关系。
- sin((3π)/(2)+α)=-cosα- cos((3π)/(2)+α)=sinα- tan((3π)/(2)+α)=-cotα三、两角和与差的三角函数公式。
- sin(A + B)=sin Acos B+cos Asin B2. 两角和的余弦公式。
三角函数知识点总结高一
三角函数知识点总结高一三角函数知识点总结在高中数学学习中,三角函数是一个重要的知识点。
它涉及到正弦、余弦、正切等函数的定义、性质和应用。
下面是对三角函数的知识点进行总结。
一、三角函数的定义三角函数中最常用的三个函数是正弦函数、余弦函数和正切函数。
它们的定义如下:1. 正弦函数(sine function):在直角三角形中,对于一个锐角A,正弦函数的值等于A的对边与斜边的比值,记作sin(A)。
2. 余弦函数(cosine function):在直角三角形中,对于一个锐角A,余弦函数的值等于A的邻边与斜边的比值,记作cos(A)。
3. 正切函数(tangent function):在直角三角形中,对于一个锐角A,正切函数的值等于A的对边与邻边的比值,记作tan(A)。
二、三角函数的性质三角函数具有以下一些重要的性质:1. 周期性:正弦函数和余弦函数的周期都是2π,即在一个周期内,函数的值会重复。
2. 奇偶性:正弦函数是奇函数,即sin(-A)=-sin(A),余弦函数是偶函数,即cos(-A)=cos(A)。
3. 互余关系:正弦函数和余弦函数有互余关系,即sin(A)=cos(90°-A),cos(A)=sin(90°-A)。
4. 基本关系式:正弦函数和余弦函数之间有基本关系式sin²(A)+cos²(A)=1。
5. 正切函数的性质:正切函数在每个周期内有一个渐近线,tan(A)=sin(A)/cos(A)。
三、三角函数的应用三角函数在很多实际问题中有广泛的应用,以下是一些常见的应用:1. 角度的求解:利用三角函数可以求解未知角度的大小。
通过已知边长和角度的关系,可以利用三角函数求解未知角度的值。
2. 三角恒等式:三角函数之间有一些重要的恒等式,如和差化积、倍角公式、半角公式等,可以简化复杂的三角运算。
3. 三角函数图像的分析:通过对三角函数图像的分析,可以得到函数的周期、最大最小值等信息,进而解决函数相关的问题。
高中数学-三角函数知识点总结
三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。
高中三角函数知识点总结
高中三角函数知识点总结三角函数是数学中的重要概念,它在几何学、物理学和工程学等领域都具有广泛应用。
在高中数学中,三角函数的学习是一项重要的内容,掌握了三角函数的基本概念和性质,能够熟练运用三角函数解决问题,对于学生后续学习和职业发展都具有良好的帮助。
本文将对高中三角函数的知识点进行详细介绍,包括正弦函数、余弦函数、正切函数、割函数、余割函数和反三角函数等。
一、平面内的角度与弧度1. 角度角度是用来衡量两条射线之间夹角大小的单位,常用°表示。
一个完整的圆周的角度为360°。
根据圆周角度的定义,可知所有角度都可以转化为小于360°的角。
2. 弧度弧度是表示角度大小的另一种单位,用rad表示。
弧度的定义是通过角所对的弧长与半径之比来确定。
一个完整的圆周的弧度为2πrad,即360°=2πrad。
3. 弧度与角度的转化弧度与角度之间的转化公式为:θ(rad) = θ(°) * π/180,θ(°) = θ(rad) *180/π。
二、三角函数的定义1. 正弦函数(sine function)正弦函数是一种周期性的函数,用sin表示。
对于一个给定角度θ,其正弦值定义为单位圆上对应点的y坐标值,即sinθ = y/r。
2. 余弦函数(cosine function)余弦函数也是一种周期性的函数,用cos表示。
对于给定角度θ,其余弦值定义为单位圆上对应点的x坐标值,即cosθ = x/r。
3. 正切函数(tangent function)正切函数是一种周期性的函数,用tan表示。
对于给定角度θ,其正切值定义为正弦值与余弦值的比值,即tanθ = sinθ/cosθ。
4. 割函数(secant function)割函数是余弦函数的倒数,用sec表示。
对于给定角度θ,其割值定义为1除以余弦值,即secθ = 1/cosθ。
5. 余割函数(cosecant function)余割函数是正弦函数的倒数,用csc表示。
2023年人教版高中数学第五章三角函数知识点梳理
(名师选题)2023年人教版高中数学第五章三角函数知识点梳理单选题1、筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图,将筒车抽象为一个几何图形(圆),筒车半径为4m,筒车转轮的中心O到水面的距离为2m,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系xOy.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:s),且此时点P距离水面的高度为h(单位:m),则点P第一次到达最高点需要的时间为()s.A.2B.3C.5D.10答案:C分析:设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,根据题意求出A,ω,φ,再令ℎ(t)=6可求出结果.设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,依题意可得A=4,ω=8π60=2π15,φ=−π6,所以ℎ(t)=4sin(2π15t−π6)+2,令ℎ(t)=4sin(2π15t−π6)=6,得sin(2π15t−π6)=1,得2π15t−π6=2kπ+π2,k∈Z,得t=15k+5,k∈Z,因为点P 第一次到达最高点,所以0<t <2π2π15=15,所以k =0,t =5s . 故选:C2、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B3、函数f (x )=2sin (ωx +φ)(ω>0)图像上一点P (s,t )(−2<t <2)向右平移2π个单位,得到的点Q 也在f (x )图像上,线段PQ 与函数f (x )的图像有5个交点,且满足f (π4−x)=f (x ),f (−π2)>f (0),若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为( ) A .(−2,−√2]B .[−2,−√2]C .[√2,2)D .[√2,2] 答案:A分析:首先根据已知条件分析出|PQ |=2π=2T ,可得ω=2,再由f (π4−x)=f (x )可得y =f (x )对称轴为x =π8,利用f (−π2)>f (0)可以求出符合题意的一个φ的值,进而得出f (x )的解析式,再由数形结合的方法求a 的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为(−2,−√2], 故选:A小提示:关键点点睛:本题解题的关键是取特殊点P (0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f (x )的解析式,再利用数形结合的思想求解a 的取值范围. 4、若角α的终边上一点的坐标为(1,−1),则cosα=( ) A .−1B .−√22C .√22D .1 答案:C分析:根据任意角三角函数的定义即可求解.∵角α的终边上一点的坐标为(1,−1),它与原点的距离r =√12+(−1)2=√2, ∴cosα=xr =√2=√22, 故选:C.5、已知sin (π+α)=35,则sin(−α)cos(π−α)sin(π2−α)=( )A .−45B .45C .−35D .35 答案:C解析:由条件利用诱导公式进行化简所给的式子,可得结果. ∵sin(π+α)=35=−sinα,∴sinα=−35, 则sin(−α)cos(π−α)sin(π2−α)=−sinα⋅(−cosα)cosα=sinα=−35,故选:C6、在0∘~360∘范围内,与−70∘终边相同的角是( ) A .70∘B .110∘C .150∘D .290∘ 答案:D解析:根据终边相同的角的定义即可求解.与−70∘终边相同的角的为−70∘+360∘⋅k (k ∈Z ), 因为在0∘~360∘范围内,所以k =1可得−70∘+360∘=290∘, 故选:D.7、已知函数f(x)=a 2x−6+3(a >0且a ≠1)的图像经过定点A ,且点A 在角θ的终边上,则sinθ−cosθsinθ+cosθ=( ) A .