整式的乘除前三节习题课

合集下载

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件一、教学内容1. 整式的乘法:多项式乘以多项式,多项式乘以单项式,单项式乘以单项式。

2. 整式的除法:多项式除以多项式,多项式除以单项式,单项式除以单项式。

3. 平方差公式:a^2 b^2 = (a + b)(a b)。

4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2。

二、教学目标1. 掌握整式的乘除运算法则,能够熟练地进行整式的乘除计算。

2. 理解并熟练运用平方差公式和完全平方公式。

3. 提高学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点重点:整式的乘除运算,平方差公式和完全平方公式的运用。

难点:灵活运用平方差公式和完全平方公式解决实际问题。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:笔记本、练习本、文具。

五、教学过程1. 情景引入:以实际生活中的问题引入,例如计算购物时优惠后的价格。

2. 知识回顾:复习整式的乘法、除法,平方差公式和完全平方公式。

3. 例题讲解:讲解典型例题,让学生理解并掌握整式的乘除运算方法和技巧。

4. 随堂练习:布置随堂练习题,让学生巩固所学知识,并及时纠正错误。

5. 课堂互动:组织学生进行小组讨论,分享解题心得和方法。

7. 作业布置:布置课后作业,巩固所学知识。

六、板书设计1. 整式乘法法则2. 整式除法法则3. 平方差公式:a^2 b^2 = (a + b)(a b)4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^2七、作业设计1. 题目:计算下列整式的乘除结果。

(1)(x + 2)(x 2)(2)(x + 3)÷(x 1)(3)(a + b)^22. 答案:(1)x^2 4(2)x + 4(3)a^2 + 2ab + b^2八、课后反思及拓展延伸1. 课后反思:本节课学生对整式的乘除运算掌握较好,但在运用平方差公式和完全平方公式解决实际问题时,部分学生还存在一定的困难。

七年极下数学课本习题第1章整式的乘除

七年极下数学课本习题第1章整式的乘除

第一章整式的乘除第1节同底数幂的乘法1. P3-例1计算:(1)(-3)7×(-3)6(2)(1111)3 ×1111(3)-x3·x5(4)b2m·b2m+12. P3-例2光在真空中的速度约为3×108m/s,太阳光射到地球上大约需要5×102s。

地球距离太阳大约有多远?3. P3-随堂练习-1计算:(1)52×57(2)7×73×72(3)-x2·x3(4)(- c)3·(- c)m4. P3-随堂练习-2一种电子计算机每秒可做4×109次运算,它工作5×102 s可做多少次运算?5. P3-随堂练习-3光在真空中的速度大约是3×108m/s。

太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107s计算,比邻星与地球的距离约为多少?6. P4-习题1.1-1计算:(1)c·c11(2)104×102×10 (3)(-b)3·(-b)2(4)-b3·b2(5)x m-1·x m+1(m>1)(6)a·a3·a n7. P4-习题1.1-2已知a m=2,a n=8,求a m+n。

8. P4-习题1.1-3下面的计算是否正确?如有错误请改正。

(1)a3·a2=a6(2)b4·b4=2b4(3)x5+x5=x10(4)y7·y=y89. P4-习题1.1-4在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧1.3×108kg的煤所产生的能量。

