2015年普通高等学校招生全国统一考试文科数学(浙江卷)(含答案全解析)

合集下载

【精校】2015年普通高等学校招生全国统一考试(浙江卷)数学文

【精校】2015年普通高等学校招生全国统一考试(浙江卷)数学文

2015年普通高等学校招生全国统一考试(浙江卷)数学文一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则( ) A.B.C.D.解析:由题意得,,所以,故选A.答案:A2.某几何体的三视图如图所示(单位:),则该几何体的体积是()A.B.12C.D.{}223x x x P =-≥{}Q 24x x =<<Q P =I [)3,4(]2,3()1,2-(]1,3-{}|31P x x x =≥≤或[3,4)P Q =Icm 83cm 3cm 3233cm 4033cm解析:由三视图可如,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为V=32312222233cm +⨯⨯=.故选 C. 答案:C3.设a ,b 是实数,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:本题采用特殊值法,当a=3,b=-1时,a-b >0,但ab <0,故是不充分条件;当a=-3,b=-1时,ab >0,但a-b <0,故是不必要条件.所以“a-b >0”是“ab >0”的既不充分也不必要条件.故选D.答案:D4.设,是两个不同的平面,,是两条不同的直线,且,( )A.若,则B.若,则C.若,则D.若,则解析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当时,可以垂直,也可以平行,也可以异面;选项C 中,时,可以相交;选项D 中,时,也可以异面.故选A.答案:A5.函数(且)的图象可能为( ) 0a b +>0ab >αβl m l α⊂m β⊂l β⊥αβ⊥αβ⊥l m ⊥//l β//αβ//αβ//l m αβ⊥,l m //l β,αβ//αβ,l m ()1cos f x x x x ⎛⎫=- ⎪⎝⎭x ππ-≤≤0x ≠A.B.C.D.解析:因为,故函数是奇函数,所以排除A, B ;取,则,故选D. 答案:D6.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:)分别为,,,且,三种颜色涂料的粉刷费用(单位:元/)分别为,,,且.在不同的方案中,最低的总费用(单位:元)是( )A.B.C.D.解析:由x <y <z ,a <b <c ,所以ax+by+cz-(az+by+cx )=a (x-z )+c (z-x )=(x-z )11()()cos ()cos ()f x x x x x f x x x -=-+=--=-x π=11()()cos ()0f ππππππ=-=--<2m x y z x y z <<2m a b c a b c <<ax by cz ++az by cx ++ay bz cx ++ay bx cz ++(a-c )>0,故ax+by+cz >az+by+cx ;同理,ay+bz+cx-(ay+bx+cz )=b (z-x )+c (x-z )=(x-z )(c-b )<0,故ay+bz+cx <ay+bx+cz.因为az+by+cx-(ay+bz+cx )=a (z-y )+b (y-z )=(a-b )(z-y )<0,故az+bx+cx <ay+bz+cx.故最低费用为az+by+cx.故选B.答案:B7.如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是( )A.直线B.抛物线C.椭圆D.双曲线的一支解析:由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.答案:C8.设实数,,满足( )A.若确定,则唯一确定B.若确定,则唯一确定C.若确定,则唯一确定D.若确定,则唯一确定解析:因为,所以,所以,故当确定时,确定,所以唯一确定.故选B.AB α60o B αP 30∠PAB =oP 60o a b t 1sin a b t +==t 2b t 22a a +t sin 2b t 2a a +1sin a b t +==222(1)sin a b t +==2221a a t +=-t21t -22a a +答案:B二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.计算: , . 解析:答案:10.已知是等差数列,公差不为零.若,,成等比数列,且,则 , .解析:由题可得,,故有,又因为,即,所以. 答案:11.函数的最小正周期是 ,最小值是 .解析: ,所以;. 答案:12.已知函数,则 ,的最小值是 .2log 2=24log 3log 32+=12-{}n a d 2a 3a 7a 1221a a +=1a =d =2111(2)()(6)a d a d a d +=++1320a d +=1221a a +=131a d+=121,3d a =-=2,13-()2sin sin cos 1f x x x x=++()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3sin(2)242x π=-+22T ππ==min 3()22f x =-3,2π-()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩()2f f -=⎡⎤⎣⎦()f x解析:,所以.当x ≤1时,;当x >1时,,当6x x =,6x=时取到等号.因为26-6<1,所以函数的最小值为26-6.答案:13.已知,是平面单位向量,且.若平面向量满足,则 .解析:由题可知,不妨,,设,则,,所以,所以答案:14.已知实数,满足,则的最大值是 . 解析:试题分析:由图可知当时,满足的是如图的劣弧,则在点处取得最大值5;当时,满足的是如图的优弧,则与该优弧相切时取得最大值,故,所以,故该目标函数的最大值为. 162-1e r 2e r 1212e e ⋅=r r b r 121b e b e ⋅=⋅=r r r r b =r 1(1,0)e =u r 21(2e =u u r (,)b x y =r 11b e x ⋅==r r 21122b e x y ⋅=+=r r (1,)3b =r b ==r 3x y 221x y +≤2463x y x y +-+--22,2224631034,22x y y x z x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩22y x ≥-AB 22z x y =+-(1,0)A 22y x <-AB 1034z x y =--1015z d -==15z =15答案:1515.椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 .解析:设F(c ,0)关于直线的对称点为Q (m ,n ),则有,解得,所以在椭圆上,即有,解得222a c =,所以离心率2c e a ==. 答案:三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16. (本题满分14分)在中,内角A ,B ,C 所对的边分别为.已知. (1)求的值; (2)若,求的面积.解析:(1)利用两角和与差的正切公式,得到tanA=13,利用同角三角函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.答案:(1)由,得tanA=13, 所以22221x y a b +=0a b >>()F ,0c b y x c=Q 2ABC ∆,,a b c tan(A)24π+=2sin 2sin 2cos A A A+B ,34a π==ABC ∆(2)由tanA=13,可得,a=3,B= 4π,由正弦定理知:b= 由,所以. 17. (本题满分15分)已知数列和满足, . (1)求与;(2)记数列的前n 项和为,求.解析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.答案:(1)18. (本题满分15分)如图,在三棱锥中,在底面ABC 的射影为BC 的中点,D 为的中{}n a {}n b *1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈L n a n b {}n n a b n T n T 111ABC A B C -11B C点.(1)证明: ;(2)求直线和平面所成的角的正弦值.解析:(1)利用线面垂直的定义得到线线垂直,根据线面垂直的判定证明直线与平面垂直;(2)通过添加辅助线,证明1A F ⊥平面11BB C C ,以此找到直线与平面所成角的平面角∠1A BF ,在直角三角形1A BF 中通过确定边长, 计算∠1A BF 的正弦值. 答案: (1 )设E 为 BC 中点.由题意得1A E ⊥平面ABC ,所以1A E ⊥AE.因为AB=AC ,所以AE ⊥BC.所以AE ⊥平面1A BC .由1D E 分别为11B C ,BC 的中点,得DE//1BB ,从而 DE //1AA ,且DE=1AA , 所以1AA DE 是平行四边形,所以1A D//AE.因为AE ⊥平面1A BC ,所以1A D ⊥平面1A BC .(2)作,垂足为F ,连结BF.因为平面,所以.11D A BC A ⊥平面1A B 11B C B C 1A F DE⊥AE ⊥1A BC 1BC A E ⊥因为,所以平面.所以平面.所以为直线与平面所成角的平面角.由,得.由平面,得.由,得. 所以19. (本题满分15分)如图,已知抛物线,圆,过点作不过原点O 的直线PA ,PB 分别与抛物线和圆相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.解析:( 1)设定直线PA 的方程,通过联立方程,判别式为零,得到点A 的坐标;根据圆的性质,利用点关于直线对称,得到点B 的坐标;(2)利用两点求距离及点到直线的距离公式,得到三角形的底边长与底边上的高,由此计算三角形的面积答案:(1)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为y=k (x-t ). 所以,消去y ,整理得:. BC AE ⊥BC ⊥1AA DE 11,BC A F A F ⊥⊥11BB C C 1A BF ∠1A B 11BB C C 2,90AB AC CAB ==∠=o EA EB ==AE ⊥1A BC 1114,A A A B A E ===1114,90DE BB DA EA DA E ====∠=o 1A F =1sin A BF ∠=211C 4x :y=222C (y 1)1x +-=:P(t,0)(t>0)1C 2C PAB ∆因为直线PA 与抛物线相切,所以,解得.所以,即点.设圆的圆心为,点的坐标为,由题意知,点B,O 关于直线PD 对称,故有, 解得.即点. (2)由(1)知,,直线AP 的方程为,所以点B 到直线PA 的距离为.所以的面积为. 20. (本题满分15分)设函数.(1)当时,求函数在上的最小值的表达式; (2)已知函数在上存在零点,,求b 的取值范围.解析:(1)将函数进行配方,利用对称轴与给定区间的位置关系,通过分类讨论确定函数在给定上的最小值,并用分段函数的形式进行表示;(2)设定函数的零点,根据条件表示两个零点之间的不等关系,通过分类讨论,分别确定参数b 的取值情况,利用并集原理得到参数b 的取值范围.答案:(1)216160k kt ∆=-=k t =2x t =2(2,)A t t 2C (0,1)D B 00(,)x y 00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩2002222,11t t x y t t ==++22222(,)11t t B t t++AP =20tx y t --=2d =PAB ∆3122t S AP d =⋅=2(),(,)f x x ax b a b R =++∈214a b =+()f x [1,1]-()g a ()f x [1,1]-021b a ≤-≤考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2015年浙江高考文科数学真题卷及解析