−17B .0C .7D .17 答案:D分析:由题知A(3,4),进而根据三角函数定义结合齐次式求解即可. 解:令2x −6=0得x =3,故定点A 为A(3,4), 所以由三角函数定义得tanθ=43, 所以sinθ−cosθsinθ+cosθ=tanθ−1tanθ+1=43−143+1=17故选:D8、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可.由f(−x)=−sin(−x)+xcosx+x2=−−sinx−xcosx+x2=−f(x),所以f(x)为奇函数,故排除选项A.又f(π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C9、某公园有一摩天轮,其直径为110米,逆时针匀速旋转一周所需时间约为28分钟,最高处距离地面120米,能够看到方圆40公里以内的景致.某乘客观光3分钟时看到一个与其视线水平的建筑物,试估计建筑物多高?()(参考数据:√2≈1.414,√3≈1.732)A.50B.38C.27D.15答案:C分析:作出简图,求出3分钟走过的角度,从而求出三分钟后距摩天轮最低点的高度,进而求出建筑物的高度. 设走了3分钟到达B(如图所示),走过的圆心角为θ=2π×328=3π14,OE=Rcos3π14=55cos3π14,因为π6<3π14<π4,所以√22<cos3π14<√32,所以38.885<55cos3π14<47.63所以AE=55−55cos3π14∈(7.73,21.145),所以建筑物的高度:55(1−cos 3π14)+10∈(17.73,31.145)故选:C10、已知f (x )=tanωx (0<ω<1)在区间[0,π3]上的最大值为√33,则ω=( )A .12B .13C .23D .34答案:A分析:先求出0≤ωx ≤ωπ3,再根据f (x )max =tanωπ3=tan π6=√33解方程即可. 因为x ∈[0,π3],即0≤x ≤π3,又0<ω<1,所以0≤ωx ≤ωπ3<π3,所以f (x )max =tanωπ3=tan π6=√33, 所以ωπ3=π6,ω=12.故选:A .11、若函数f (x )=sin (ωx +π3) (ω>0)在区间(π,2π)内没有最值,则ω的取值范围是( )A .(0,112]∪[16,712]B .(0,16]∪[13,23] C .(0,712]D .[13,23] 答案:A分析:根据题意可得函数f (x )在区间(π,2π)内单调,故可先求出函数的单调区间,再根据区间(π,2π)为单调区间的子集得到关于ω的不等式组,解不等式组可得所求. 解:函数y =sin x 的单调区间为[kπ+π2,kπ+3π2],k ∈Z ,由kπ+π2⩽ωx +π3⩽kπ+3π2,k ∈Z ,得kπ+π6ω⩽x ⩽kπ+7π6ω,k ∈Z .∵函数f (x )=sin (ωx +π3)(ω>0) 在区间(π,2π)内没有最值,∴函数f(x)在区间(π,2π)内单调,∴(π,2π)⊆[kπ+π6ω,kπ+7π6ω],k∈Z,∴ {kπ+π6ω⩽πkπ+7π6ω⩾2π,k∈Z,解得k+16⩽ω⩽k2+712,k∈Z.由k+16<k2+712,得k<56.当k=0时,得16⩽ω⩽712,当k=−1时,得−56⩽ω⩽112,又ω>0,故0<ω⩽112,综上得ω的取值范围是(0,112]∪[16,712],故选A12、已知2tanθ–tan(θ+π4)=7,则tanθ=()A.–2B.–1C.1D.2答案:D分析:利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.∵2tanθ−tan(θ+π4)=7,∴2tanθ−tanθ+11−tanθ=7,令t=tanθ,t≠1,则2t−1+t1−t=7,整理得t2−4t+4=0,解得t=2,即tanθ=2. 故选:D.小提示:本题主要考查了利用两角和的正切公式化简求值,属于中档题.双空题13、已知函数y=2cos(2x−π3)−1,x∈[π3,π],则当x=_______时,函数取得最小值为_________.答案:2π3##23π−3分析:根据x∈[π3,π]求出2x−π3的范围,根据余弦函数的图像性质即可求其最小值.∵x∈[π3,π],∴2x−π3∈[π3,5π3],∴当2x−π3=π,即x=2π3时,cos(2x−π3)取得最小值为−1,∴当x=2π3时,y=2cos(2x−π3)−1,x∈[π3,π]最小值为2×(−1)−1=−3.所以答案是:2π3;-3.14、如图,在海岸线TO一侧有一休闲游乐场,游乐场的其中一部分边界为曲线段TDBS,该曲线段是函数y= Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈[−4,0]的图象,图象的最高点为B(−1,2),则曲线段TDBS对应的函数解析式为___________.若曲线段TDBS上的入口D到海岸线TO的距离为√3千米,现准备从入口D修一条笔直的景观路到O,则景观路DO的长为___________千米.答案:y=2sin(π6x+2π3)且x∈[−4,0]√7分析:根据函数图象得到T4=3,再由正弦函数最小正周期公式求得ω=π6,五点法求参数φ,即可写出解析式,注意定义域;设D(x D,√3)代入解析式,结合x D范围确定坐标,再应用两点式求距离.由题中图象知:A=2,T4=−1−(−4)=3⇒T=2πω=12⇒ω=π6.当x= -1时,y=2sin(−π6+φ)=2,所以−π6+φ=π2+2kπ,k∈Z,解得φ=2π3+2kπ,k∈Z,又0<φ<π,所以φ=2π3,则曲线段TDBS对应的函数解析式为y=2sin(π6x+2π3),x∈[−4,0].因为D到海岸线TO的距离为√3千米,设D(x D,√3),显然−4<x D<−1,所以2sin(π6x D+2π3)=√3,即sin(π6x D+2π3)=√32,所以π6x D+2π3=π3+2kπ,k∈Z或π6x D+2π3=2π3+2kπ,k∈Z,解得x D=−2+12k,k∈Z或x D=12k,k∈Z,又−4<x D<−1,所以x D=−2,即D(−2,√3),而另一点D与S重合,排除,所以DO=√(−2)2+(√3)2=√7.所以答案是:y=2sin(π6x+2π3)且x∈[−4,0],√715、已知函数f(x)=sinxcosx−√3sin2x,设α∈(π2,π),f(α2)=14−√32,则sinα=___________,cosα=___________.答案:1+3√58√3−√158分析:先利用三角函数恒等变换公式对函数化简变形得f(x)=sin(2x+π3)−√32,则由已知条件可得sin(α+π3)=14,再利用同角三角函数的关系求出cos(α+π3),则sinα=sin[(α+π3)−π3],cosα=cos[(α+π3)−π3]展开化简计算即可.f(x)=sinxcosx−√3sin2x=12sin2x−√3×1−cos2x2=12sin2x+√32cos2x−√32=sin(2x+π3)−√32,所以f(α2)=sin(α+π3)−√32=14−√32,所以sin(α+π3)=14.因为α∈(π2,π),所以5π6<α+π3<4π3,所以cos(α+π3)=−√154,所以sinα=sin[(α+π3)−π3]=sin(α+π3)cosπ3−cos(α+π3)sinπ3=14×12−(−√154)×√32=1+3√58,cosα=cos [(α+π3)−π3] =cos (α+π3)cos π3+sin (α+π3)sin π3=−√154×12+14×√32=√3−√158. 所以答案是:1+3√58,√3−√15816、函数f(x)=3sinx−1sinx+2的最大值是____,最小值是_________.答案: 23 −4 分析:将函数f(x)的解析式化为f(x)=3−7sinx+2,由sinx ∈[−1,1]结合不等式的性质,即可得出f(x)的最大值和最小值. f(x)=3(sinx +2)−7sinx +2=3−7sinx +2∵sinx ∈[−1,1]∴sinx +2∈[1,3]∴1sinx +2∈[13,1] ∴−7sinx +2∈[−7,−73] ∴3−7sinx +2∈[−4,23] 即f(x)max =23,f(x)min =−4所以答案是:23;−4 小提示:本题主要考查了求含正弦函数的最值,属于中档题.17、设α、β∈(0,π),cosβ=−1213,cos α2=2√55,则cosα=____, tan (α+β)=___.