我国960万km2的土地上,一年从太阳得到的能量相当于燃烧多少千克的煤所产生的能量?(结果用科学记数法表示)。

10. P4-习题1.1-5某种细菌每分由1个分裂成2个。

七下第一章《整式的乘除》复习课件

七下第一章《整式的乘除》复习课件

Part
02
整式乘除的运算
单项式乘单项式
总结词
基础运算,直接相乘
详细描述
单项式与单项式相乘时,只需将它们的系数、相同字母的幂分别相乘,其余字母、指数不变。例如: $2x^3y times 3x^2y = 6x^{5}y^{2}$。
单项式乘多项式
总结词:逐项相乘
详细描述:单项式与多项式相乘时,需将单项式的每一项分别与多项式的每一项 相乘,然后合并同类项。例如:$2x(x^2 + 3x + 1) = 2x^3 + 6x^2 + 2x$。
七下第一章《整式的 乘除》复习课件
• 整式乘除的回顾 • 整式乘除的运算 • 整式乘除的应用 • 整式乘除的练习与巩固 • 整式乘除的总结与展望
目录
Part
01
整式乘除的回顾
整式的定义与表示
总结词
理解整式的定义和表示方法
详细描述
整式是由常数、变量、运算符以及括号按一定规则组成的数学表达式。整式可 以表示为代数式,其中只包含加、减、乘、除、乘方五种基本运算。常见的整 式有单项式和多项式。
理解概念
深入理解整式乘除的基本 概念和规则,避免混淆和 误解。
拓展学习
可以尝试学习更复杂的整 式运算,如因式分解、分 式的运算等,为后续的学 习打下基础。
有幂的除法时, 容易忽略指数的变化,例 如将$frac{a^2}{b}$误简 化为$ab$。
忽略公因式的提取
在整式除法中,常常需要 提取公因式来简化表达式 ,例如将$a^2 - b^2$误 分解为$(a+b)(a-b)$。
整式乘除的进一步学习建议
加强练习
通过大量的练习来巩固整 式乘除的知识点,提高运 算速度和准确性。

七下第一章《整式的乘除》复习课件(1)

七下第一章《整式的乘除》复习课件(1)

七下第一章《整式的乘除》复习课件一、教学内容1. 单项式乘单项式2. 单项式乘多项式3. 多项式乘多项式4. 乘法公式5. 整式的除法6. 整式的混合运算二、教学目标1. 熟练掌握整式的乘除法则,提高运算速度和准确性。

2. 能够运用乘法公式简化计算,解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:乘法公式的运用,整式的混合运算。

2. 教学重点:整式的乘除法则,乘法公式的推导和应用。

四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔。

2. 学具:练习本,计算器。

五、教学过程1. 导入:通过实际情景引入,如购物时商品价格的计算,让学生体会整式的乘除在实际生活中的应用。

2. 知识回顾:引导学生回顾整式的乘除法则,乘法公式等知识点。

3. 例题讲解:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)乘法公式(5)整式的除法(6)整式的混合运算4. 随堂练习:针对每个知识点设计练习题,让学生及时巩固所学知识。

6. 应用:运用所学知识解决实际问题。

六、板书设计1. 七下第一章《整式的乘除》复习2. 内容:整式的乘除法则,乘法公式,例题,练习题。

七、作业设计1. 作业题目:(1)计算题:给出具体数值,让学生计算整式的乘除。

(2)应用题:设计实际情景,让学生运用整式的乘除解决问题。

2. 答案:详细给出作业题目的答案。

八、课后反思及拓展延伸1. 反思:针对课堂教学中出现的问题,进行自我反思,调整教学方法。

2. 拓展延伸:引导学生探索整式的乘除在生活中的其他应用,提高学生的实际运用能力。

重点和难点解析1. 教学难点与重点的确定2. 例题讲解的深度和广度3. 随堂练习的设计4. 作业设计中的应用题5. 课后反思及拓展延伸的深度一、教学难点与重点的确定整式的乘除是初中数学的基础内容,其中乘法公式的运用和整式的混合运算是学生普遍感到难以掌握的部分。

因此,这两个方面应成为教学的重点和难点。

整式的乘除复习课件华师大版

整式的乘除复习课件华师大版

整式的乘除复习课件华师大版一、教学内容1. 整式的乘法法则(第3章第1节)单项式乘以单项式单项式乘以多项式多项式乘以多项式2. 整式的除法法则(第3章第2节)单项式除以单项式多项式除以单项式多项式除以多项式二、教学目标1. 熟练掌握整式的乘除法则,并能灵活运用。