2015年浙江高考文科数学真题卷及解析

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P=( )A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A 【解析】试题分析:由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.考点:1.一元二次不等式的解法;2.集合的交集运算.2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .83cm B .123cm C .3233cm D .4033cm 【答案】C考点:1.三视图;2.空间几何体的体积.3、设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】D考点:1.充分条件、必要条件;2.不等式的性质.4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m【答案】A 【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.考点:直线、平面的位置关系. 5、函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A . B . C . D . 【答案】D 【解析】试题分析:因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 【答案】B考点:1.不等式性质;2.不等式比较大小.7、如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C 【解析】试题分析:由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C.考点:1.圆锥曲线的定义;2.线面位置关系. 8、设实数a ,b ,t 满足1sin a b t +==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin 2b唯一确定 D .若t 确定,则2a a +唯一确定 【答案】B 【解析】试题解析:因为1sin a b t +==,所以222(1)sin a b t +==,所以2221a a t +=-,故当t 确定时,21t -确定,所以22a a +唯一确定.故选B. 考点:函数概念二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:2log 2= ,24log 3log 32+= .【答案】12-考点:对数运算10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .【答案】2,13- 【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 考点:1.等差数列的定义和通项公式;2.等比中项.11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .【答案】3,2π 【解析】试题分析:()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)242x π=-+,所以22T ππ==;min 3()22f x =-. 考点:1.三角函数的图象与性质;2.三角恒等变换.12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】162-考点:1.分段函数求值;2.分段函数求最值. 13、已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .【解析】试题分析:由题可知,不妨1(1,0)e =,21(2e =,设(,)b x y =,则11b e x ⋅==,2112b e x y ⋅=+=,所以3(1,)3b =,所以113b =+=考点:1.平面向量数量积运算;2.向量的模.14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】试题分析: 22,2224631034,22x y y xz x y x y x y y x +-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15.考点:1.简单的线性规划;15、椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .考点:1.点关于直线对称;2.椭圆的离心率.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16. (本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若B ,34a π==,求ABC ∆的面积.【答案】(1)25;(2)9考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.17. (本题满分15分)已知数列{}n a 和{}n b 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈. (1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T . 【答案】(1)2;n n n a b n ==;(2)1*(1)22()n n T n n N +=-+∈【解析】试题分析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和. 18. (本题满分15分)如图,在三棱锥111ABC A B C -中,011ABC=90=AC 2,AA 4,A ?=,AB 在底面ABC的射影为BC 的中点,D 为11B C 的中点. (1)证明: 11D A BC A ⊥平面; (2)求直线1A B 和平面11B C B C 所成的角的正弦值.【答案】(1)略;(2)作1A F DE ⊥,垂足为F ,连结BF. 因为AE ⊥平面1A BC ,所以1BC A E ⊥. 因为BC AE ⊥,所以BC ⊥平面1AA DE . 所以11,BC A F A F ⊥⊥平面11BB C C .所以1A BF ∠为直线1A B 与平面11BB C C 所成角的平面角.由2,90AB AC CAB ==∠=,得EA EB ==.由AE ⊥平面1A BC ,得1114,A A A B A E ==.由1114,90DE BB DA EA DA E ====∠=,得1A F =所以1sin 8A BF ∠=考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角. 19. (本题满分15分)如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点, 且与抛物线的对称轴不平行,则该直线 与抛物线相切,称该公共点为切点.【答案】(1)222222(2,),(,)11t t A t t B t t ++;(2)32t因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =. 所以2x t =,即点2(2,)A t t .设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B,O 关于直线PD 对称,故有00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩,解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t++. (2)由(1)知,AP = 直线AP 的方程为20tx y t --=, 所以点B 到直线PA的距离为2d =所以PAB ∆的面积为3122t S AP d =⋅=.考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系. 20. (本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9-- 考点:1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.。

(2021年整理)2015年浙江省高考数学试卷及答案(文科)

(2021年整理)2015年浙江省高考数学试卷及答案(文科)

2015年浙江省高考数学试卷及答案(文科)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年浙江省高考数学试卷及答案(文科))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年浙江省高考数学试卷及答案(文科)的全部内容。

绝密★考试结束前2015年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2。

每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式 台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =( ) A .[)3,4 B .(]2,3 C .()1,2- D .(]1,3-2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .83cm B .123cm C .3233cm D .4033cm3、设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m5、函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 7、如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 8、设实数a ,b ,t 满足1sin a b t +==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin 2b 唯一确定 D .若t 确定,则2a a +唯一确定 二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9、计算:22log = ,24log 3log 32+= . 10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .13、已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .15、椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本题满分14分)在ABC ∆中,内角A,B ,C 所对的边分别为,,a b c 。

2015年浙江省高考数学(文科)试题(教师版含解析)

2015年浙江省高考数学(文科)试题(教师版含解析)

2015年普通高等学校招生全国统一考试(浙江卷)文科数学1. 解析 {1P x x=-或}3x,所以[)34P Q =, .故选A.2. 解析 该几何体是棱长为2的正方体和底面边长为2、高为2的正四棱锥的组合体,所以3213222233V =+⨯⨯=.故选C . 3. 解析 取3a =,2b =-,所以0a b +>0ab >;反之取1a =-,2b =-,所以00ab a b >+>.故选D.4. 解析 由面面垂直判定定理知,A 正确.故选A.5. 解析 ()f x 是奇函数,排除A ,B ;当0x >, x 趋于0时,1x x-→-∞,cos 1x →,所以1cos x x x ⎛⎫-→-∞ ⎪⎝⎭.故选D. 6. 解析 解法一 特殊值:1x =,2y =,3z =,所以1a =,2b =,3c =.故选B. 解法二 利用排序不等式,最小的值是反序和.故选B.7. 解析 若30PAB ∠=,则AP 绕点A 旋转形成圆锥面,这面被平面α截得图象是椭圆.故选C.8. 解析 若t 确定,则2221a a t ++=,所以2221a a t +=-唯一确定.故选B. 9. 解析12221log log 22-==-,3222423log 3log 3log 3log 32222+=== 10. 解析 23271221a a a a a ⎧=⋅⎨+=⎩,所以()()()211112631a d a d a d a d ⎧+=++⎪⎨+=⎪⎩ , 所以1231a d ⎧=⎪⎨⎪=-⎩.11. 解析 ()1cos 21π3sin 2122242x f x x x -⎛⎫=++=-+ ⎪⎝⎭, 所以2ππ2T ==,()min 32f x =. 12. 解析 ()()61244642f f f -==+-=-⎡⎤⎣⎦, 当1x时,()()min 00f x f ==;当1x >时,()min 6f x =.综上所述,()min 6f x =.13. 解析 设1e OA =,2e OB =,由2e OB =得121cos e e 2=,,即12πe e 3=,.又12e e ⋅=⋅b b ,得12e e 0⋅-⋅=b b ,即()12e e 0⋅-=b ,故()12e e ⊥-b .过点O 作直线l AB ⊥,如图所示,因为1e 1⋅=b ,2e 1⋅=b ,据平面向量数量积的几何意义知,OC 在OA ,OB 上的投影均为1,所以12cos30OC ==故3=b .14. 解析 依题意知,240x y +-<,630x y -->,则2463x y x y +-+--=42631034x y x y x y --+--=--.令1034z x y =--,即34100x y z ++-=,且221x y +,因此圆心()00,到直线34100x y z ++-=的距离小于等于1,即1015z -,得515z ,所以z 的最大值为15,即2463x y x y +-+--的最大值为15.15. 解析 解法一 设()00Q x y ,,则12πe e 3=,OQ OF c ==,所以22200x y c +=,又2200221x y a b +=,所以()()22222220222a c b a c b x a b c--==-,所以4222002b y c x c =-=,所以2b yc =,不妨取0x =,所以QF 中点0022x c y +⎛⎫⎪⎝⎭,,代入00b y x c =, 得2bc c -=,化简得2220()b bc c b c ⎧++=⎪⎨≠⎪⎩舍去或b c =,所以2e =. 解法二 设椭圆的左焦点为1F ,依题意,1OF OQ OF ==,故112OQ FF =,且O 为1FF的中点,因此1FFQ △为Rt △,且1π2F QF ∠=,即1F Q FQ ⊥,则1F Q 所在直线斜率为 cb ,所以()0Q b ,,则1FQF △为等腰直角三角形,故b c =,2c e a ===. 16. 解析 (1) πtan tanπ1tan 4tan 2π41tan 1tan tan 4A A A AA ++⎛⎫+=== ⎪-⎝⎭-,得1tan 3A =. 2212sin 22sin cos 2tan 231sin 2cos 2sin cos cos 2tan 15213A A A A A A A A A A ⨯====+++⨯+.(2) sin 10A =,cos 10A =.由正弦定理得,sin sin a b AB =,所以b AC ==,又()sin sin sin cos cos sin 210105C A B A B A B =+=+=+=⎝⎭,所以11sin 39225ABC S ab C ==⨯⨯=△. 17. 解析 (1)由题意知{}n a 是等比数列,12a =,2q =,所以2nn a =.当2n 时,()*231111111231n n b b b b n b n -++++=-∈-N ,所以11n n n b b b n +=-,所以11n n n b b n ++=,所以12112n n b b b n n+====+,又11b =,所以n b n =.(或采用累乘法) (2)212222n n T n =⨯+⨯++⋅,所以()21212122n n n T n n +=⨯++-⨯+⋅, 所以()()()2111212122222212212n n n n n n T n n n +++--=+++-⋅=-=---,所以()1122n n T n +=-+.18. 解析 (1) 记BC 中点E ,连AE ,DE ,1A E .因为AB AC =,所以AE BC ⊥,又1A E ⊥面ABC ,AE ⊂面ABC ,所以1AE A E ⊥,又1BCA E E =,所以AE ⊥面1A BC ,又1=//AA DE ,所以1AEDA 是平行四边形,所以1//AE A D ,所以1A D ⊥面1A BC .(2)作1A F DE ⊥,垂足F ,连BF .因为1A D ⊥面1A BC ,所以1BC A D ⊥,又1BC A E ⊥,111A EA D A =,所以BC ⊥面1A DE ,又1A F ⊂面1A DE ,所以1BC A F ⊥,又DEBC E =,所以1A F ⊥面11BB C C ,所以1A BF ∠是直线1A B 和平面11BB C C 所成的角.经计算得1A D =,14A B =,1A E =11142A E A D A F DE ⋅===,所以1112sin 4A F A BF A B ∠===.19. 解析 (1)设直线AP 的方程为:()y k x t =-,联立214y x =,得2104x kx kt -+=,由直线AP 与抛物线1C 相切知,0∆=,又0k ≠,求得k t =,因为12y x t '==,所以2x t =,2y t =,所以()22A t t ,.设()00B x y ,,代入圆222(1)1C x y :,得20002x y y ,因为BP 为圆2C 的切线,所以21BP BC k k ⋅=-1==-,解得2221t y t =+,所以 0221tx t =+,所以2222211t t B t t ⎛⎫ ⎪++⎝⎭,. (2)B 到AP的距离2d ==12AB x =-=所以23111222PABS AB d t t =⋅==△. 20. 解析 (1) ()2221142a a f x x ax x ⎛⎫=+++=++ ⎪⎝⎭,对称轴2a x =-.当12a -<-,即2a >时,()()21124a g a f ab a =-=-+=-+;当112a--,即22a-时,()12a g a f ⎛⎫=-= ⎪⎝⎭;当12a ->,即2a <-时,()()2124a g a f a ==++ .综上所述,()22224122224a a a g a a a a a ⎧-+>⎪⎪⎪=-⎨⎪⎪++<-⎪⎩,, ,.(2)假设()f x 在[]11-,上的零点0x ,则2000x ax b ++=,所以[]2200001124a a b x ax x x ⎛⎫=--=-++∈- ⎪⎝⎭,,,对称轴直线02a x =-.当12a-<-,即2a >时,11a b a ---,综合221a b a +,得b ∈Φ; 当102a--<,即02a <时,214a a b--,综合221a ba +,得b ∈Φ;当012a -,即20a -时,214a ab -,综合221a b a +,得3945b--当12a->,即2a <-时,11a b a ---,综合221a b a +,得b ∈Φ.综上所述,3945b--。

2015年普通高等学校招生全国统一考试文科数学(课标全国Ⅰ)(含答案详解)

2015年普通高等学校招生全国统一考试文科数学(课标全国Ⅰ)(含答案详解)