答案: 35 3356分析:利用二倍角的余弦公式可求得cosα的值,求出tanα、tanβ的值,利用两角和的正切公式可求得tan (α+β)的值.由二倍角的余弦公式可得cosα=2cos 2α2−1=2×(2√55)2−1=35, ∵α、β∈(0,π),∴sinα=√1−cos 2α=45,sinβ=√1−cos 2β=513, ∴tanα=sinαcosα=43,tanβ=sinβcosβ=−512, 因此,tan (α+β)=tanα+tanβ1−tanαtanβ=43−5121−43×(−512)=3356.所以答案是:35;3356.小提示:本题考查利用二倍角的余弦公式以及两角和的正切公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于中等题.解答题18、在平面直角坐标系中,角α的终边在直线3x +4y =0上,求sin α-3cos α+tan α的值.答案:-154或94.分析:当角α的终边在射线y =-34x (x >0)上时,取终边上一点P (4,-3),求出sin α,cos α,tan α即得解;当角α的终边在射线y =-34x (x <0)上时,取终边上一点P ′(-4,3),求出sin α,cos α,tan α即得解.综合即得解. 当角α的终边在射线y =-34x (x >0)上时,取终边上一点P (4,-3), 所以点P 到坐标原点的距离r =|OP |=5,所以sin α=y r =−35=-35,cos α=x r =45,tan α=y x =-34.所以sin α-3cos α+tan α=-35-125-34=-154.当角α的终边在射线y =-34x (x <0)上时,取终边上一点P ′(-4,3),所以点P ′到坐标原点的距离r =|OP ′|=5,所以sin α=y r =35,cos α=x r =-45,tan α=y x =-34. 所以sin α-3cos α+tan α=35-3×(−45)-34=35+125-34=94. 综上,sin α-3cos α+tan α的值为-154或94.小提示:本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.19、已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式,并求出该函数的单调递增区间;(2)若α∈(0,π2),且f (α2+π6)=65,求f (α2−π6)的值.答案:(1)答案见解析;(2)−4√3+35.分析:(1)根据函数图象可得A ,周期T ,即可求出ω,再由图象过点(512π,2)即可求出φ,得到函数解析式,求出单调区间;(2)由f (α2+π6)=65求出sinα,cosα,再由两角差的正弦公式直接计算f(α2−π6)即可.(1)由图象可知,A =2, 且T =2(1112π−512π)=π=2πω,解得 ω=2所以f(x)=2sin(2x +φ),因为f(512π)=2sin(56π+φ)=2,所以56π+φ=2k 1π+π2(k 1∈Z) 则φ=2k 1π−π3(k 1∈Z),则仅当k 1=0时,φ=−π3符合题意, 所以f(x)=2sin(2x −π3), 令2kπ−π2≤2x −π3≤2kπ+π2(k ∈Z),解得 kπ−π12≤x ≤kπ+5π12(k ∈Z)综上,f(x)的解析式为f(x)=2sin(2x −π3),单调增区间为[kπ−π12,kπ+5π12](k ∈Z);(2)因为f(x)=2sin(2x −π3), 所以f(α2+π6)=2sinα=65,所以sinα=35,又α∈(0,π2), 所以cosα=√1−sin 2α=45, 所以f(α2−π6)=2sin(α−2π3)=2sinαcos 2π3−2cosαsin 2π3=−4√3+35. 20、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值;(2)已知sinα+cosα=15(0<α<π),求tanα的值. 答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2∴sinα⋅cosα=12 sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,①∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425.∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0,∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−43。
2023年人教版高中数学第五章三角函数知识汇总笔记
(名师选题)2023年人教版高中数学第五章三角函数知识汇总笔记单选题1、将函数f(x)=2cosx的图象先向右平移φ(0<φ<π)个单位长度,再把所得函数图象的横坐标变为原来的1ω(ω>0)倍,纵坐标不变,得到函数g(x)的图象,若对g(x)满足|g(x1)−g(x2)|=4,有|x1−x2|min=π4恒成立,且g(x)在区间(π6,π3)上单调递减,则φ的取值范围是()A.[π12,π3]B.[π3,π2]C.(π3,2π3]D.[π3,2π3]答案:D分析:可得g(x)=2cos(ωx−φ),根据题意可求出最小正周期,得出ω,求出g(x)的单调递减区间,根据包含关系可求出.由题可得g(x)=2cos(ωx−φ),若满足|g(x1)−g(x2)|=4,则x1和x2必然一个极大值点,一个极小值点,又|x1−x2|min=π4,则T2=π4,即T=π2,所以ω=2πT=4,令2kπ≤4x−φ≤2kπ+π,可得kπ2+φ4≤x≤kπ2+π4+φ4,即g(x)的单调递减区间为[kπ2+φ4,kπ2+π4+φ4],k∈Z,因为g(x)在区间(π6,π3)上单调递减,所以(π6,π3)⊆[kπ2+φ4,kπ2+π4+φ4],k∈Z,则{kπ2+φ4≤π6kπ2+φ4+π4≥π3,解得−2kπ+π3≤φ≤−2kπ+2π3,k∈Z,因为0<φ<π,所以可得π3≤φ≤2π3.故选:D.2、小说《三体》中的“水滴”是三体文明派往太阳系的探测器,由强相互作用力材料制成,被形容为“像一滴圣母的眼泪”.小刘是《三体》的忠实读者,他利用几何作图软件画出了他心目中的水滴(如图),由线段AB ,AC 和优弧BC 围成,其中BC 连线竖直,AB ,AC 与圆弧相切,已知“水滴”的水平宽度与竖直高度之比为74,则cos∠BAC =( ).A .1725B .4√37C .45D .57答案:A分析:设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如图,进而可得“水滴”的水平宽度为|OA |+R,竖直高度为2R ,根据题意求得OA =52R ,由切线的性质和正弦函数的定义可得sin∠BAO =25,结合圆的对称性和二倍角的余弦公式即可得出结果.设优弧BC 的圆心为O ,半径为R ,连接OA ,OB ,OC ,如下图所示易知“水滴”的水平宽度为|OA |+R ,竖直高度为2R ,则由题意知OA+R 2R=74,解得OA =52R ,AB 与圆弧相切于点B ,则OB ⊥AB ,∴在Rt △ABO 中,sin∠BAO =OB OA=R 52R=25,由对称性可知,∠BAO =∠CAO ,则∠BAC =2∠BAO , ∴cos∠BAC =1−2sin 2∠BAO =1−2×(25)2=1725,故选:A .3、已知sinθ=45,则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=( )A .−169B .169C .−43D .43答案:B分析:由诱导公式和同角关系sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)可化为sin 2θcos 2θ,再由同角关系由sinθ求出cos 2θ,由此可得结果.