2. 能够正确进行整式的乘除运算,提高解题速度和准确度。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:多项式乘以多项式的运算过程多项式除以多项式的运算方法2. 教学重点:整式的乘除法则运算过程中的符号处理四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔2. 学具:练习本、笔五、教学过程1. 实践情景引入(5分钟)通过一个实际生活中的问题,引导学生复习整式的乘除。

2. 例题讲解(15分钟)讲解整式的乘法法则,并进行例题演示。

讲解整式的除法法则,并进行例题演示。

3. 随堂练习(10分钟)学生独立完成练习题,巩固所学知识。

教师巡回指导,解答学生疑问。

4. 小组讨论(10分钟)学生分组讨论,互相检查答案,共同解决难题。

学生分享自己的心得体会。

6. 课堂小结(5分钟)教师对本节课的内容进行回顾。

强调整式的乘除法则的重要性。

六、板书设计1. 整式的乘法法则单项式乘以单项式单项式乘以多项式多项式乘以多项式2. 整式的除法法则单项式除以单项式多项式除以单项式多项式除以多项式七、作业设计1. 作业题目:计算题:完成课后练习题,包括整式的乘除运算。

应用题:结合实际情景,设计一道整式乘除的应用题。

2. 答案:计算题答案:见教材课后习题答案。

应用题答案:根据实际情景,合理运用整式的乘除法则进行解答。

八、课后反思及拓展延伸1. 课后反思:分析学生在运算过程中出现的问题,找出原因,进行针对性指导。

2. 拓展延伸:引导学生研究整式的乘除法则在实际问题中的应用。

探索整式的乘除与代数式的简化、因式分解等知识之间的联系。

重点和难点解析1. 实践情景引入2. 例题讲解3. 教学难点与重点4. 作业设计一、实践情景引入1. 紧密联系生活实际,让学生感受到数学知识的实用性。

北师版数学下册《整式的乘除》1.7.3整式的化简(练习题课件)

北师版数学下册《整式的乘除》1.7.3整式的化简(练习题课件)

13.(1)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2, 其中 ab=-12.
解:原式=4-a2+a2-5ab+3a5b3÷a4b2=4-5ab+3ab=4-2ab. 当 ab=-12时,原式=4-2×-12=5.
(2)已知 x-2y=3,x2-2xy+4y2=13,求下列各式的值: ①xy;
除,且x+当2x或=x_+__3_____时,x2+5x+6=-02.或-3
(2)根据上述材料,已知多项式x2+mx-14能被x+2整除, 试求m的值.
解:因为多项式 x2+mx-14 能被 x+2 整除, 所以 x+2 是 x2+mx-14 的一个因式,且当 x=-2 时,x2+mx-14=0. 所以(-2)2-2m-14=0,解得 m=-5.
解:因为 x-2y=3,所以(x-2y)2=32, 即 x2-4xy+4y2=9. 又因为 x2-2xy+4y2=13,两式相减,得 2xy=4, 所以 xy=2.
②x2y-2xy2.
解:因为 x-2y=3,所以(x-2y)·xy=3xy, 即 x2y-2xy2=3xy. 又因为 xy=2,所以 x2y-2xy2=3×2=6.
使用 说明
此课件下载后

景 图 片 可 单击输入您的封面副标题

一键修改编辑
【提示】下载后此页用户可自行删除!
【提示】下载后此页用户可自行删除!
【提示】下载后此页用户可自行删除!
失量 图标
【提示】下载后此页用户可自行删除!
5.将式子x2+4x-1化成(x+p)2+q的形式为( C ) A.(x-2)2+3 B.(x+2)2-4 C.(x+2)2-5 D.(x+4)2+4
6.若 x2+ax=x+122+b,则 a,b 的值是( B ) A.a=1,b=14 B.a=1,b=-14 C.a=0,b=-12 D.a=2,b=12

八年级数学上册 整式的乘除(习题及答案)(人教版)

八年级数学上册 整式的乘除(习题及答案)(人教版)