2015年普通高等学校招生全国统一考试课标全国Ⅰ文科数学考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,文1)已知集合A={x|x=3n+2,n ∈N },B={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 答案:D解析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14.所以A ∩B={8,14}.故选D .2.(2015课标全国Ⅰ,文2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 答案:A解析:∵AB=OB −OA =(3,2)-(0,1)=(3,1),AC =(-4,-3), ∴BC=AC −AB =(-4,-3)-(3,1)=(-7,-4). 3.(2015课标全国Ⅰ,文3)已知复数z 满足(z-1)i =1+i,则z=( ) A .-2-i B .-2+i C .2-i D .2+i 答案:C解析:∵(z-1)i =1+i,∴z=1+i i +1=(1+i )(-i )-i2+1=1-i +1=2-i . 4.(2015课标全国Ⅰ,文4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .3 B .1C .1 D .1 答案:C解析:从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为1.5.(2015课标全国Ⅰ,文5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB|=( ) A .3 B .6 C .9 D .12答案:B解析:∵抛物线y 2=8x 的焦点坐标为(2,0),∴E 的右焦点的坐标为(2,0).设椭圆E 的方程为x 22+y 2b2=1(a>b>0),∴c=2.∵c =1,∴a=4.∴b 2=a 2-c 2=12,于是椭圆方程为x 216+y 212=1.∵抛物线的准线方程为x=-2,将其代入椭圆方程可得A (-2,3),B (-2,-3),∴|AB|=6. 6.(2015课标全国Ⅰ,文6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案:B解析:设圆锥的底面半径为R,高为h.∵米堆底部的弧长为8尺,∴1 4·2πR=8,∴R=16π.∵h=5,∴米堆的体积V=1×1πR2h=1×π×162×5.∵π≈3,∴V≈320(立方尺).∴堆放的米约有320≈22(斛).7.(2015课标全国Ⅰ,文7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A.17B.19C.10D.12答案:B解析:∵公差d=1,S8=4S4,∴8(a1+a8)=4×4(a1+a4),即2a1+7d=4a1+6d,解得a1=1.∴a10=a1+9d=1+9=19.8.(2015课标全国Ⅰ,文8)函数f(x)=cos(ωx+φ)的部分图像如图所示,则f(x)的单调递减区间为()A. kπ-1,kπ+3,k∈ZB.2kπ-14,2kπ+34,k∈ZC. k-14,k+34,k∈ZD.2k-1,2k+3,k∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2×54-14=2,所以2π=2,解得ω=π.所以f(x)=cos(πx+φ).由图像可知,当x=1214+54=34时,f(x)取得最小值,即f3=cos3π+φ =-1, 解得3π+φ=2kπ+π(k∈Z), 解得φ=2kπ+π4(k∈Z).令k=0,得φ=π4,所以f(x)=cos πx+π4.令2kπ≤πx+π≤2kπ+π(k∈Z),解得2k-14≤x≤2k+34(k∈Z).所以函数f(x)=cos πx+π4的单调递减区间为2k-14,2k+34(k∈Z).结合选项知选D.9.(2015课标全国Ⅰ,文9)执行下面的程序框图,如果输入的t=0.01,则输出的n=()A .5B .6C .7D .8答案:C解析:由于S=1,n=0,m=12,t=0.01,则S=S-m=12,m=m 2=14,n=n+1=1,S>0.01;S=1,m=1,n=2,S>0.01;S=1,m=1,n=3,S>0.01; S=116,m=132,n=4,S>0.01; S=132,m=164,n=5,S>0.01; S=1,m=1,n=6,S>0.01; S=1128,m=1256,n=7,S<0.01,结束循环,此时输出的n=7.10.(2015课标全国Ⅰ,文10)已知函数f (x )= 2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A .-74B .-54C .-34D .-14答案:A解析:∵f (a )=-3,∴当a ≤1时,f (a )=2a-1-2=-3,即2a-1=-1,此等式显然不成立. 当a>1时,f (a )=-log 2(a+1)=-3,即a+1=23,解得a=7.∴f (6-a )=f (-1)=2-1-1-2=14-2=-74. 11.(2015课标全国Ⅰ,文11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,文12)设函数y=f (x )的图像与y=2x+a 的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a=( ) A .-1 B .1 C .2 D .4 答案:C解析:设(x ,y )是函数y=f (x )图像上的任意一点,它关于直线y=-x 的对称点为(-y ,-x ),由已知得点(-y ,-x )在曲线y=2x+a 上,∴-x=2-y+a ,解得y=-log 2(-x )+a ,即f (x )=-log 2(-x )+a.∴f (-2)+f (-4)=-log 22+a+(-log 24)+a=1, 解得a=2.第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,文13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 答案:6解析:∵a n+1=2a n ,即an +1n=2,∴{a n }是以2为公比的等比数列. 又a 1=2,∴S n =2(1-2n )1-2=126.∴2n =64,∴n=6.14.(2015课标全国Ⅰ,文14)已知函数f (x )=ax 3+x+1的图像在点(1,f (1))处的切线过点(2,7),则a= . 答案:1解析:∵f'(x )=3ax 2+1,∴f'(1)=3a+1,即切线斜率k=3a+1.又f (1)=a+2,∴已知点为(1,a+2).而由过(1,a+2),(2,7)两点的直线的斜率为a +2-71-2=5-a , ∴5-a=3a+1,解得a=1.15.(2015课标全国Ⅰ,文15)若x ,y 满足约束条件 x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z=3x+y 的最大值为 .答案:4解析:画出约束条件对应的可行域(如图阴影部分所示),由 x -2y +1=0,x +y -2=0解得 x =1,y =1,即点A 的坐标为(1,1).由z=3x+y ,得y=-3x+z.作出直线l 0:y=-3x ,并平移,当直线经过点A 时,直线在y 轴上的截距最大,即z 最大. 所以z max =3×1+1=4.16.(2015课标全国Ⅰ,文16)已知F 是双曲线C :x 2-y 2=1的右焦点,P 是C 的左支上一点,A (0,6 ).当△APF 周长最小时,该三角形的面积为 . 答案:12 6解析:设双曲线的左焦点为F 1,如图.由双曲线的定义知|PF|=2a+|PF 1|,∴△APF 的周长为|PA|+|PF|+|AF|=|PA|+(2a+|PF 1|)+|AF|=|PA|+|PF 1|+(2a+|AF|).由于2a+|AF|是定值,要使△APF 的周长最小,则应使|PA|+|PF 1|最小,即P ,A ,F 1三点共线. ∵A (0,6 ),F 1(-3,0),∴直线AF 1的方程为x -36 6=1,即x=2 6-3. 将其代入x 2-y 2=1得y 2+6 6y-96=0,解得y=2 6或y=-8 6(舍去), 因此点P 的纵坐标为2 6. ∴S △APF =S △AF 1F −S △PF 1F =12·|F 1F|·y A -12·|F 1F|·y P=1×6×6 6−1×6×2 6=12 6. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,文17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B=2sin A sin C. (1)若a=b ,求cos B ; (2)设B=90°,且a= ,求△ABC 的面积. 解:(1)由题设及正弦定理可得b 2=2ac.又a=b ,可得b=2c ,a=2c.由余弦定理可得cos B=a 2+c 2-b 22ac=14.6分(2)由(1)知b 2=2ac. 因为B=90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c=a= 2. 所以△ABC 的面积为1.12分18.(本小题满分12分)(2015课标全国Ⅰ,文18)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD. (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC=120°,AE ⊥EC ,三棱锥E-ACD 的体积为 63,求该三棱锥的侧面积. 解:(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.故AC ⊥平面BED.又AC ⊂平面AEC ,所以平面AEC ⊥平面BED. 5分(2)设AB=x ,在菱形ABCD 中,由∠ABC=120°,可得AG=GC= 32x ,GB=GD=x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG= 32x.由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE= 2x. 由已知得,三棱锥E-ACD 的体积 V E-ACD =13×12AC ·GD ·BE= 624x 3= 63.故x=2.9分从而可得AE=EC=ED=所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E-ACD 的侧面积为3+2 5.12分19.(本小题满分12分)(2015课标全国Ⅰ,文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.8888表中w i = i ,w =1∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.8=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值 y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 12分20.(本小题满分12分)(2015课标全国Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x-2)2+(y-3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ·ON=12,其中O 为坐标原点,求|MN|. 解:(1)由题设,可知直线l 的方程为y=kx+1.因为l 与C 交于两点,所以 1+k <1.解得4- 7<k<4+ 7.所以k 的取值范围为4- 73,4+ 73. 5分(2)设M (x 1,y 1),N (x 2,y 2).将y=kx+1代入方程(x-2)2+(y-3)2=1, 整理得(1+k 2)x 2-4(1+k )x+7=0. 所以x 1+x 2=4(1+k )1+k2,x 1x 2=71+k2.7分OM ·ON =x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8.由题设可得4k (1+k )1+k2+8=12,解得k=1,所以l 的方程为y=x+1.故圆心C 在l 上,所以|MN|=2.12分21.(本小题满分12分)(2015课标全国Ⅰ,文21)设函数f (x )=e 2x -a ln x. (1)讨论f (x )的导函数f'(x )零点的个数; (2)证明:当a>0时,f (x )≥2a+a ln 2.解:(1)f (x )的定义域为(0,+∞),f'(x )=2e 2x -a (x>0).当a ≤0时,f'(x )>0,f'(x )没有零点,当a>0时,因为e 2x 单调递增,-ax单调递增, 所以f'(x )在(0,+∞)单调递增.又f'(a )>0,当b 满足0<b<a 4且b<14时,f'(b )<0,故当a>0时,f'(x )存在唯一零点.6分(2)由(1),可设f'(x )在(0,+∞)的唯一零点为x 0,当x ∈(0,x 0)时,f'(x )<0;当x ∈(x 0,+∞)时,f'(x )>0. 故f (x )在(0,x 0)单调递减,在(x 0,+∞)单调递增,所以当x=x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0−ax 0=0, 所以f (x 0)=a 0+2ax 0+a ln2≥2a+a ln 2.故当a>0时,f (x )≥2a+a ln 2.12分请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号. 22.(本小题满分10分)(2015课标全国Ⅰ,文22)选修4—1:几何证明选讲如图,AB 是☉O 的直径,AC 是☉O 的切线,BC 交☉O 于点E. (1)若D 为AC 的中点,证明:DE 是☉O 的切线; (2)若OA= 3CE ,求∠ACB 的大小.解:(1)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC ,故∠DEC=∠DCE. 连结OE ,则∠OBE=∠OEB. 又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°, 故∠OED=90°,DE 是☉O 的切线. 5分(2)设CE=1,AE=x ,由已知得AB=2 3,BE= 12-x 2. 由射影定理可得,AE 2=CE ·BE , 所以x 2= 12-x 2,即x 4+x 2-12=0.可得x= 3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,文23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x-1)2+(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)因为x=ρcos θ,y=ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.5分(2)将θ=π代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3 ρ+4=0,解得ρ1=2 2,ρ2= 2. 故ρ1-ρ2= 2,即|MN|= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.10分24.(本小题满分10分)(2015课标全国Ⅰ,文24)选修4—5:不等式选讲 已知函数f (x )=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a=1时,f (x )>1化为|x+1|-2|x-1|-1>0.当x ≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1; 当x ≥1时,不等式化为-x+2>0,解得1≤x<2.所以f (x )>1的解集为 x 23<x <2 . 5分(2)由题设可得,f (x )= x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A 2a -13,0 ,B (2a+1,0),C (a ,a+1),△ABC 的面积为23(a+1)2.由题设得2(a+1)2>6,故a>2. 所以a 的取值范围为(2,+∞). 10分。

2015年普通高等学校招生全国统一考试文科数学(课标全国Ⅰ)(含答案全解析)

2015年普通高等学校招生全国统一考试文科数学(课标全国Ⅰ)(含答案全解析)