∵ sinθ=45,∴ cos 2θ=1−sin 2θ=925 则sin (π−θ)cos(π2+θ)cos (π+θ)sin(π2−θ)=sinθ(−sinθ)(−cosθ)cosθ=sin 2θcos 2θ=169,故选:B.4、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可. 由f(−x)=−sin (−x )+x cosx+x 2=−−sinx−x cosx+x 2=−f (x ),所以f (x )为奇函数,故排除选项A.又f (π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D 故选:C5、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值.sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A.6、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度 C .向右平移π6个单位长度D .向左平移π6个单位长度答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A.7、已知sin (α−π3)+√3cosα=13,则sin (2α+π6)的值为( )A .13B .−13C .79D .−79答案:D解析:利用两角和与差的正弦公式,诱导公式化简已知等式可得cos(α−π6)=13,进而利用诱导公式,二倍角公式化简所求即可求解.因为sin (α−π3)+√3cosα=12sinα−√32cosα+√3cosα=12sinα+√32cosα =sin (α+π3)=sin (π2+α−π6)=cos (α−π6)=13,所以sin (2α+π6)=sin (π2+2α−π3)=cos (2α−π3)=2cos 2(α−π6)−1=2×(13)2−1=−79, 故选:D8、已知角α的终边上一点P 的坐标为(sin 5π6,cos5π6),则角α的最小正值为( )A .π6B .2π3C .7π6D .5π3 答案:D分析:先根据角α终边上点的坐标判断出角α的终边所在象限,然后根据三角函数的定义即可求出角α的最小正值. 因为sin5π6>0,cos5π6<0,所以角α的终边在第四象限, 根据三角函数的定义,可知 sinα=cos5π6=−√32, 故角α的最小正值为α=2π−π3=5π3.故选:D .9、已知函数f(x)=sin (x +π3).给出下列结论: ①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A.①B.①③C.②③D.①②③答案:B分析:对所给选项结合正弦型函数的性质逐一判断即可.因为f(x)=sin(x+π3),所以周期T=2πω=2π,故①正确;f(π2)=sin(π2+π3)=sin5π6=12≠1,故②不正确;将函数y=sinx的图象上所有点向左平移π3个单位长度,得到y=sin(x+π3)的图象,故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.10、已知函数f(x)=sin(2x+π3),为了得到函数g(x)=cos(2x+π3)的图象只需将y=f(x)的图象()A.向左平移π4个单位B.向右平移π4个单位C.向左平移π2个单位D.向右平移π2个单位答案:A分析:利用三角函数的平移结合诱导公式即可求解. 解:因为sin(2x+π3+π2)=cos(2x+π3)所以sin(2x+π3)→sin(2x+π2+π3),只需将f(x)的图象向左平移π4个单位,故选:A.11、已知函数f (x )=|cos 2x |+cos x ,下列四个结论中正确的是( ) A .函数f (x )在(0,π)上恰有一个零点 B .函数f (x )在[0,π2]上单调递减 C .f (π)=2D .函数f (x )的图象关于点(π2,0)对称答案:A分析:对x 的范围进行分类讨论,由此判断A 的正确性.利用赋值法判断BC 选项的正确性.由f (π2+x)+f (π2−x)是否为0来判断D 选项的正确性.x ∈(0,π4),2x ∈(0,π2),f (x )=cos2x +cosx =2cos 2x +cosx −1=0,cosx =−1(舍去)或cosx =12,x =π3(舍去). x ∈[π4,3π4],2x ∈[π2,3π2],f (x )=−cos2x +cosx =−2cos 2x +cosx +1=0,cosx =1(舍去)或cosx =−12,x =2π3.x ∈(3π4,π),2x ∈(3π2,2π),f (x )=cos2x +cosx =2cos 2x +cosx −1=0, cosx =−1(舍去)或cosx =12(舍去).综上所述,函数f (x )在(0,π)上恰有一个零点,A 选项正确. f (0)=2,f (π4)=√22,f (π2)=1,B 选项错误.f (π)=1−1=0,C 选项错误.f (π2+x)+f (π2−x)=|cos (π+2x )|+cos (π2+x)+|cos (π−2x )|+cos (π2−x) =2|cos2x |−sinx +sinx =2|cos2x |不恒为0, D 选项错误. 故选:A12、筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图,将筒车抽象为一个几何图形(圆),筒车半径为4m,筒车转轮的中心O到水面的距离为2m,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系xOy.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:s),且此时点P距离水面的高度为h(单位:m),则点P第一次到达最高点需要的时间为()s.A.2B.3C.5D.10答案:C分析:设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,根据题意求出A,ω,φ,再令ℎ(t)=6可求出结果.设点P离水面的高度为ℎ(t)=Asin(ωt+φ)+2,依题意可得A=4,ω=8π60=2π15,φ=−π6,所以ℎ(t)=4sin(2π15t−π6)+2,令ℎ(t)=4sin(2π15t−π6)=6,得sin(2π15t−π6)=1,得2π15t−π6=2kπ+π2,k∈Z,得t=15k+5,k∈Z,因为点P第一次到达最高点,所以0<t<2π2π15=15,所以k=0,t=5s.故选:C双空题13、2345°是第________象限角,−1015°是第________象限角. 答案:三一分析:由题意结合终边相同的角的概念可得2345°与185°、−1015°与65∘终边相同,再由象限角的概念即可得解. ∵2345°=360°×6+185°,185°为第三象限角,∴2345°是第三象限角;∵−1015°=360∘×(−3)+65∘,65∘为第一象限角,∴−1015°是第一象限角.所以答案是:三;一.小提示:本题考查了终边相同的角的概念的应用,考查了象限角概念的应用,关键是对知识点的熟练应用,属于基础题.14、函数f(x)=2√3sinxcosx−2cos2x+1的振幅为______;将函数f(x)的图象右移φ(φ>0)个单位长度后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的最小正值为______.答案:2π6分析:先利用二倍角和辅助角公式整理f(x)得到振幅,再利用左加右减得到g(x),又利用g(x)为偶函数得出φ=-kπ2−π3,对k取值即可得结论.f(x)=2√3sinxcosx−2cos2x+1=√3sin2x−cos2x=2sin(2x−π6),故振幅为2;函数f(x)的图象右移φ(φ>0)个单位长度,g(x)=2sin(2(x−φ)−π6)=2sin(2x−2φ−π6),又函数g(x)为偶函数,所以-2φ-π6=kπ+π2(k∈Z),φ=-kπ2−π3,当k=−1时,φ=π6即为φ的最小正值.所以答案是:2;π6.小提示:本题主要考查利用二倍角和辅助角公式化简三角函数,求振幅和φ的问题.属于较易题.15、已知α∈(π , 2π),若tanα=34,则tan(α+π4)=__;cos 2α2=__.答案: 7 110分析:利用正切的和角公式即可求得tan(α+π4),根据正切求得cos α,再利用余弦的降幂扩角公式即可求得结果.因为α∈(π , 2π),若tanα=34, 故可得sin α=−35,cos α=−45. 