整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。

七年级数学下册第一章整式的乘除1、3同底数幂的除法第2课时零指数幂与负整数指数幂习题新版北师大版

七年级数学下册第一章整式的乘除1、3同底数幂的除法第2课时零指数幂与负整数指数幂习题新版北师大版

*13.下列各式的计算中,不正确的个数是( ) ①100÷10-1=10; ②10-4×(2×7)0=1 000; ③(-0.1)0÷(-2-1)-3=8; ④(-10)-4÷(-10-1)-4=-1. A.4 B.3 C.2 D.1
【点拨】①100÷10-1=1÷110=10,正确; ②10-4×(2×7)0=1104×1=0.000 1,不正确; ③(-0.1)0÷(-2-1)-3=1÷(-23)=1÷(-8)=-18,不正确; ④(-10)-4÷(-10-1)-4=10-4÷104=10-8,不正确.故选 B.
解:设 M=1+3-1+3-2+…+3-2 024,①
则 3M=3+1+3-1+…+3-2 023,②
②-①得
2M=3-3-2
024,即
M=3-32-2
024
.
所以原式=3-3-2 2
024
.
(2)1+3-1+3-2+…+3-n.
解:设 N=1+3-1+3-2+…+3-n,① 则 3N=3+1+3-1+…+3-n+1,② ②-①得 2N=3-3-n,即 N=3-23-n.所以原式=3-23-n.
【点拨】本题探索使等式成立的 x 的值时,运用了分类讨论思想, 在讨论时要考虑周全. 解:①当 2x+3=1 时,x=-1; ②当 2x+3=-1 时,x=-2,但是指数 x+2 023=2 021 为奇数, 所以舍去; ③当 x+2 023=0 时,x=-2 023,且 2×(-2 023)+3≠0, 所以符合题意.综上所述,x 的值为-1 或-2 023.
A.2a5-a B.2a5-1a C.a5
D.a6
*7.若(t-3)2-2t=1,则t可以取的值有( C ) A.1个 B.2个 C.3个 D.4个

整式的乘除复习课件

整式的乘除复习课件
三、教学难点与重点
难点:整式的乘除混合运算,多项式乘法公式的灵活运用。
重点:整式的乘法法则、除法法则,多项式乘法公式的应用。
四、教具与学具准备
1.教具:多媒体课件、黑板、粉笔。
2.学具:练习本、笔。
五、教学过程
1.实践情景引入
通过生活中的实际问题,引出整式的乘除运算。
2.例题讲解
(1)整式的乘法法则
教案反思
一、教学目标方面
1.是否达到教学目标,学生对整式的乘除法则、多项式乘法公式的掌握情况如何。
2.对教学目标进行调整,使之更符合学生的实际情况。
二、教学内容方面
1.教学内容是否全面,是否覆盖了整式的乘除法则、多项式乘法公式等要点。
2.教学内容是否具有针对性,是否针对学生的薄弱环节进行了强化。
三、教学方法方面
三、课堂提问
1.提问要针对性强,关注学生的掌握情况,及时了解学生的学习进度。
2.鼓励学生主动提问,培养他们的思考能力和解决问题的能力。
3.对于学生的回答,给予积极的评价和鼓励,提高他们的自信心。
四、情景导入
1.选择贴近生活的情景导入,激发学生的学习兴趣。
2.通过情景导入,自然过渡到本节课的教学内容,让学生感受到数学与生活的联系。
1.实践情景引入:
-选择与生活密切相关的实际问题,如购物打折、土地面积计算等,增加学生的学习兴趣和实际应用能力。
2.例题讲解:
-例题应涵盖整式的乘除法则和多项式乘法公式的应用,每个例题后都应提供详细的解题步骤和思路分析。
-例题的选择应难易适中,既有基础题也有提高题,以适应不同层次的学生。
3.随堂练习:
多项式乘法公式,如完全平方公式,是解决多项式乘法问题的关键,需要学生能够熟练记忆并灵活运用。

数学:第13章《整式的乘除》复习课件(华东师大版八年级上)