2015年普通高等学校招生全国统一考试课标全国Ⅰ文科数学考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,文1)已知集合A={x|x=3n+2,n ∈N },B={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 答案:D解析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14.所以A ∩B={8,14}.故选D .2.(2015课标全国Ⅰ,文2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC=( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4) 答案:A解析:∵AB=OB −OA =(3,2)-(0,1)=(3,1),AC =(-4,-3), ∴BC=AC −AB =(-4,-3)-(3,1)=(-7,-4). 3.(2015课标全国Ⅰ,文3)已知复数z 满足(z-1)i =1+i,则z=( ) A .-2-i B .-2+i C .2-i D .2+i 答案:C解析:∵(z-1)i =1+i,∴z=1+i i +1=(1+i )(-i )-i2+1=1-i +1=2-i . 4.(2015课标全国Ⅰ,文4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .3 B .1C .1 D .1 答案:C解析:从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为1.5.(2015课标全国Ⅰ,文5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB|=( ) A .3 B .6 C .9 D .12答案:B解析:∵抛物线y 2=8x 的焦点坐标为(2,0),∴E 的右焦点的坐标为(2,0).设椭圆E 的方程为x 22+y 2b2=1(a>b>0),∴c=2.∵c =1,∴a=4.∴b 2=a 2-c 2=12,于是椭圆方程为x 216+y 212=1.∵抛物线的准线方程为x=-2,将其代入椭圆方程可得A (-2,3),B (-2,-3),∴|AB|=6. 6.(2015课标全国Ⅰ,文6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案:B解析:设圆锥的底面半径为R,高为h.∵米堆底部的弧长为8尺,∴1 4·2πR=8,∴R=16π.∵h=5,∴米堆的体积V=1×1πR2h=1×π×162×5.∵π≈3,∴V≈320(立方尺).∴堆放的米约有320≈22(斛).7.(2015课标全国Ⅰ,文7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A.17B.19C.10D.12答案:B解析:∵公差d=1,S8=4S4,∴8(a1+a8)=4×4(a1+a4),即2a1+7d=4a1+6d,解得a1=1.∴a10=a1+9d=1+9=19.8.(2015课标全国Ⅰ,文8)函数f(x)=cos(ωx+φ)的部分图像如图所示,则f(x)的单调递减区间为()A. kπ-1,kπ+3,k∈ZB.2kπ-14,2kπ+34,k∈ZC. k-14,k+34,k∈ZD.2k-1,2k+3,k∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2×54-14=2,所以2π=2,解得ω=π.所以f(x)=cos(πx+φ).由图像可知,当x=1214+54=34时,f(x)取得最小值,即f3=cos3π+φ =-1, 解得3π+φ=2kπ+π(k∈Z), 解得φ=2kπ+π4(k∈Z).令k=0,得φ=π4,所以f(x)=cos πx+π4.令2kπ≤πx+π≤2kπ+π(k∈Z),解得2k-14≤x≤2k+34(k∈Z).所以函数f(x)=cos πx+π4的单调递减区间为2k-14,2k+34(k∈Z).结合选项知选D.9.(2015课标全国Ⅰ,文9)执行下面的程序框图,如果输入的t=0.01,则输出的n=()A .5B .6C .7D .8答案:C解析:由于S=1,n=0,m=12,t=0.01,则S=S-m=12,m=m 2=14,n=n+1=1,S>0.01;S=1,m=1,n=2,S>0.01;S=1,m=1,n=3,S>0.01; S=116,m=132,n=4,S>0.01; S=132,m=164,n=5,S>0.01; S=1,m=1,n=6,S>0.01; S=1128,m=1256,n=7,S<0.01,结束循环,此时输出的n=7.10.(2015课标全国Ⅰ,文10)已知函数f (x )= 2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A .-74B .-54C .-34D .-14答案:A解析:∵f (a )=-3,∴当a ≤1时,f (a )=2a-1-2=-3,即2a-1=-1,此等式显然不成立. 当a>1时,f (a )=-log 2(a+1)=-3,即a+1=23,解得a=7.∴f (6-a )=f (-1)=2-1-1-2=14-2=-74. 11.(2015课标全国Ⅰ,文11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,文12)设函数y=f (x )的图像与y=2x+a 的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a=( ) A .-1 B .1 C .2 D .4 答案:C解析:设(x ,y )是函数y=f (x )图像上的任意一点,它关于直线y=-x 的对称点为(-y ,-x ),由已知得点(-y ,-x )在曲线y=2x+a 上,∴-x=2-y+a ,解得y=-log 2(-x )+a ,即f (x )=-log 2(-x )+a.∴f (-2)+f (-4)=-log 22+a+(-log 24)+a=1, 解得a=2.第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,文13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 答案:6解析:∵a n+1=2a n ,即an +1n=2,∴{a n }是以2为公比的等比数列. 又a 1=2,∴S n =2(1-2n )1-2=126.∴2n =64,∴n=6.14.(2015课标全国Ⅰ,文14)已知函数f (x )=ax 3+x+1的图像在点(1,f (1))处的切线过点(2,7),则a= . 答案:1解析:∵f'(x )=3ax 2+1,∴f'(1)=3a+1,即切线斜率k=3a+1.又f (1)=a+2,∴已知点为(1,a+2).而由过(1,a+2),(2,7)两点的直线的斜率为a +2-71-2=5-a , ∴5-a=3a+1,解得a=1.15.(2015课标全国Ⅰ,文15)若x ,y 满足约束条件 x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z=3x+y 的最大值为 .答案:4解析:画出约束条件对应的可行域(如图阴影部分所示),由 x -2y +1=0,x +y -2=0解得 x =1,y =1,即点A 的坐标为(1,1).由z=3x+y ,得y=-3x+z.作出直线l 0:y=-3x ,并平移,当直线经过点A 时,直线在y 轴上的截距最大,即z 最大. 所以z max =3×1+1=4.16.(2015课标全国Ⅰ,文16)已知F 是双曲线C :x 2-y 2=1的右焦点,P 是C 的左支上一点,A (0,6 ).当△APF 周长最小时,该三角形的面积为 . 答案:12 6解析:设双曲线的左焦点为F 1,如图.由双曲线的定义知|PF|=2a+|PF 1|,∴△APF 的周长为|PA|+|PF|+|AF|=|PA|+(2a+|PF 1|)+|AF|=|PA|+|PF 1|+(2a+|AF|).由于2a+|AF|是定值,要使△APF 的周长最小,则应使|PA|+|PF 1|最小,即P ,A ,F 1三点共线. ∵A (0,6 ),F 1(-3,0),∴直线AF 1的方程为x -36 6=1,即x=2 6-3. 将其代入x 2-y 2=1得y 2+6 6y-96=0,解得y=2 6或y=-8 6(舍去), 因此点P 的纵坐标为2 6. ∴S △APF =S △AF 1F −S △PF 1F =12·|F 1F|·y A -12·|F 1F|·y P=1×6×6 6−1×6×2 6=12 6. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,文17)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B=2sin A sin C. (1)若a=b ,求cos B ; (2)设B=90°,且a= ,求△ABC 的面积. 解:(1)由题设及正弦定理可得b 2=2ac.又a=b ,可得b=2c ,a=2c.由余弦定理可得cos B=a 2+c 2-b 22ac=14.6分(2)由(1)知b 2=2ac. 因为B=90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c=a= 2. 所以△ABC 的面积为1.12分18.(本小题满分12分)(2015课标全国Ⅰ,文18)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD. (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC=120°,AE ⊥EC ,三棱锥E-ACD 的体积为 63,求该三棱锥的侧面积. 解:(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.故AC ⊥平面BED.又AC ⊂平面AEC ,所以平面AEC ⊥平面BED. 5分(2)设AB=x ,在菱形ABCD 中,由∠ABC=120°,可得AG=GC= 32x ,GB=GD=x2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG= 32x.由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE= 2x. 由已知得,三棱锥E-ACD 的体积 V E-ACD =13×12AC ·GD ·BE= 624x 3= 63.故x=2.9分从而可得AE=EC=ED=所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E-ACD 的侧面积为3+2 5.12分19.(本小题满分12分)(2015课标全国Ⅰ,文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.8888表中w i = i ,w =1∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i -w )(y i -y )∑i =18(w i -w )2=108.8=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值 y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 12分20.(本小题满分12分)(2015课标全国Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x-2)2+(y-3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ·ON=12,其中O 为坐标原点,求|MN|. 解:(1)由题设,可知直线l 的方程为y=kx+1.因为l 与C 交于两点,所以 1+k <1.解得4- 7<k<4+ 7.所以k 的取值范围为4- 73,4+ 73. 5分(2)设M (x 1,y 1),N (x 2,y 2).将y=kx+1代入方程(x-2)2+(y-3)2=1, 整理得(1+k 2)x 2-4(1+k )x+7=0. 所以x 1+x 2=4(1+k )1+k2,x 1x 2=71+k2.7分OM ·ON =x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8.由题设可得4k (1+k )1+k2+8=12,解得k=1,所以l 的方程为y=x+1.故圆心C 在l 上,所以|MN|=2.12分21.(本小题满分12分)(2015课标全国Ⅰ,文21)设函数f (x )=e 2x -a ln x. (1)讨论f (x )的导函数f'(x )零点的个数; (2)证明:当a>0时,f (x )≥2a+a ln 2.解:(1)f (x )的定义域为(0,+∞),f'(x )=2e 2x -a (x>0).当a ≤0时,f'(x )>0,f'(x )没有零点,当a>0时,因为e 2x 单调递增,-ax单调递增, 所以f'(x )在(0,+∞)单调递增.又f'(a )>0,当b 满足0<b<a 4且b<14时,f'(b )<0,故当a>0时,f'(x )存在唯一零点.6分(2)由(1),可设f'(x )在(0,+∞)的唯一零点为x 0,当x ∈(0,x 0)时,f'(x )<0;当x ∈(x 0,+∞)时,f'(x )>0. 故f (x )在(0,x 0)单调递减,在(x 0,+∞)单调递增,所以当x=x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0−ax 0=0, 所以f (x 0)=a 0+2ax 0+a ln2≥2a+a ln 2.故当a>0时,f (x )≥2a+a ln 2.12分请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号. 22.(本小题满分10分)(2015课标全国Ⅰ,文22)选修4—1:几何证明选讲如图,AB 是☉O 的直径,AC 是☉O 的切线,BC 交☉O 于点E. (1)若D 为AC 的中点,证明:DE 是☉O 的切线; (2)若OA= 3CE ,求∠ACB 的大小.解:(1)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC ,故∠DEC=∠DCE. 连结OE ,则∠OBE=∠OEB. 又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°, 故∠OED=90°,DE 是☉O 的切线. 5分(2)设CE=1,AE=x ,由已知得AB=2 3,BE= 12-x 2. 由射影定理可得,AE 2=CE ·BE , 所以x 2= 12-x 2,即x 4+x 2-12=0.可得x= 3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,文23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x=-2,圆C 2:(x-1)2+(y-2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)因为x=ρcos θ,y=ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.5分(2)将θ=π代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3 ρ+4=0,解得ρ1=2 2,ρ2= 2. 故ρ1-ρ2= 2,即|MN|= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.10分24.(本小题满分10分)(2015课标全国Ⅰ,文24)选修4—5:不等式选讲 已知函数f (x )=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a=1时,f (x )>1化为|x+1|-2|x-1|-1>0.当x ≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1; 当x ≥1时,不等式化为-x+2>0,解得1≤x<2.所以f (x )>1的解集为 x 23<x <2 . 5分(2)由题设可得,f (x )= x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A 2a -13,0 ,B (2a+1,0),C (a ,a+1),△ABC 的面积为23(a+1)2.由题设得2(a+1)2>6,故a>2. 所以a 的取值范围为(2,+∞). 10分。

2015年浙江高考数学参考卷(文科)(含答案)