则tan (α+π4)=tanα+11−tanα=7414=7;cos 2α2= 12(1+cosα)=12×15=110. 所以答案是:7;110.小提示:本题考查同角三角函数关系,以及正切的和角公式以及余弦的降幂扩角公式,属综合基础题. 16、两角和与差的正弦公式的推导sin(α+β)=cos [π2−(α+β)]=cos [(π2−α)−β]=cos (π2−α)cosβ+sin (π2−α)sinβ=sinαcosβ+cosαsinβ, 即_____________(S α+β), 以−β代β得___________(S α−β).答案: sin(α+β)=sinαcosβ+cosαsinβ sin(α−β)=sinαcosβ−cosαsinβ 分析:由两角和与差的正弦公式的推导直接可得sin (α+β)=sinαcosβ+cosαsinβ,以−β代β计算得sin (α−β)=sinαcosβ−cosαsinβ. 两角和与差的正弦公式的推导sin (α+β)=cos [π2−(α+β)]=cos [(π2−α)−β]=cos (π2−α)cosβ+sin (π2−α)sinβ=sinαcosβ+cosαsinβ,即sin (α+β)=sinαcosβ+cosαsinβ (S α+β); 以−β代β得sin (α−β)=cos [π2−(α−β)]=cos [(π2−α)+β]=cos (π2−α)cos (−β)−sin (π2−α)sinβ=sinαcosβ−cosαsinβ,得sin (α−β)=sinαcosβ−cosαsinβ (S α−β).所以答案是:①sin (α+β)=sinαcosβ+cosαsinβ;②sin (α−β)=sinαcosβ−cosαsinβ 17、已知角α的终边上一点坐标为(−3,a),且α为第二象限角,cosα=−35,则sinα=_________,tanα=________. 答案: 45 −43分析:根据(−3,a)为α终边上的一点,且cosα=−35,由√(−3)2+a2=−35求得a 即可. 因为(−3,a)为α终边上的一点,cosα=−35, 所以√(−3)2+a2=−35, 解得a 2=16.又因为α为第二象限角,所以a >0即a =4. 所以sinα=45,tanα=−43. 所以答案是:45 −43 解答题18、已知函数f (x )=log 12(sinx −cosx ).(1)求它的定义域和值域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的最小正周期.答案:(1)定义域为(2kπ+π4,2kπ+5π4)(k∈Z),值域为[−12,+∞);(2)单调增区间为[2kπ+3π4,2kπ+5π4)(k∈Z),单调减区间为(2kπ+π4,2kπ+3π4](k∈Z);(3)非奇非偶函数;(4)2π.分析:(1)利用两角和差的三角函数,结合对数的运算化简可得f(x)=log12sin(x−π4)−12,由真数大于零,即sin(x−π4)>0,利用三角函数的图象和性质求解,即得函数f(x)的定义域;根据三角函数的值域和对数函数的图象与性质,可求得函数f(x)的值域;(2)利用对数函数的单调性,三角函数的单调性,结合复合函数的单调性可求得函数f(x)的单调增减区间;(3)利用奇偶函数的定义域的对称性,结合(1)中所的定义域,即可得到函数f(x)为非奇非偶函数;(4)根据三角函数的周期性,即可得到函数f(x)的周期.(1)f(x)=log12(sinx−cosx)=log12[√2sin(x−π4)]=log12sin(x−π4)−12,由sin(x−π4)>0,解得2kπ<x−π4<2kπ+π,∴2kπ+π4<x<2kπ+5π4,∴函数f(x)的定义域为(2kπ+π4,2kπ+5π4)(k∈Z);由sin(x−π4)∈(0,1],∴log12sin(x−π4)≥0,∴函数f(x)的值域为[−12,+∞);(2)在定义域内,当2kπ<x−π4≤2kπ+π2,即2kπ+π4<x≤2kπ+3π4时,sin(x−π4)是单调递增的,故函数f(x)时单调递减的;当2kπ+π2≤x−π4<2kπ+π,即2kπ+3π4≤x<2kπ+5π4时,sin(x−π4)是单调递减的,故函数f(x)时单调递增的;∴单调增区间为[2kπ+3π4,2kπ+5π4)(k∈Z),单调减区间为(2kπ+π4,2kπ+3π4](k∈Z);(3)由(1)得函数f(x)的定义域为(2kπ+π4,2kπ+5π4)(k∈Z),定义域不关于原点对称,故函数f(x)为非奇非偶函数;(4)∵sin (x −π4)的最小正周期为2π,∴函数f (x )=log 12sin (x −π4)−12的最小正周期为2π.小提示:本题考查对数函数与三角函数的复合函数的定义域,值域,单调性,奇偶性和周期性问题,关键是掌握复合函数的单调性求解方法,熟练掌握三角函数的单调性,简单三角不等式的求解方法,并注意单调性求解和奇偶性判定时一定要考察清楚函数的定义域.19、已知函数f (x )=2sin (x +π3),且函数y =g (x )的图象与函数y =f (x )的图象关于直线x =π4对称.(1)求函数g (x )的解析式;(2)若存在x ∈[0,π2),使等式[g (x )]2−mg (x )+2=0成立,求实数m 的取值范围;(3)若当x ∈[−π3,2π3]时,不等式12f (x )−ag (−x )>a −2恒成立,求实数a 的取值范围.答案:(1)g (x )=2sin (x +π6); (2)[2√2,3]; (3)(−2,23).分析:(1)利用给定的函数图象间的关系直接列式并化简作答. (2)利用正弦函数的性质求出g(x)的范围,再分离参数求解作答. (3)根据给定范围,按a =0,a >0,a <0分类并结合最值情况求解作答. (1)因函数y =g (x )的图象与函数y =f (x )的图象关于直线x =π4对称,则g(x)=f(π2−x),所以g(x)=2sin(π2−x +π3)=2sin[π−(x +π6)]=2sin(x +π6).(2)由(1)知,g (x )=2sin (x +π6),当x ∈[0,π2)时,x +π6∈[π6,2π3),则1≤g (x )≤2, 令g (x )=t ,则1≤t ≤2.存在x ∈[0,π2),使[g (x )]2−mg (x )+2=0成立, 即存在t ∈[1,2],使t 2−mt +2=0成立,则存在t ∈[1,2],m =t +2t 成立,而函数m =t +2t在t ∈[1,√2]上递减,在t ∈[√2,2]上递增,当t =√2时,m min =2√2,当t =1或2时,m max =3 所以实数m 的取值范围为[2√2,3]. (3)由(1)知,不等式12f(x)−ag(−x)>a −2⇔sin(x +π3)+2asin(x −π6)>a −2,当x ∈[−π3,2π3]时,0≤x +π3≤π,−π2≤x −π6≤π2,若a =0,因0≤sin(x +π3)≤1,即sin(x +π3)>−2恒成立,则a =0,若a >0,因sin(x −π6)在[−π3,2π3]上单调递增,则当x =−π3时,sin(x +π3)+2asin(x −π6)取得最小值, 原不等式恒成立可转化为sin(−π3+π3)+2asin(−π3−π6)>a −2恒成立,即−2a >a −2,因此0<a <23,若a <0,当x =2π3时,sin(x +π3)+2asin(x −π6)取得最小值, 原不等式恒成立可转化为sin(2π3+π3)+2asin(2π3−π6)>a −2恒成立,即a >−2,因此−2<a <0, 所以a 的取值范围是(−2,23).20、已知函数f (x )=2sinxsin (π3−x)+2cos 2x −12.(1)求函数f (x )的单调增区间;(2)当x ∈(−π6,π4)时,函数g (x )=f 2(x )−2mf (x )+m 2−116有四个零点,求实数m 的取值范围. 