数学:第13章《整式的乘除》复习课件(华东师大版八年级上)
少儿作或故障前的运行工况B.操作情况C.故障情况D.避雷器的配置情况 甲公司于2012年2月10日签发一张汇票给乙公司,付款日期为同年3月20日。乙公司将该汇票提示承兑后背书转让给丙公司,丙公司又将该汇票背书转让给丁公司。丁公司于同年3月23日向承兑人请求付款时遭到拒绝。根据票据法律制度的规定,丁公司向甲公司行使追索权的期限是。A.自2012年2月 设是AX=b的三个解,则下列也是AX=b的解.ABCD 某药口服后,吸收迅速,但血药浓度低,较确切的表述是A.吸收少B.被消化液破坏多C.生物利用度低D.分布广E.排泄快 经国家劳动和社会保障部批准,在,我国开始启动心理咨询师的职业化工作,由国家颁布《心理咨询师国家职业标准》(试用版)。A.1985年10月B.1995年8月C.2001年8月D.2003年6月 在信号微机监测系统中电源相序监测是由转换单元监测的。A、J1B、J3C、J6D、J7 下列哪项是诊断钩端螺旋体病的血清学检查方法A.肥达试验B.外斐反应C.补体结合试验D.显微镜凝集溶解试验E.红细胞溶解试验 被动大陆边缘 一患者48岁,患慢性肝炎5年,近日常感两胁胀痛,心烦易怒,食少,腹胀便稀,舌淡苔白,脉弦缓。临床辨证为A.肝气郁结证B.肝胃不和证C.肝脾不调证D.脾气虚证E.脾阳虚证 使用手提式灭火顺序为:拔出铁销子拉环、将喷嘴对住货源、人站在上风头、用手压住提手(压手)、这时灭火剂即可喷出。A.正确B.错误 川芎茶调散中有上清头目,制约风药过于温燥与升散作用的药物是A.川芎B.荆芥C.清茶D.薄荷E.防风 如何拥有良好的个人信用记录? 检查右支气管时,应将受检者的头()A.略抬高B.摆平直C.略向右偏D.略向左偏E.以上都不是 二氧化碳本身不燃,不助燃,比空气轻,是一种无色、无味的惰性气体.A.正确B.错误 我国在“十一五”期间应逐步形成的区域协调发展格局是。A.区域产业优势地位突出B.主体功能定位清晰C.东中西良性互动D.城乡同步发展E.公共服务和人民生活水平差距趋向缩小 国有独资企业、国有独资公司、国有资本控股公司的董事、监事、高级管理人员违反规定,造成国有资产特别重大损失,或者因贪污、贿赂、侵占财产、挪用财产或者破坏社会主义市场经济秩序被判处刑罚的,终身不得担任国有独资企业、国有独资公司、国有资本控股公司的董事、监事、高级管 垂体大腺瘤指瘤体直径大于A.>8mmB.>10mmC.>12mmD.>14mmE.>16mm 有关献血护理说法不恰当的是。A.对献血者进行及时、正确的护理B.是对献血者精神上的安慰和体贴C.可减少或避免献血不良反应的发生D.包括献血者的自我保护E.仅在采血后需要护理 下面对专职监护人的叙述正确的是:。A.专职监护人不得做其他工作B.