2015年浙江高考数学参考卷(文科)(含答案)

2015年浙江省高考样卷数学(文科) 本试题卷分选择题和非选择题两部分。

考试时间120分钟。

参考公式:球的表面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径锥体的体积公式V=13Sh其中S表示锥体的底面积, h表示锥体的高柱体的体积公式V=Sh其中S表示柱体的底面积, h表示柱体的高台体的体积公式()1213V h S S=其中S1, S2分别表示台体的上、下底面积, h表示台体的高选择题部分一、选择题1.已知a∈R,则“a>0”是“a+1a≥2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知直线l,m和平面α,()A.若l∥m,m⊂α,则l∥αB.若l∥α,m⊂α,则l∥mC.若l⊥m,l⊥α,则m⊥αD.若l⊥α,m⊂α,则l⊥m3.若函数f(x) (x∈R)是奇函数,则()A.函数f(x2)是奇函数B.函数[f(x)]2是奇函数C.函数f(x)⋅x2是奇函数D.函数f(x)+x2是奇函数4.函数y=sin (2x+π4)的图象可由函数y=cos 2x的图象()A.向左平移π8个单位长度而得到B.向右平移π8个单位长度而得到C.向左平移π4个单位长度而得到D.向右平移π4个单位长度而得到5.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若|AB|=a,|AD|=b,则AC BD⋅=()A.a2-b2B.b2-a2C.a2+b2D.ab6.已知双曲线x2-22y=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点()A.(3,0) B.(1,0) C.(-3,0) D.(4,0)数学(文科)试题第1页 (共7页)7.现有90 kg货物需要装成5箱,要求每一箱所装货物的重量不超过其它任一箱所装货物重量的2倍.若某箱所装货物的重量为x kg,则x的取值范围是()A.10≤x≤18 B.10≤x≤30 C.18≤x≤30 D.15≤x≤308.如图,函数y=f(x)的图象为折线ABC,设g (x)=f [f(x)],则函数y=g(x)的图象为()A. B. C. D.非选择题部分二、填空题9.设全集U=R,集合A=}01|{>-xx,B={x | x2-x-2≤0 },则A∩B=,BA =, U B=.10.设函数)3π2sin(21)(-=xxf,则该函数的最小正周期为,振幅为,单调递增区间为.11.某四棱柱的三视图(单位:cm)如图所示,则该四棱柱的体积为cm3,表面积为cm2.12.已知过点(1,1)的直线l与圆C:x2+y2-4y+2=0相切,则圆C的半径为,直线l的方程为.13.当实数x,y满足不等式组0,0,x yxx y m-≤⎧⎪≥⎨⎪+-≤⎩(m为常数)时,2x+y的最大值为4,则m=.14.若对于任意的n∈N*,03)4(2≥++-+anan恒成立,则实数a的取值范围是.15.设e1,e2为单位向量,非零向量b=xe1+ye2,x,y∈R.若e1,e2的夹角为6π,则xb的最大值等于.数学(文科)试题第2页 (共7页)三、解答题16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a cos A=b cos C+c cos B.(Ⅰ) 求A的大小;(Ⅱ) 求cos BC的取值范围.17.已知等比数列{a n}的前n项和S n=2n-a,n∈N*.设公差不为零的等差数列{b n}满足:b1=a1+2,(b4+5)2=(b2+5)(b8+5).(Ⅰ) 求a及b n;(Ⅱ) 设数列{n}的前n项和为T n.求使T n>b n的最小正整数n的值.18.如图,四棱锥P-ABCD,P A⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=P A=2, CD=4,E,F分别是PC,PD的中点.(Ⅰ) 证明:EF∥平面P AB;(Ⅱ) 求直线AC与平面ABEF所成角的正弦值.数学(文科)试题第3页 (共7页)数学(文科)试题第 4 页 (共 7 页)19.如图,A ,B 是焦点为F 的抛物线y 2=4x 上的两动点,线段AB 的中点M 在直线x =t (t >0)上. (Ⅰ)当t =1时,求|F A |+|FB |的值; (Ⅱ)记| AB |的最大值为g (t ),求g (t ).20.已知二次函数f (x )= x 2+bx +c ,方程f (x )-x =0的两个根x 1,x 2满足0<x 1<x 2<1.(I )当x (0, x 1)时,证明x <f (x )<x 1;(II )设函数f (x )的图象关于直线x =x 0对称,证明x 0<21x .数学(文科)试题第 5 页 (共 7 页)数学参考试卷(文科)答案一、选择题1.C 2.D 3.C 4.B 5.B 6.A 7.B 8.A 二、填空题9.]2,1(,),1[+∞-,}21|{>-<x x x 或 10.π,21,]12π5π,12ππ[+-k k )(Z k ∈11.12,2428+12.2,0=-y x 13.8314.[13,+∞) 15. 2 三、解答题16.(Ⅰ) 由余弦定理得2a cos A =b 2222a b c ab +-⋅+c 2222a c b ac+-⋅=a ,所以cos A =12.又A ∈(0,π),故A =π3.(Ⅱ) 由(Ⅰ)知C =2π3-B ,故cos BC =cos B2π3-B )sin B -12cos B=-sin (B +π6).因为0<B <2π3,所以π6<B +π6<5π6,所以-1≤-sin(B +π6)<-12.所以cos BC 的取值范围是[-1,-12).17.(Ⅰ) 当n =1时,a 1=S 1=2-a .当n ≥2时,a n =S n -S n -1=2n -1. 所以1=2-a ,得a =1, 所以a n =2n -1.设数列{b n }的公差为d ,由b 1=3,(b 4+5)2=(b 2+5)(b 8+5),得(8+3d )2=(8+d )(8+7d ),故d =0 (舍去) 或 d =8.所以a =1,b n =8n -5,n ∈N *. (Ⅱ) 由a n =2n -1,知n =2(n -1).所以T n =n (n -1).数学(文科)试题第 6 页 (共 7 页)由b n =8n -5,T n >b n ,得n 2-9n +5>0, 因为n ∈N *,所以n ≥9.所以,所求的n 的最小值为9.18.(Ⅰ) 因为E ,F 分别是PC ,PD 的中点,所以EF ∥CD , 又因为CD ∥AB , 所以EF ∥AB ,又因为EF ⊄平面P AB 所以EF ∥平面P AB .(Ⅱ) 取线段P A 中点M ,连结EM ,则EM ∥AC ,故AC 与面ABEF 所成角的大小等于ME 与面ABEF 所成角的大小.作MH ⊥AF ,垂足为H ,连结EH . 因为P A ⊥平面ABCD ,所以P A ⊥AB , 又因为AB ⊥AD ,所以AB ⊥平面P AD ,又因为EF ∥AB , 所以EF ⊥平面P AD .因为MH ⊂平面P AD ,所以EF ⊥MH , 所以MH ⊥平面ABEF , 所以∠MEH 是ME 与面ABEF 所成的角.在直角△EHM 中,EM =12ACMHsin ∠MEH.所以AC 与平面ABEF.19.(Ⅰ) 设A (x 1,y 1) ,B (x 2,y 2),M (t ,m ),则x 1+x 2=2t ,y 1+y 2=2m .由抛物线定义知| F A |=x 1+1,| FB |=x 2+1. 所以| F A |+| FB |=x 1+x 2+2=2t +2. 因为t =1,所以| F A |+| FB |=4.(Ⅱ) 由 2112224,4,y x y x ⎧=⎪⎨=⎪⎩ 得(y 1+y 2) (y 1-y 2)=4(x 1-x 2),所以1212x x y y --=2m.故可设直线AB 方程为2m (y -m )=x -t ,即x =2m y -22m +t .联立22,224,m m x y t y x ⎧=-+⎪⎨⎪=⎩消去x ,得y 2-2my +2m 2-4t =0. 则Δ=16t -4m 2>0,y 1+y 2=2m , y 1y 2=2m 2-4t .(第19题图)A B CDP EF(第18题图)M H数学(文科)试题第 7 页 (共 7 页)所以| AB |y 1-y 2|=0≤m 2<4t . 当t ≥1时,因为0≤2t -2<4t ,所以,当m 2=2t -2时,| AB | 取最大值| AB | max =2t +2.当0<t <1时,因为2t -2<0,所以,当m 2=0时,| AB | 取最大值| AB | max =.综上,g (t )=⎪⎩⎪⎨⎧<<≥+.10.4,1,22t t t t20.(Ⅰ)因为x 1,x 2是方程f (x ) -x =0的根,所以f (x ) -x =(x -x 1)(x -x 2) .当x ∈(0,x 1)时,由于x 1< x 2,所以 (x -x 1)(x -x 2)>0,故x < f (x ) . 因为x 1- f (x )= x 1- (x -x 1)(x -x 2) -x =(x 1-x )[ 1+(x - x 2)],又 x 1-x > 0,1+(x - x 2) > 1- x 2> 0.于是x 1- f (x ) > 0.从而f (x )< x 1. 综上,x <f (x )< x 1.(Ⅱ)由题意知02b x =-.因为x 1, x 2是方程f (x ) -x = 0的根,即x 1, x 2是方程x 2+(b -1)x +c = 0的根,所以121x x b +=-,120()122x x b x +-=-=.因为x 2<1,所以102x x <.。

[高考数学] 2015年高考浙江文科数学试题及答案(精校版)

[高考数学] 2015年高考浙江文科数学试题及答案(精校版)

2015年浙江省高考数学试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)2)2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D.“a+b>0”是“ab>0”的()4.(5分)(2015•浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,5.(5分)(2015•浙江)函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()B .C . D.6.(5分)(2015•浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) 7.(5分)(2015•浙江)如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠PAB=30°,则点P 的轨迹是( )|a+1|=|sinb|=t .( ) b 唯一确定 若t 确定,则sin 唯一确定 D .二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.(6分)(2015•浙江)计算:log 2= ,2= . 10.(6分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1= ,d= . 11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是 ,最小值是 .12.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣2))=,f(x)的最小值是.13.(4分)(2015•浙江)已知1,2是平面向量,且1•2=,若平衡向量满足•1=•=1,则||=.14.(4分)(2015•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是.15.(4分)(2015•浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.三、解答题:本大题共5小题,共74分。

浙江省高考数学试卷(文科)解析

浙江省高考数学试卷(文科)解析

2015年浙江省高考数学试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)25.(5分)(2015?浙江)函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y <z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方唯一确定9.(6分)(2015?浙江)计算:log2=,2=.10.(6分)(2015?浙江)已知{a n}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=,d=.11.(6分)(2015?浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,最小值是.12.(6分)(2015?浙江)已知函数f(x)=,则f(f(﹣2))=,f(x)的最小值是.13.(4分)(2015?浙江)已知1,2是平面向量,且1?2=,若平衡向量满足?1=?=1,则||=.14.(4分)(2015?浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是.15.(4分)(2015?浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

16.(14分)(2015?浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tan(+A)=2.(Ⅰ)求的值;(Ⅱ)若B=,a=3,求△ABC的面积.17.(15分)(2015?浙江)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.18.(15分)(2015?浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.19.(15分)(2015?浙江)如图,已知抛物线C1:y=x2,圆C2:x2+(y﹣1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(Ⅰ)求点A,B的坐标;(Ⅱ)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.20.(15分)(2015?浙江)设函数f(x)=x2+ax+b(a,b∈R).(Ⅰ)当b=+1时,求函数f(x)在[﹣1,1]上的最小值g(a)的表达式.(Ⅱ)已知函数f(x)在[﹣1,1]上存在零点,0≤b﹣2a≤1,求b的取值范围.2015年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分。