答案:(1)[kπ−5π12,kπ+π12],k ∈Z (2)2√3+14<m <4√3−14分析:(1)化简f(x)的解析式,根据正弦函数的增区间可得结果;(2)转化为ℎ(t)=t 2−2mt +m 2−116在(√32,√3)内有两个零点,根据二次函数列式可得结果. (1)f (x )=2sinxsin (π3−x)+2cos 2x −12=2sinx (sin π3cosx −cos π3sinx)+1+cos2x −12=√3sinxcosx −sin 2x +1+cos2x −12=√32sin2x +cos 2x +cos2x −12=√32sin2x +1+cos2x 2+cos2x −12=√32sin2x +32cos2x =√3sin(2x +π3),由2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z ,得kπ−512π≤x ≤kπ+π12,k ∈Z ,所以函数f (x )的单调增区间为[kπ−5π12,kπ+π12],k ∈Z . (2)当x ∈(−π6,π4)时,2x +π3∈(0,5π6),f(x)=√3sin(2x +π3) ∈(0,√3], 因为函数g (x )=f 2(x )−2mf (x )+m 2−116有四个零点,令t =f(x), 则t ∈(0,√3)且ℎ(t)=t 2−2mt +m 2−116在(√32,√3)内有两个零点,所以{Δ=4m 2−4(m 2−116)>0√32<m <√3ℎ(√32)>0ℎ(√3)>0 ,即{ √32<m <√334−√3m +m 2−16>03−2√3m +m 2−16>0 , 解得{√32<m <√3m <2√3−14或m >2√3+14m <4√3−14或m >4√3+14,解得2√3+14<m <4√3−14,所以实数m 的取值范围是2√3+14<m <4√3−14. 小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
(完整版)高中三角函数知识点总结(人教版)
高中三角函数总结1.任意角的三角函数定义:设 为任意一个角,点 P( x, y) 是该角终边上的任意一点 (异于原点) , P(x, y) 到原点的距离为 rx 2 y 2 ,则:siny(正负看 y),cosx(正负看 x), tany(正负看 x y)rrx2.特别角三角函数值:0° 30° 45°60°90° sin0 12 3 122 2cos1 32 1 02 22tan13 13没心义33.同角三角函数公式:tansin , sin 2cos 21cossec1,csc 11cos,cottansin4.三角函数引诱公式:(1) sin( 2k ) sin , cos( 2k ) cos , tan( 2k ) tan ; (kZ )(2) sin( ) sin , cos( )cos , tan() tan ;(3) sin()sin , cos( )cos , tan()tan ;(函数名称不变,符号看象限)(4) sin() cos ,cos( )sin, tan() cot ;222(5) sin() cos , cos()sin , tan() cot ;222(正余互换,符号看象限)注意: tan 的值,总为 sin/cos ,便于记忆;5.三角函数两角引诱公式:(1)和差公式sin( ) sin coscos sin cos( ) cos cos sin sintantantan( )1 tan tan(2)倍角公式令上面的可得: sin( 2 ) 2 sin coscos(2 ) cos2 sin 22 tan 2 cos2 1 tan(2 )1 2sin 21 tan2 6.正弦定理:△ABC 中三边分别为a,b, c ,外接圆半径为R ,则有:a b cR sin A sin B27.余弦定理:sin C△ABC 中三边分别为a,b, c ,则有: cosC a2 b2 c22ab8.面积公式:1ab sinC(两边与夹角正弦值 ) △ABC 中三边分别为a,b, c ,面积为S,则有:S2三角函数图象:9.函数名图像单调区间y=sinx递加区间:[ 2k ,2k ]2 2递减区间:[ 2k ,2k 3], k Z2 2y=cosx递加区间:[ 2k,2k ]递减区间:[ 2k ,2k], k Zy=tanx递加区间:(k, k), k Z2 2定义域非R,为:{ x | x k}210.关于y Asin( x ) B 的性质:(1)最大值为| A | B ,最小值为| A | B ( sin( x )1时 ,得最大最小)(2)周期2 1 | |x ,初相是T ,频率 f ,相位是| | T 2(3)图像的对称轴是直线:(4)图像的对称中心为:x k (k Z ) ,可化简为x=的形式;2y A sin( x ) B B 时获取的所有交点(x,B )(5)单调区间求取:一利用引诱公式将变为正,如变为cos 等,此处假设0 ,二求出 y Asin x 的单调区间,令x分别位于单调区间地域,反解x 范围;11.图像变换:y Asin( x) B :y sin x沿x轴左移个单位y sin(x )横坐标x变为原来的1 倍xy sin( ) sin( x )1纵坐标 y变为原来的 A倍y ) y Asin( x )sin( xA沿y轴下移 B个单位y B Asin( x ) y Asin( x ) B 要点点:上 +下 -( y),左 +右 -( x),倍数相除(变为原来的n 倍,则对应的坐标都除以n)。
高一数学(人教版)必修4三角函数知识点
三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π=,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r >,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15 周期问题◆()()()()()()ωπωϕωωπωϕωπωϕωωπωϕωωπωϕωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T, 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A yR ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭三角恒等变换1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
高一必修3三角函数知识点
高一必修3三角函数知识点三角函数是高中数学中的重要内容之一,在高一必修3课程中,我们将学习一些基本的三角函数知识点。
本文将对这些知识点进行详细介绍和总结。
一、角的概念角是由一条射线绕着一个固定点旋转而形成的图形,常用小写字母表示,如∠ABC。
角可以分为正角、负角、零角等。
二、弧度制弧度制是角度的另一种衡量方式,用弧长与半径的比值表示。
1弧度等于角所对的弧长等于半径的弧长。
三、三角函数的定义三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
以一个锐角∠θ为例,正弦函数定义为对边与斜边的比值,余弦函数定义为邻边与斜边的比值,正切函数定义为对边与邻边的比值。
四、基本三角函数的性质1. 正弦函数和余弦函数的取值范围在[-1, 1]之间。
2. 正弦函数和余弦函数的周期都是360°(或2π弧度)。
3. 正切函数的定义域为所有余切不为0的实数,正切函数的周期是180°(或π弧度)。
4. 正弦函数和余弦函数是奇函数,即f(-x) = -f(x),而正切函数是奇函数。
5. 正弦函数是周期函数,且在0°到180°(或0到π弧度)的区间上是增函数,180°到360°(或π到2π弧度)的区间上是减函数。
五、特殊角的三角函数值1. 30°和150°的三角函数值:正弦函数值为1/2,余弦函数值为√3/2,正切函数值为1/√3。
2. 45°和135°的三角函数值:正弦函数值为√2/2,余弦函数值为√2/2,正切函数值为1。
3. 60°和120°的三角函数值:正弦函数值为√3/2,余弦函数值为1/2,正切函数值为√3。
六、三角函数的图像和性质1. 正弦函数的图像为一条连续的曲线,振幅为1,且在0时取得最小值。
2. 余弦函数的图像为一条连续的曲线,振幅为1,且在0时取得最大值。
3. 正切函数的图像为一组周期为180°的射线,无定义点为45°和225°,其余每隔180°重复。
人教版数学必修四三角函数复习讲义
第一讲 任意角与三角函数诱导公式1. 知识要点角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
终边相同的角的表示:α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z 。