专职监护人可以做其他工作C.专职监护人可以兼任其他工作D.专职监护人应当协助其他人员工作 工程上把延伸率δ>5%的材料称为材料,δ<5%的材料称为材料。 设计和培育护理文化,要体现护理专业的个性以及医院文化特色,此处描述的是护理组织文化的A.实践性B.群众性C.针对性D.整合性E.独特性 产褥感染处理原则,错误的是A.选用有效的抗生素B.纠正全身一般情况C.半卧位以利引流D.禁用肾上腺皮质激素,避免感染扩散E.胎盘残留者,应控制感染后清宫 汽缸壁的热应力与其内、外壁温差及壁厚A.无关B.平方成正比C.成反比D.成正比 抢救羊水栓塞的首要措施是A.纠正DIC及继发纤溶B.纠正呼吸循环衰竭C.纠正肾功衰竭D.抗过敏治疗E.切除子宫 下列关于心房颤动的描述错误的是。A.PR间期不固定B.心室律绝对不齐C.频率&gt;350次/分D.V,导联的颤动波最明显E.QRS波一般不增宽 以水力侵蚀为主的类型区有。A.新疆天山山地B.三北戈壁沙漠及沙地风沙区C.北方土石山区D.山东黄泛平原区 Wernicke失语患者病变的主要区域是A.额下回后部B.额下回前部C.颞上回后部D.颞上回前部E.额上回后部 断电后,计算机内存RAM和ROM中的数据。A、RAM,ROM都丢失B、RAM丢失,ROM存在C、RAM存在,ROM丢失D、RAM、ROM都保存 哪种肝硬化引起肝性脑病最多见A.酒精性肝硬化B.原发性胆汁性肝硬化C.淤血性肝硬化D.肝炎后肝硬化E.血吸虫病性肝硬化 浮标法常用于推算和估计水渠或河段中的流量或期间的河水流量测量。 下列属于公民的基本社会义务的是.A、文化教育权利和自由B、参加劳动和接收教育C、宗教信仰自由D、A+B+C [多选,X型题]黄疸治疗原则是A.补肾益气B.化湿邪C.利小便D.清热解毒E.活血化瘀 边缘嵴的生理功能是A.排溢食物的主要通道B.对侧方运动的方向有引导的作用C.将食物局限在面窝内D.捣碎食物的主要工具E.咀嚼时联合切削的作用 患者30岁,诉膝关节间歇性隐痛胀半年多,查胫骨上端内侧肿胀,触之有乒乓球感,X线片示胫骨上端偏内侧呈膨胀性肥皂泡样骨质破坏,横径大于纵径,诊断应首先考虑A.骨囊肿B.动脉瘤样骨囊肿C.成软骨细胞瘤D.溶骨型骨肉瘤E.骨巨细胞瘤 异步通信与同步通信的主要区别是什么,说明通信双方如何联络。 2010年7月,农业银行分别在深圳证券交易所和香港联合交易所挂牌上市,完成了向公众持股银行的跨越。A.正确B.错误 《文物保护法》规定,一切机关、组织和个人都有依法保护文物的。A.责任B.义务C.任务D.权利 是在一定范围内作为其他标准的基础并普遍适用,具有广泛指导意义的标准。A.产品标准B.方法标准C.基础标准D.服务标准 县级计划生育药具管理机构主要承担那些任务? 红茶可分为哪三种?