2015年浙江省高考试卷(文科数学)含答案

2015年浙江省高考试卷(文科数学)含答案

2015年浙江省高考试卷(文科数学)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=A.[3,4)B.(2,3]C.(-1,2)D.(-1,3]2、某几何体的三视图如图所示(单位:cm),则该几何体的体积是A.8 cm3B.12 cm3C.323cm3 D.403cm33、设a,b是实数,则“a+b>0”是“ab>0”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4、设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.A.若l⊥β,则α⊥βB. 若α⊥β,则l⊥mC. 若l∥β,则α∥βD. 若α∥β,则l∥m5、函数f(x)=(x-1x)cosx(-π≤x≤π且x≠0)的图象可能为6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同。

已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/ m2)分别为a,b,c,且a<b<c。

在不同的方案中,最低的总费用(单位:元)是A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz7、如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面上的动点P 满足∠PAB=30°,则点P 的轨迹是A.直线B.抛物线C.椭圆D.双曲线的一支8、设实数a ,b ,t 满足|a+1|=|sinb|=t.A.若t 确定,则b 2唯一确定B. 若t 确定,则a 2+2a 唯一确定C. 若t 确定,则sin 2b 唯一确定 D. 若t 确定,则a 2+a 唯一确定 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分)9、计算:22log = ,24log 3log 32+=10、已知{a n }是等差数列,公差d 不为零,若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1= ,d= .11、函数f(x)=sin 2x+sinxcosx+1的最小正周期是 ,最小值是 。

2015年高考文科数学浙江卷-答案

2015年高考文科数学浙江卷-答案
在三棱柱 中,
所以

设平面 的法向量为 ,
即得出
得出
所以 ,
可得出直线 和平面 所成的角的正弦值为
【提示】(Ⅰ)连接 ,根据几何体的性质得出 ,利用直线平面的垂直定理判断.
(Ⅱ)利用空间向量的垂直得出平面 的法向量 ,|根据与 数量积求解余弦值,即可得出直线 和平面 所成的角的正弦值.
【考点】空间直线、平面垂直关系的证明,直线与平面所成的角.
2015年普通高等学校招生全国统一考试(浙江卷)
数学(文科)答案解析
一、选择题
1.【答案】A
【解析】由题意得, 或 ,所以 ,故选A.
【提示】求出集合 ,然后求解交集即可.
【考点】一元二次不等式的解法,集合的交集运算.
2.【答案】C
【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为 ,故选C.
【考点】充分条件、必要条件的判定,不等式的性质.
4.【答案】A
【解析】采用排除法,选项A中,平面与平面垂直的判定,故正确;选项B中,当 时, 可以垂直,也可以平行,也可以异面;选项C中, 时, 可以相交;选项D中, 时, 也可以异面,故选A.
【提示】根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断B错误;根据面面平行的判断定理得出C错误;根据面面平行的性质判断D错误.
(Ⅱ)求出 ,然后利用错位相减法求数列 的前 项和为
【考点】根据数列的递推关系式求数列的通项公式,错位相减法求和.
18.【答案】(Ⅰ)设 为 的中点,由题意得 平面 ,所以
因为 ,所以 ,所以 平面 .
由 分别为 的中点,得 且 ,从而 且 ,所以 是平行四边形,所以 因为 平面 ,所以 平面 .

2015年浙江高考数学参考卷(文科)含答案

2015年浙江高考数学参考卷(文科)含答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = (x1)(x+2),则f(1)的值为()A. 1B. 0C. 1D. 22. 在等差数列{an}中,若a1=3,a3=9,则公差d为()A. 2B. 3C. 4D. 63. 下列函数中,既是奇函数又是偶函数的是()A. y = x²B. y = x³C. y = |x|D. y = cos(x)4. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC的面积S为()A. 12B. 24C. 36D. 485. 若复数z满足|z1|=|z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. 原点D. 以原点为圆心,半径为1的圆上二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。

()2. 若a|b|=|a||b|,则a和b必须同号。

()3. 一元二次方程的判别式大于0时,方程有两个不相等的实数根。

()4. 在等差数列中,若公差为0,则数列中的所有项相等。

()5. 直线y=2x+1的斜率为2。

()三、填空题(每题1分,共5分)1. 若log₂x=3,则x=____。

2. 等差数列的前n项和公式为____。

3. 若a+b=5,ab=3,则a²+b²=____。

4. 圆的标准方程为____。

5. 若sinθ=1/2,且θ为锐角,则θ=____度。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 请写出圆的周长和面积公式。

3. 什么是一元二次方程的判别式?4. 请解释什么是反函数。

5. 简述概率的基本性质。

五、应用题(每题2分,共10分)1. 解方程:2x²5x+3=0。

2. 计算等差数列1, 4, 7, 10, 的第10项。

3. 求函数f(x) = x²4x+3的顶点坐标。

4. 在直角坐标系中,点A(2,3)和点B(4,1),求线段AB的中点坐标。

普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)

普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)

2015年普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P=( )A .[)3,4 B .(]2,3 C .()1,2- D .(]1,3- 【答案】A 【解析】试题分析:由题意得,{}|31P x x x =≥≤或,所以[3,4)P Q =,故选A.考点:1.一元二次不等式的解法;2.集合的交集运算. 2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm【答案】C考点:1.三视图;2.空间几何体的体积.3、设a ,b 是实数,则“0a b +>”是“0ab >”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D考点:1.充分条件、必要条件;2.不等式的性质.4、设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 【答案】A 【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.考点:直线、平面的位置关系.5、函数()1cos f x x xx ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .【答案】D 【解析】试题分析:因为11()()cos ()cos ()f x x x x x f x x x -=-+=--=-,故函数是奇函数,所以排除A, B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象. 6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 【答案】B考点:1.不等式性质;2.不等式比较大小.7、如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 【答案】C 【解析】试题分析:由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C. 考点:1.圆锥曲线的定义;2.线面位置关系. 8、设实数a ,b ,t 满足1sin a b t+==( )A .若t 确定,则2b 唯一确定B .若t 确定,则22a a +唯一确定C .若t 确定,则sin2b唯一确定 D .若t 确定,则2a a +唯一确定【答案】B 【解析】 试题解析:因为1sin a b t+==,所以222(1)sin a b t +==,所以2221a a t +=-,故当t 确定时,21t -确定,所以22a a +唯一确定.故选B.考点:函数概念二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9、计算:2log 2=,24log 3log 32+= .【答案】12-考点:对数运算 10、已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .【答案】2,13-【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.考点:1.等差数列的定义和通项公式;2.等比中项. 11、函数()2sin sin cos 1f x x x x =++的最小正周期是 ,最小值是 .【答案】π【解析】试题分析:()211cos 2113sin sin cos 1sin 21sin 2cos 222222x f x x x x x x x -=++=++=-+3)242x π=-+,所以22T ππ==;min 3()22f x =-. 考点:1.三角函数的图象与性质;2.三角恒等变换.12、已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ,()f x 的最小值是 .【答案】162-考点:1.分段函数求值;2.分段函数求最值.13、已知1e ,2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b =.【答案】【解析】试题分析:由题可知,不妨1(1,0)e =,21(,22e =,设(,)b x y =,则11b e x ⋅==,2112b e x y ⋅==,所以3(1,)b =,所以11b =+=. 考点:1.平面向量数量积运算;2.向量的模.14、已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是. 【答案】15【解析】试题分析:22,2224631034,22x y y xz x y x y x y y x +-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15.考点:1.简单的线性规划;15、椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线b y x c =的对称点Q 在椭圆上,则椭圆的离心率是 .【答案】2考点:1.点关于直线对称;2.椭圆的离心率.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16. (本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=. (1)求2sin 2sin 2cos AA A +的值; (2)若B ,34a π==,求ABC ∆的面积.【答案】(1)25;(2)9考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.17. (本题满分15分)已知数列{}n a 和{}n b 满足,*1112,1,2(n N ),n n a b a a +===∈ *12311111(n N )23n n b b b b b n +++++=-∈.(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .【答案】(1)2;n n n a b n ==;(2)1*(1)22()n n T n n N +=-+∈ 【解析】试题分析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和. 18.(本题满分15分)如图,在三棱锥111ABC A B C -中,011ABC=90=AC 2,AA 4,A ?=,AB 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明: 11D A BC A 平面; (2)求直线1A B 和平面11B C B C 所成的角的正弦值.【答案】(1)略;(2)(2)作1A F DE ⊥,垂足为F ,连结BF.因为AE ⊥平面1A BC ,所以1BC A E ⊥.因为BC AE ⊥,所以BC ⊥平面1AA DE .所以11,BC A F A F ⊥⊥平面11BB C C .所以1A BF ∠为直线1A B 与平面11BB C C 所成角的平面角.由2,90AB AC CAB ==∠=,得EA EB =.由AE ⊥平面1A BC ,得1114,A A AB A E ===.由1114,90DE BB DA EA DA E ===∠=,得1A F =.所以1sin A BF ∠=考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角.19. (本题满分15分)如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线 与抛物线相切,称该公共点为切点.【答案】(1)222222(2,),(,)11t t A t t B t t ++;(2)32t因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点2(2,)A t t . 设圆2C 的圆心为(0,1)D ,点B 的坐标为00(,)x y ,由题意知,点B,O 关于直线PD 对称,故有00001220y x t x t y ⎧=-+⎪⎨⎪-=⎩,解得2002222,11t t x y t t ==++.即点22222(,)11t t B t t ++. (2)由(1)知,AP = 直线AP 的方程为20tx y t --=,所以点B 到直线PA的距离为2d =.所以PAB ∆的面积为3122t S AP d =⋅=. 考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系.20. (本题满分15分)设函数2(),(,)f x x ax b a b R =++∈. (1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--考点:1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.。

2015年普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)

2015年普通高等学校招生全国统一考试数学文试题(浙江卷,含解析)
考点:函数概念 二、填空题(本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.)
9、计算: log2
2 2
2 , log2 3log4 3

1,3 3 【答案】 2
考点:对数运算
10、已知an 是等差数列,公差 d 不为零.若 a2 , a3 , a7 成等比数列,且 2a1 a2 1,则
更多资料关注公众号:高中试卷库,每日分享精品试卷资料,高考前免费赠送绝密押题卷
x2, x 1
12 、 已 知 函 数
f
x
x
6 6, x 1
x
,则
f
f
2


1;2 6 6 【答案】 2
, f x 的最小值
考点:1.分段函数求值;2.分段函数求最值.
13、已知 e1 , e2
是平面单位向量,且
(1)证明: A1D 平面A1BC ; (2)求直线 A1B 和平面 BB1CC1 所成的角的正弦值.
7 【答案】(1)略;(2) 8
更多资料关注公众号:高中试卷库,每日分享精品试卷资料,高考前免费赠送绝密押题卷
(2)作 A1F DE ,垂足为 F,连结 BF.
因为 AE 平面 A1BC ,所以 BC A1E . 因为 BC AE ,所以 BC 平面 AA1DE .
【答案】A 【解析】
试题分析:由题意得, P x | x 3或x 1 ,所以 P Q [3, 4) ,故选 A.
考点:1.一元二次不等式的解法;2.集合的交集运算.
2、某几何体的三视图如图所示(单位: cm ),则该几何体的体积是( )
A. 8 cm3
32 C. 3 cm3
【答案】C