注意:相等的角的终边一定相同,终边相同的角不一定相等.α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.α与2α的终边关系:任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。
三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”同角三角函数的基本关系式:1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αααααα==注意:1.角α的任意性。
高一三角函数知识点归纳总结公式
高一三角函数知识点归纳总结公式三角函数是数学中非常重要的一个概念,它在几何学、物理学、工程学等领域都有广泛的应用。
在高一阶段,我们学习了三角函数的基本定义、性质和常用公式。
下面我将对这些知识点进行归纳总结,以便大家更好地掌握和应用。
1. 三角函数的基本定义:在一个直角三角形中,对于一个锐角A,我们定义正弦函数sin(A)、余弦函数cos(A)和正切函数tan(A)如下:sin(A) = 对边/斜边cos(A) = 临边/斜边tan(A) = 对边/临边2. 三角函数的周期性:正弦函数、余弦函数和正切函数都是周期函数,其中正弦函数和余弦函数的周期是2π,正切函数的周期是π。
3. 三角函数的性质:(1) 正弦函数和余弦函数的值域都是[-1, 1],即 -1 ≤ sin(A) ≤ 1,-1 ≤ cos(A) ≤ 1。
(2) 正弦函数和余弦函数的图像关于y轴对称。
(3) 正弦函数和余弦函数的图像都是连续的曲线。
(4) 正弦函数和余弦函数的图像都是周期性的。
(5) 正弦函数和余弦函数的图像都是振荡曲线。
4. 三角函数的基本关系:(1) sin(A) = cos(90° - A)(2) cos(A) = sin(90° - A)(3) sin^2(A) + cos^2(A) = 15. 三角函数的和差公式:(1) sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)(2) cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)(3) tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))6. 三角函数的倍角公式:(1) sin(2A) = 2sin(A)cos(A)(2) cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)(3) tan(2A) = (2tan(A))/(1 - tan^2(A))7. 三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cos(A))/2](2) cos(A/2) = ±√[(1 + cos(A))/2](3) tan(A/2) = ±√[(1 - cos(A))/(1 + cos(A))]8. 三角函数的积化和差公式:(1) sin(A)sin(B) = (cos(A - B) - cos(A + B))/2(2) cos(A)cos(B) = (cos(A - B) + cos(A + B))/2(3) sin(A)cos(B) = (sin(A + B) + sin(A - B))/2通过对三角函数的定义、性质和常用公式的学习,我们可以解决很多与角度相关的问题。
(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档
高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。
(完整版)高中必修四三角函数知识点总结
§04。
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。
01745 1=57。
30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。
30°=57°18ˊ. 1°=180π≈0。
01745(rad )3、弧长公式:rl ⋅=||α。
扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。
yr=αcsc 。
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。
高中三角函数知识点(集合5篇)
高中三角函数知识点(集合5篇)高中三角函数知识点(1)角的概念的'推广.弧度制.任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tan α?cotα=1”.高中三角函数知识点(2)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα高中数学三角函数的诱导公式学习方法二推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα高中三角函数知识点(3)口诀记忆法高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。
高中数学三角函数知识点归纳总结
高中数学三角函数知识点归纳总结三角函数的定义和基本性质- 三角函数包括正弦函数、余弦函数和正切函数。
- 正弦函数的定义:在直角三角形中,对于一个锐角的正弦值等于该锐角的对边长度与斜边长度的比值。
- 余弦函数的定义:在直角三角形中,对于一个锐角的余弦值等于该锐角的邻边长度与斜边长度的比值。
- 正切函数的定义:在直角三角形中,对于一个锐角的正切值等于该锐角的对边长度与邻边长度的比值。
- 三角函数的图像在一个周期内重复,其中周期是正弦函数和余弦函数的周期为360°或2π弧度,正切函数的周期为180°或π弧度。
三角函数的特殊值- 特殊角的正弦值:0°对应的正弦值为0,90°对应的正弦值为1,180°对应的正弦值为0,270°对应的正弦值为-1,360°对应的正弦值为0。
- 特殊角的余弦值:0°对应的余弦值为1,90°对应的余弦值为0,180°对应的余弦值为-1,270°对应的余弦值为0,360°对应的余弦值为1。
- 特殊角的正切值:0°对应的正切值为0,90°对应的正切值不存在,180°对应的正切值为0,270°对应的正切值不存在,360°对应的正切值为0。
三角函数的基本公式- 三角函数的基本公式是:sin^2(x) + cos^2(x) = 1。
- 这个公式表明,对于任意角度x,正弦函数的平方加上余弦函数的平方始终等于1。
三角函数的性质- 正弦函数和余弦函数是偶函数,即sin(-x) = -sin(x)和cos(-x) = cos(x)。
- 正弦函数和余弦函数的函数值位于闭区间[-1, 1]之间。
- 正切函数是奇函数,即tan(-x) = -tan(x)。
- 正切函数的值在每个周期内的正弦函数和余弦函数值为0的点处不存在。
三角函数的运算- 三角函数的运算包括加减法、乘法和除法。
人教版高二数学三角函数知识点
銳角三角函數定義銳角角A的正弦(sin),余弦(cos)和正切(tan),餘切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin)等於對邊比斜邊;sinA=a/c余弦(cos)等於鄰邊比斜邊;cosA=b/c正切(tan)等於對邊比鄰邊;tanA=a/b餘切(cot)等於鄰邊比對邊;cotA=b/a正割(sec)等於斜邊比鄰邊;secA=c/b余割(csc)等於斜邊比對邊。