整式的乘除整章练习题(完整)

整式的乘除整章练习题(完整)
4.计算:(1) ____________;(2) _______.
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )

整式的乘除复习课件

整式的乘除复习课件

整式的乘除复习课件一、教学内容本节课为整式的乘除复习,教材选用人教版《数学》四年级上册第七章“四则混合运算”中的相关内容。

复习内容包括:整式的乘法、除法,以及相关性质与法则。

二、教学目标1. 使学生掌握整式的乘除运算方法,能熟练进行整式的乘除计算。

2. 培养学生解决实际问题的能力,提高学生对整式乘除在实际情境中的应用。

3. 培养学生合作学习、积极思考的能力,提高学生的数学思维水平。

三、教学难点与重点1. 教学难点:整式乘除中的因式分解,以及含有字母的整式乘除运算。

2. 教学重点:整式乘除的运算规则,以及如何在实际问题中运用整式乘除。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 情景引入:以购物场景为例,顾客购买了一件商品,原价为25元,商家进行打折促销,打8折后的价格是多少?引导学生思考如何用数学知识解决问题。

2. 知识回顾:回顾整式的乘除运算方法,以及相关性质与法则。

3. 讲解与示范:讲解整式的乘法与除法运算方法,以具体例题进行讲解,如(x+y)^2、(xy)÷(x+y)等。

4. 随堂练习:让学生独立完成一些整式乘除的练习题,如:计算(x+2y)(x2y)、(a+b)^2等。

6. 拓展延伸:引导学生思考,如何在更复杂的问题中运用整式乘除,如在几何问题中,如何利用整式乘除求解面积、体积等。

六、板书设计板书整式的乘法与除法运算规则,以及相关例题。

七、作业设计(1)(x+2y)(x2y)(2)(a+b)^2(3)(x+3)÷(x1)2. 应用题:小明购买了一本书,原价为25元,书店进行打折促销,打8折后的价格是多少?八、课后反思及拓展延伸1. 课后反思:本节课学生对整式的乘除运算掌握情况较好,但在实际问题中的应用还需加强。

在今后的教学中,要注重培养学生的应用能力,提高学生在实际情境中运用数学知识解决问题的能力。

2. 拓展延伸:可以布置一些有关整式乘除的综合练习题,让学生在课后进行自主学习,提高学生的数学思维水平。

北师版初一下第一章整式的乘除复习课件

北师版初一下第一章整式的乘除复习课件

A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
2021/2/6
说明:平方差公式是根据多项式乘以多项式 得到的,它是两个数的和与同样的两个数的 差的积的形式。
2021/2/6
10
9、完全平方公式 法则:两数和(或差)的平方,等于这两数的 平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(ab)2 a2 2abb2; (ab)2 a2 2abb2 其中a,b既可以是,数 也可以是代数 . 式
17
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便可
得到两个你非常熟悉的公式,这两个公式分别是 和

2021/2/6
18
一、选择题
1、下列计算正确的是( D )
A a3-a2=a
B (a2)3=a5
C a8÷a2=a4
D a3×a2=a5
2、用科学记数法表示0.00000320得( D )
101(0.1)223(1)1[(2)200]09 2
(2m)22m,(x2)2(x•x2),amnamn
2021/2/6
6
5、单项式乘以单项式
法则:单项式乘以单项式,把它们的系数、相 同字母的幂分别相乘,其余的字母则连同它 的指数不变,作为积的一个因式。
练习:计算下列各式。
(1)(5x3)(2x2y),(2)(3ab)2 (4b3)

整式的乘除复习课件

整式的乘除复习课件

运算步骤:首先确定系数相乘,然 后相同字母的幂相乘,最后将剩余 的字母和指数不变。
注意事项:注意相同字母的幂相乘 时,底数不变,指数相加。
举例说明:例如单项式2x^3与单项 式3y^2相乘,结果是6x^3y^2。
单项式与多项式的乘法
定义:单项式与多项式相乘,就是单项式中的每一项与多项式中的每一项相乘 运算顺序:先乘方,再乘除,最后加减 乘法分配律:$(a+b)(m+n)=am+an+bm+bn$ 注意事项:注意符号和指数的运算
巩固练习题及解析
整式的乘除运算规则练习 常见错误分析 解题技巧分享 综合应用题解析
学生自我评价与反馈
学生自我评价:对整式的乘除运算的掌握程度进行自我评价,包括概念理解、运算技 巧等方面。
反馈内容:针对复习内容提出自己的疑问和建议,以便教师更好地了解学生的学习情 况,为后续教学提供参考。
巩固练习:提供一些与整式的乘除运算相关的练习题,让学生通过练习巩固所学知识, 提高解题能力。
除法法则:多项式 除以多项式时,按 照除法的分配律和 结合律进行计算, 即先计算括号内的 除法,再计算乘法, 最后进行加法或减 法。
注意事项:在多 项式除以多项式 时,需要注意除 数不能为零,且 结果是一个商式 和一个余式的形 式。
举例:以多项式 a(x) = 2x^3 + 3x^2 - 4x + 5 和 b(x) = x^2 x + 2 为例,进 行多项式除以多 项式的运算。
添加副标题
整式的乘除复习课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 整式乘法运算
02 整式乘除的回顾 04 整式除法运算

整式的乘除(讲义及答案)(20200420015744)

整式的乘除(讲义及答案)(20200420015744)