2015年普通高等学校招生全国统一考试文科数学(浙江卷)

2015年普通高等学校招生全国统一考试文科数学(浙江卷)

2015年普通高等学校招生全国统一考试浙江文科数学选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015浙江,文1)已知集合P={x|x 2-2x ≥3},Q={x|2<x<4},则P ∩Q=( ) A .[3,4) B .(2,3] C .(-1,2) D .(-1,3] 答案:A解析:因为P={x|x ≤-1或x ≥3},所以P ∩Q={x|3≤x<4},故选A .2.(2015浙江,文2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323 cm 3 D .403cm 3 答案:C解析:由三视图知,该几何体是由一个正四棱锥和一个正方体组成. 其中正四棱锥的底面边长为2 cm,高为2 cm,所以正四棱锥的体积V 1=13×22×2=83(cm 3);因为正方体的棱长为2 cm,所以其体积V 2=8 cm 3.故该几何体的体积为83+8=323(cm 3).3.(2015浙江,文3)设a ,b 是实数,则“a+b>0”是“ab>0”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 答案:D解析:当a=-2,b=3时,a+b>0,但ab<0;当a=-1,b=-2时,ab>0,但a+b<0.所以“a+b>0”是“ab>0”的既不充分也不必要条件. 4.(2015浙江,文4)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥β D .若α∥β,则l ∥m 答案:A解析:若l ⊥β,又l ⊂α,由面面垂直的判定定理,得α⊥β,故选项A 正确;选项B,l ⊥m 或l ∥m 或l 与m 相交或异面都有可能;选项C,α∥β或α与β相交都有可能;选项D,l ∥m 或l 与m 异面都有可能. 5.(2015浙江,文5)函数f (x )=(x −1x)cos x (-π≤x ≤π且x ≠0)的图象可能为( )答案:D解析:因为f (-x )=(−x +1x )cos(-x )=-(x −1x)cos x=-f (x ),所以f (x )为奇函数.排除A,B;又f (π)=(π−1π)cos π=-π+1π<0,排除C .故选D .6.(2015浙江,文6)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x<y<z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a<b<c.在不同的方案中,最低的总费用(单位:元)是( ) A .ax+by+cz B .az+by+cx C .ay+bz+cx D .ay+bx+cz 答案:B解析:不妨设x=1,y=2,z=3,a=4,b=5,c=6,选项A,ax+by+cz=4+10+18=32; 选项B,az+by+cx=12+10+6=28; 选项C,ay+bz+cx=8+15+6=29;选项D,ay+bx+cz=8+5+18=31,故选B .7.(2015浙江,文7)如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠PAB=30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支 答案:C解析:因为AB 为定线段,∠PAB=30°,所以在空间中直线AP 是以AB 为轴的圆锥面的母线所在的直线,又因为点P 在平面α内,所以点P 的轨迹可以看成平面α与圆锥面的交线.因为AB 与平面α所成的角为60°,所以平面α与圆锥的轴斜交.由平面与圆锥面的截面性质,可得点P 的轨迹为椭圆. 8.(2015浙江,文8)设实数a ,b ,t 满足|a+1|=|sin b|=t. ( ) A .若t 确定,则b 2唯一确定 B .若t 确定,则a 2+2a 唯一确定 C .若t 确定,则sin b2唯一确定D .若t 确定,则a 2+a 唯一确定 答案:B解析:当t=0时,sin b=0,b=k π,k ∈Z ,所以b 2不确定,故A 错;sin b 2=sin kπ2=0或1或-1,故C 错;当t=2时,|a+1|=2,解得a=1或a=-3,所以a 2+a=2或a 2+a=6,故D 错;因为|a+1|=t ,所以a 2+2a=t 2-1;当t 确定时,t 2-1唯一确定,即a 2+2a 唯一确定,故B 正确.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.(2015浙江,文9)计算:log 2√22= ,2log 23+log 43= .答案:-123√3解析:log 2√22=log 22−12=-12;2log 23+log 43=2log 23·2log 43=3×2log 2√3=3√3.10.(2015浙江,文10)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1= ,d= .答案:23-1解析:由题意得{a 32=a 2·a 7,2a 1+a 2=1,即{(a 1+2d)2=(a 1+d)·(a 1+6d),2a 1+a 1+d =1,解得{a 1=23,d =−1.11.(2015浙江,文11)函数f (x )=sin 2x+sin x cos x+1的最小正周期是 ,最小值是 . 答案:π3−√22解析:f (x )=1−cos2x 2+12sin 2x+1=√22sin (2x−π4)+32,所以函数f (x )的最小正周期T=2π2=π,最小值为3−√22.12.(2015浙江,文12)已知函数f (x )={x 2,x ≤1,x +6x−6,x >1,则f (f (-2))= ,f (x )的最小值是 . 答案:-122√6-6解析:f (-2)=(-2)2=4,f (f (-2))=f (4)=4+64-6=-12;当x ≤1时,f (x )min =0;当x>1时,f (x )=x+6x-6≥2√6-6,当且仅当x=6x,即x=√6时,f (x )取最小值2√6-6; 因为2√6-6<0,所以f (x )的最小值为2√6-6.13.(2015浙江,文13)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |= . 答案:2√33解析:因为b ·e 1=b ·e 2=1,|e 1|=|e 2|=1,由数量积的几何意义,知b 在e 1,e 2方向上的投影相等,且都为1,所以b 与e 1,e 2所成的角相等.由e 1·e 2=12知e 1与e 2的夹角为60°,所以b 与e 1,e 2所成的角均为30°,即|b |cos 30°=1,所以|b |=1cos30°=2√33. 14.(2015浙江,文14)已知实数x ,y 满足x 2+y 2≤1,则|2x+y-4|+|6-x-3y|的最大值是 . 答案:15解析:画出直线2x+y-4=0和x+3y-6=0以及圆x 2+y 2=1,如图.由于整个圆在两条直线的左下方,所以当x 2+y 2≤1时,有{2x +y −4<0,x +3y −6<0,所以|2x+y-4|+|6-x-3y| =-2x-y+4+6-x-3y =-3x-4y+10.令t=-3x-4y+10,则3x+4y+t-10=0,所以x 2+y 2≤1与直线3x+4y+t-10=0有公共点,所以圆心(0,0)到直线的距离d=|t−10|5≤1,解得5≤t ≤15.所以t 的最大值为15,即|2x+y-4|+|6-x-3y|的最大值为15.15.(2015浙江,文15)椭圆x 2a 2+y 2b2=1(a>b>0)的右焦点F (c ,0)关于直线y=b cx 的对称点Q 在椭圆上,则椭圆的离心率是 . 答案:√22解析:设Q (x 0,y 0),则{y 0x 0−c =−cb,b c ·(x 0+c 2)=y 02,解得{x 0=c(c 2−b 2)a 2,y 0=2bc 2a2.因为点Q 在椭圆上,所以c 2(c 2−b 2)2a 4·a2+4b 2c 4a 4·b2=1,化简得a 4c 2+4c 6-a 6=0,即4e 6+e 2-1=0. 即4e 6-2e 4+2e 4+e 2-1=0, 即(2e 2-1)(2e 4+e 2+1)=0. 所以e=√22.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)(2015浙江,文16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知tan (π4+A)=2.(1)求sin2Asin2A+cos 2A的值;(2)若B=π4,a=3,求△ABC 的面积.本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.满分14分. 解:(1)由tan (π4+A)=2,得tan A=13,所以sin2Asin2A+cos 2A=2tanA 2tanA+1=25.(2)由tan A=13,A ∈(0,π),得sin A=√1010,cos A=3√1010.又由a=3,B=π4及正弦定理a sinA =bsinB,得b=3√5.由sin C=sin(A+B )=sin (A +π4)得sin C=2√55.设△ABC 的面积为S ,则S=12ab sin C=9.17.(本题满分15分)(2015浙江,文17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n+1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .本题主要考查数列的通项公式、等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.满分15分.解:(1)由a 1=2,a n+1=2a n ,得a n =2n (n ∈N *).由题意知:当n=1时,b 1=b 2-1,故b 2=2.当n ≥2时,1nb n =b n+1-b n ,整理得b n+1n+1=b n n, 所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n , 因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n+1, 所以T n -2T n =2+22+23+…+2n -n ·2n+1. 故T n =(n-1)2n+1+2(n ∈N *).18.(本题满分15分)(2015浙江,文18)如图,在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点. (1)证明:A 1D ⊥平面A 1BC ;(2)求直线A 1B 和平面BB 1C 1C 所成的角的正弦值.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.解:(1)设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE.因为AB=AC ,所以AE ⊥BC. 故AE ⊥平面A 1BC.由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE=B 1B ,从而DE ∥A 1A 且DE=A 1A , 所以AA 1DE 为平行四边形. 于是A 1D ∥AE.又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC. (2)作A 1F ⊥DE ,垂足为F ,连结BF. 因为A 1E ⊥平面ABC ,所以BC ⊥A 1E. 因为BC ⊥AE ,所以BC ⊥平面AA 1DE. 所以BC ⊥A 1F ,A 1F ⊥平面BB 1C 1C.所以∠A 1BF 为直线A 1B 和平面BB 1C 1C 所成的角. 由AB=AC=2,∠CAB=90°,得EA=EB=√2. 由A 1E ⊥平面ABC ,得A 1A=A 1B=4,A 1E=√14. 由DE=BB 1=4,DA 1=EA=√2,∠DA 1E=90°,得A 1F=√72. 所以sin ∠A 1BF=√78.19.(本题满分15分)(2015浙江,文19)如图,已知抛物线C 1:y=14x 2,圆C 2:x 2+(y-1)2=1,过点P (t ,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标; (2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点. 本题主要考查抛物线的几何性质,直线与圆的位置关系、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.满分15分.解:(1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y=k (x-t ),由{y =k(x −t),y =14x2消去y ,整理得:x 2-4kx+4kt=0, 由于直线PA 与抛物线相切,得k=t. 因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知:点B ,O 关于直线PD 对称,故{y 02=−x02t +1,x 0t −y 0=0,解得{x 0=2t 1+t 2,y 0=2t 21+t 2.因此,点B 的坐标为(2t 1+t 2,2t 21+t 2).(2)由(1)知|AP|=t ·√1+t 2和直线PA 的方程tx-y-t 2=0. 点B 到直线PA 的距离是d=t 2√1+t .设△PAB 的面积为S (t ),所以S (t )=12|AP|·d=t 32.20.(本题满分15分)(2015浙江,文20)设函数f (x )=x 2+ax+b (a ,b ∈R ). (1)当b=a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b-2a ≤1.求b 的取值范围.本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力,分类讨论等分析问题和解决问题的能力.满分15分.解:(1)当b=a 24+1时,f (x )=(x +a 2)2+1,故对称轴为直线x=-a 2.当a ≤-2时,g (a )=f (1)=a 24+a+2.当-2<a ≤2时,g (a )=f (−a2)=1.当a>2时,g (a )=f (-1)=a 24-a+2.综上,g (a )={ a 24+a +2,a ≤−2,1,−2<a ≤2,a 24−a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则{s +t =−a,st =b.由于0≤b-2a ≤1,因此−2t t+2≤s ≤1−2tt+2(-1≤t ≤1). 当0≤t ≤1时,−2t 2t+2≤st ≤t−2t 2t+2,由于-23≤−2t 2t+2≤0和-13≤t−2t 2t+2≤9-4√5,所以-23≤b ≤9-4√5.