cscA=c/a互餘角的三角函數間的關係sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.平方關係:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)積的關係:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒數關係:tanα·cotα=1sinα·cscα=1cosα·secα=1銳角三角函數公式兩角和與差的三角函數:sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB?cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)三角和的三角函數:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sin γ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sin γ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tan β-tanβ·tanγ-tanγ·tanα)輔助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降冪公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))萬能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]積化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化積公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]推導公式:tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0函數名正弦余弦正切餘切正割余割在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的座標為(x,y)有正弦函數sinθ=y/r余弦函數cosθ=x/r正切函數tanθ=y/x餘切函數cotθ=x/y正割函數secθ=r/x余割函數cscθ=r/y正弦(sin):角α的對邊比上斜邊余弦(cos):角α的鄰邊比上斜邊正切(tan):角α的對邊比上鄰邊餘切(cot):角α的鄰邊比上對邊正割(sec):角α的斜邊比上鄰邊余割(csc):角α的斜邊比上對邊三角函數萬能公式萬能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2證明下麵兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可(4)對於任意非直角三角形,總有tanA+tanB+tanC=tanAtanBtanC證:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得證同樣可以得證,當x+y+z=nπ(n∈Z)時,該關係式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下結論(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC萬能公式為:設tan(A/2)=tsinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數式最值的時候,就可以用萬能公式,推導成只含有一個變數的函數,最值就很好求了.三角函數關係倒數關係tanα·cotα=1sinα·cscα=1cosα·secα=1商的關係sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscαcα平方關係sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函數關係六角形記憶法構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。
高中三角函数知识点归纳总结
高中三角函数知识点归纳总结高中三角函数知识点归纳总结三角函数是数学中的一个重要概念,也是高中数学中的重要内容之一。
三角函数的三角形概念、周期性、奇偶性、单调性、极限等性质是数学中的重要概念,具有广泛的应用。
本文旨在对高中三角函数的知识点进行归纳总结,帮助读者深入了解三角函数的相关知识点。
一、角度与弧度在三角函数中,角度是一个重要的概念。
角度的度量单位是度(°),它定义了一个圆周的360等分,每一份是一度。
在角度制中,角的度数为角所包含的弧长与圆周的弧长之比。
在三角函数中,角度最小的单位是度,但是使用弧度作为角度单位也是非常常见的。
弧度的度量单位是弧度(rad),定义为一条弧长相等于半径的圆的圆心角所对应的弧长。
换句话说,弧度度量了角度所对应的弧长在圆上的比例。
弧度与角度的换算公式为:1°=π/180 rad。
二、常用角的三角函数1.正弦函数在圆内取一点P(x,y),离圆心O的距离为r,则称为点P为圆心角为θ的点。
正弦函数(sine)是一个关于角度的周期函数,用f(x) = sin(x)来表示。
在单位圆上,对于任意角度,正弦函数的值都等于对应角度的正弦值,即sin(x) = y/r。
2.余弦函数余弦函数(cosine)是一个关于角度的周期函数,用f(x) = cos(x)来表示。
在单位圆上,对于任意角度,余弦函数的值都等于对应角度的余弦值,即cos(x) = x/r。
3.正切函数正切函数(tangent)是一个关于角度的周期函数,用f(x) = tan(x)来表示。
在单位圆上,对于任意角度,正切函数的值都等于对应角度的正切值,即tan(x) = y/x。
三、三角函数的基本关系三角函数之间有很多基本关系,在应用三角函数时常常需要互相转化。
其中最基本的关系是:tan θ = sin θ/cos θ其它关系包括:sin^2 θ + cos^2 θ = 11 + tan^2 θ = sec^2 θ1 + cot^2 θ = csc^2 θ四、三角函数的图像三角函数的图像广泛应用于三角函数的计算和应用过程中,在研究三角函数图像时可以从以下几个方面开始:1. 正弦函数的图像:正弦函数的图像是一个周期为2π的波形,其最大值是1,最小值是-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中三角函数总结
1.任意角的三角函数定义:
设
为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r ,则:
(1)正弦sin =r y
余弦cos =r x
正切tan =x
y
(2)各象限的符号:
sin cos tan 练习
x y +cos sin 2O
——+
x y
O —+ + —
+ y O —+ + —
2.特殊角三角函数值:
0°
30°45°60°90°120°135°150°180°270°360°0
π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π3π/2 2πsin 0 2
1
2223 1 23-22210 -1 0 cos 1 23
22210 -21-22-2
3
-1 0 1 tan 1 33 1 3无-3-1 -33
0 无0
3.同角三角函数公式:
tan 1
cot ,sin 1csc
,cos 1
sec 1cos sin ,cos sin tan
22
三角函数诱导公式:奇变偶不变,符号看象限。
(1);tan )tan(,cos )cos(,sin )sin(
(2);tan )tan(,cos )cos(,sin )sin(
(4);cot )2tan(,sin )2cos(,cos )2sin(
(5);cot )2
tan(,sin )2cos(,cos )2sin(
三角函数图象:
函数名图像
单调区间y=sinx
递增区间:]2
2,22[k k 递减区间:Z
k k k ],232,22[y=cosx 递增区间:
]
2,2[k k 递减区间:
Z
k k k ],2,2[y=tanx 递增区间:
Z
k k k ),2,2(定义域非R ,为:}2
|{k x x
图像变换:B x A y )sin(:B x A y x A B y x A y x A
y
x x y x y x
y B y A y x x )sin()sin()sin()sin()sin()1
sin()sin(sin 1个单位
轴下移沿倍变为原来的纵坐标倍变为原来的横坐标个单位
轴左移沿
三角函数公式:
解三角形
正弦定理:
△ABC 中三边分别为c b a ,,,外接圆半径为R ,则有:R C c B b A
a 2sin sin sin 余弦定理:
△ABC 中三边分别为c b a ,,,则有:ab
c b a C 2cos 2
22面积公式:
△ABC 中三边分别为c b a ,,,面积为S ,则有:)(sin 2
1两边与夹角正弦值C ab S。