当-1≤t<0时,t−2t 2t+2≤st ≤−2t 2t+2,由于-2≤−2t 2t+2<0和-3≤t−2t 2t+2<0,所以-3≤b<0.故b 的取值范围是[-3,9-4√5]. 附:自选模块1.“复数与导数”模块(10分)(1)已知i 是虚数单位,a ,b ∈R ,复数z=1+a i 满足z 2+z=1+b i,求a 2+b 2的值. (2)设函数f (x )=(x 2+2x-2)e x (x ∈R ),求f (x )的单调递减区间. 解:(1)由题意得(2-a 2)+3a i =1+b i,解得a 2=1,b=3a ,故a 2+b 2=10.(2)对f (x )求导,得f'(x )=(x 2+4x )e x , 由f'(x )<0,解得-4<x<0,所以f (x )的单调递减区间为(-4,0). 2.“计数原理与概率”模块(10分)(1)已知n 为正整数,在(1+x )2n 与(1+2x 3)n 展开式中x 3项的系数相同,求n 的值.(2)设袋中共有7个球,其中4个红球,3个白球.从袋中随机取出3个球,求取出的白球比红球多的概率.解:(1)(1+x )2n 中x 3项的系数为C 2n 3,(1+2x 3)n 中x 3项的系数为2n.由C 2n 3=2n 得2n(2n−1)(2n−2)3×2×1=2n ,解得n=2.(2)从袋中取出3个球,总的取法有C 73=35种;其中白球比红球多的取法有C 33+C 32·C 41=13种. 因此取出的白球比红球多的概率为1335.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试浙江文科数学选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015浙江,文1)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4)B.(2,3]C.(-1,2)D.(-1,3]答案:A解析:因为P={x|x≤-1或x≥3},所以P∩Q={x|3≤x<4},故选A.2.(2015浙江,文2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3B.12 cm3C.32 cm3D.40 cm3答案:C解析:由三视图知,该几何体是由一个正四棱锥和一个正方体组成.其中正四棱锥的底面边长为2 cm,高为2 cm,所以正四棱锥的体积V1=13×22×2=83(cm3);因为正方体的棱长为2 cm,所以其体积V2=8 cm3.故该几何体的体积为83+8=323(cm3).3.(2015浙江,文3)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:D解析:当a=-2,b=3时,a+b>0,但ab<0;当a=-1,b=-2时,ab>0,但a+b<0.所以“a+b>0”是“ab>0”的既不充分也不必要条件.4.(2015浙江,文4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m答案:A解析:若l⊥β,又l⊂α,由面面垂直的判定定理,得α⊥β,故选项A正确;选项B,l⊥m或l∥m或l与m相交或异面都有可能;选项C,α∥β或α与β相交都有可能;选项D,l∥m或l与m异面都有可能.5.(2015浙江,文5)函数f(x)= x−1xcos x(-π≤x≤π且x≠0)的图象可能为()答案:D解析:因为f(-x)= −x+1x cos(-x)=- x−1xcos x=-f(x),所以f(x)为奇函数.排除A,B;又f(π)= π−1cos π=-π+1<0,排除C.故选D.6.(2015浙江,文6)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是()A.ax+by+czB.az+by+cxC.ay+bz+cxD.ay+bx+cz答案:B解析:不妨设x=1,y=2,z=3,a=4,b=5,c=6,选项A,ax+by+cz=4+10+18=32;选项B,az+by+cx=12+10+6=28;选项C,ay+bz+cx=8+15+6=29;选项D,ay+bx+cz=8+5+18=31,故选B.7.(2015浙江,文7)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支答案:C解析:因为AB为定线段,∠PAB=30°,所以在空间中直线AP是以AB为轴的圆锥面的母线所在的直线,又因为点P在平面α内,所以点P的轨迹可以看成平面α与圆锥面的交线.因为AB与平面α所成的角为60°,所以平面α与圆锥的轴斜交.由平面与圆锥面的截面性质,可得点P的轨迹为椭圆.8.(2015浙江,文8)设实数a,b,t满足|a+1|=|sin b|=t.()A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定C.若t确定,则sin b唯一确定D.若t确定,则a2+a唯一确定答案:B解析:当t=0时,sin b=0,b=kπ,k∈Z,所以b2不确定,故A错;sin b2=sin kπ2=0或1或-1,故C错;当t=2时,|a+1|=2,解得a=1或a=-3,所以a2+a=2或a2+a=6,故D错;因为|a+1|=t,所以a2+2a=t2-1;当t确定时,t2-1唯一确定,即a2+2a唯一确定,故B正确.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(2015浙江,文9)计算:log22=,2log23+log43=.答案:-1233解析:log222=log22−12=-12;2log23+log43=2log23·2log43=3×2log23=33.10.(2015浙江,文10)已知{a n}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=,d=.答案:23-1解析:由题意得a32=a2·a7, 2a1+a2=1,即(a1+2d)2=(a1+d)·(a1+6d), 2a1+a1+d=1,解得a1=2, d=−1.11.(2015浙江,文11)函数f(x)=sin2x+sin x cos x+1的最小正周期是,最小值是. 答案:π3−2解析:f(x)=1−cos2x2+12sin 2x+1=22sin2x−π4+32,所以函数f(x)的最小正周期T=2π2=π,最小值为3−22.12.(2015浙江,文12)已知函数f(x)=x2,x≤1,x+6−6,x>1,则f(f(-2))=,f(x)的最小值是.答案:-1226-6解析:f(-2)=(-2)2=4,f(f(-2))=f(4)=4+64-6=-12;当x≤1时,f(x)min=0;当x>1时,f(x)=x+6x -6≥26-6,当且仅当x=6x,即x=6时,f(x)取最小值26-6;因为26-6<0,所以f(x)的最小值为26-6.13.(2015浙江,文13)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=.答案:233解析:因为b·e1=b·e2=1,|e1|=|e2|=1,由数量积的几何意义,知b在e1,e2方向上的投影相等,且都为1,所以b与e1,e2所成的角相等.由e1·e2=12知e1与e2的夹角为60°,所以b与e1,e2所成的角均为30°,即|b|cos 30°=1,所以|b|=1cos30°=233.14.(2015浙江,文14)已知实数x,y满足x2+y2≤1,则|2x+y-4|+|6-x-3y|的最大值是. 答案:15解析:画出直线2x+y-4=0和x+3y-6=0以及圆x2+y2=1,如图.由于整个圆在两条直线的左下方,所以当x2+y2≤1时,有2x+y−4<0, x+3y−6<0,所以|2x+y-4|+|6-x-3y|=-2x-y+4+6-x-3y=-3x-4y+10.令t=-3x-4y+10,则3x+4y+t-10=0,所以x2+y2≤1与直线3x+4y+t-10=0有公共点,所以圆心(0,0)到直线的距离d=|t−10|≤1,解得5≤t≤15.所以t的最大值为15,即|2x+y-4|+|6-x-3y|的最大值为15.15.(2015浙江,文15)椭圆x 22+y2b2=1(a>b>0)的右焦点F(c,0)关于直线y=b x的对称点Q在椭圆上,则椭圆的离心率是. 答案:2解析:设Q(x0,y0),则y0x0−c=−cb, b·x0+c=y0,解得x0=c(c2−b2)a2,y0=2bc2a2.因为点Q在椭圆上,所以c 2(c2−b2)242+4b2c4a4·b2=1,化简得a4c2+4c6-a6=0,即4e6+e2-1=0.即4e6-2e4+2e4+e2-1=0,即(2e2-1)(2e4+e2+1)=0.所以e=2.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)(2015浙江,文16)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知tanπ4+A =2.(1)求sin2A2的值;(2)若B=π,a=3,求△ABC的面积.本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.满分14分.解:(1)由tanπ+A =2,得tan A=1,所以sin2Asin2A+cos2A =2tan A2tan A+1=25.(2)由tan A=13,A∈(0,π),得sin A=1010,cos A=31010.又由a=3,B=π及正弦定理a=b,得b=35.由sin C=sin(A+B)=sin A+π4得sin C=255.设△ABC的面积为S,则S=1ab sin C=9.17.(本题满分15分)(2015浙江,文17)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+1b2+1b3+…+1b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.本题主要考查数列的通项公式、等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.满分15分.解:(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知:当n=1时,b1=b2-1,故b2=2.当n≥2时,1b n=b n+1-b n,整理得b n+1=b n,所以b n=n(n∈N*).(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).18.(本题满分15分)(2015浙江,文18)如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.解:(1)设E为BC的中点,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连结BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB=2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=7.19.(本题满分15分)(2015浙江,文19)如图,已知抛物线C1:y=14x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.本题主要考查抛物线的几何性质,直线与圆的位置关系、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.满分15分.解:(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由y=k(x−t),y=1x2消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故y0=−x0+1, x0t−y0=0,解得x0=2t1+t2,y0=2t21+t2.因此,点B的坐标为2t1+t2,2t2 1+t2.(2)由(1)知|AP|=t·1+t2和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=21+t.设△PAB的面积为S(t),所以S(t)=1|AP|·d=t 3 .20.(本题满分15分)(2015浙江,文20)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b-2a ≤1.求b 的取值范围.本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识,同时考查推理论证能力,分类讨论等分析问题和解决问题的能力.满分15分.解:(1)当b=a 2+1时,f (x )= x +a 2+1,故对称轴为直线x=-a .当a ≤-2时,g (a )=f (1)=a 2+a+2.当-2<a ≤2时,g (a )=f −a=1.当a>2时,g (a )=f (-1)=a 2-a+2.综上,g (a )= a 2+a +2,a ≤−2,1,−2<a ≤2,a 2−a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则s +t =−a ,st =b .由于0≤b-2a ≤1,因此−2t t +2≤s ≤1−2tt +2(-1≤t ≤1). 当0≤t ≤1时,−2t 2≤st ≤t−2t 2,由于-23≤−2t 2t +2≤0和-13≤t−2t 2t +2≤9-4 所以-23≤b ≤9-4 5.当-1≤t<0时,t−2t 2≤st ≤−2t 2,由于-2≤−2t 2t +2<0和-3≤t−2t2t +2<0,所以-3≤b<0.故b 的取值范围是[-3,9-4 ].附:自选模块1.“复数与导数”模块(10分)(1)已知i 是虚数单位,a ,b ∈R ,复数z=1+a i 满足z 2+z=1+b i,求a 2+b 2的值. (2)设函数f (x )=(x 2+2x-2)e x (x ∈R ),求f (x )的单调递减区间. 解:(1)由题意得(2-a 2)+3a i =1+b i,解得a 2=1,b=3a ,故a 2+b 2=10.(2)对f (x )求导,得f'(x )=(x 2+4x )e x , 由f'(x )<0,解得-4<x<0,所以f (x )的单调递减区间为(-4,0). 2.“计数原理与概率”模块(10分)(1)已知n 为正整数,在(1+x )2n 与(1+2x 3)n 展开式中x 3项的系数相同,求n 的值.(2)设袋中共有7个球,其中4个红球,3个白球.从袋中随机取出3个球,求取出的白球比红球多的概率.解:(1)(1+x )2n 中x 3项的系数为C 2n 3,(1+2x 3)n 中x 3项的系数为2n.由C 2n 3=2n 得2n (2n−1)(2n−2)=2n ,解得n=2.(2)从袋中取出3个球,总的取法有C 73=35种;其中白球比红球多的取法有C 33+C 32·C 41=13种. 因此取出的白球比红球多的概率为13.。

相关文档
最新文档