整式的乘除(讲义)课前预习1.整式的分类:___________________________________定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2.________________________________________________叫做同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3.乘法分配律:()a b c _______________.4.类比迁移:老师出了一道题,让学生计算52x y x .小聪是这么做的:55232x y x x x x x y x y x x yx x x 请你类比小聪的做法计算:22282m n m n .知识点睛1.单×单:_______乘以________,_________乘以________.2.单×多:根据________________,转化为单×单.3.多×多:握手原则.4.单÷单:系数除以系数,字母除以字母.5.多÷单:借用乘法分配律.精讲精练1.①■342xy xy z _______;②2323(2)x y x y _______;③231(4)2x y y ______;④322(3)(2)a a ;⑤332(2)(2)x xy xy .2.①222(53)ab ab a b ______________________;②221232ab c ab ab ____________________;③31(2)14a a _________________;④222(2)()x y xy _________________________;⑤2222(3)x y z x x y _________________________.3.计算:①(34)(34)x y x y ;②()(321)m n m n ;③(2)(32)m n m n ;④2(2)x y ;⑤()()a b c a b c .“■”在不引起歧义的情况下,单项式和其他单项式或多项式运算时,本身可以不加括号.4.计算:①256(13)x x x x ;②210(23)(42)x x x .5.①2212a b c ab _____;②3532(3)(0.5)m n m n ______;③62(2)()xy xy ______;④22(2)(_______)2a b a ;⑤4348()()3a b a b ___________;⑥23243(2)(7)14x y xy x y .6.①532(46)(2)x x x _____________;②2211322x y xy xy xy_______________;③234432214633ab a b a b ab ___________________;④23222()(2)a b a b ab _____________;⑤43522(2)()m n m n mn ________________;⑥23(____________________)3231aa a .7.计算:①423322223(3)(2)(2)4a b ab a b a b a b ;。

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

第一章整式的乘除第3节同底数幂的除法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.下列计算正确的是( )A .3412a a a ⋅=B .()326a a =C .()2222a a =D .4442a a a ÷= 2.下列计算错误的是( )A .325a a a ⋅=B .2222a a a +=C .()326a a -=D .826a a a ÷= 3.下列计算正确的是( )A .336a a a +=B .3225()xy x y =C .624a a a ÷=D .()2231931m m m +=++ 4.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a - 5.下列计算中,正确的是( )A .33a a ÷=B .23a a a +=C .()235a a =D .426a a a ⋅= 6.下列运算正确的是( )A .()123a a =B .221a a -=C .623a a a ÷=D .()224ab ab = 评卷人得分二、填空题 7.计算423287x y x y -÷的结果等于___________.8.已知28m =,31n =,则n m -=____.9.2﹣2+|3﹣2|=_____.10.计算()()2201901130142π-⎛⎫-+--= ⎪⎝⎭________. 11.已知23x =,25y =,则212x y +-=_______.12.若6m a =,4n a =,则2m n a -=__.评卷人得分三、解答题 13.计算:1020201( 3.14)2(1)2π-⎛⎫-+---- ⎪⎝⎭.14.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.15.已知53a =,52b =,572c =.(1)求25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系为_______.16.计算 (1)101|2|(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()254822()x x x x +-⋅÷-17.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法.小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.18.(1)填空()10222-=()21222-= ()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;19.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭(4)852()()()x y y x y x -÷-⋅-.20.(1)()()13011273π-⎛⎫-+-+-- ⎪⎝⎭ (2)()22436310a a a a ⋅+--21.(1)若34213927m m +-⋅÷的值为81,试求m 的值;(2)已知4434,381m m n -==,求2008n 的值.22.观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;① 22x ,33x -,45x ,59x -,617x ,733x -,⋯;①根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第①行的第9个单项式为_______;第①行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.23.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.24.阅读材料,求1+2-1+2-2+…+2-2 016的值.解:设S=1+2-1+2-2+…+2-2016,①则2S=2+1+2-1+…+2-2 015,①①-①得S=2-2-2 016.请你仿此计算:(1)1+3-1+3-2+…+3-2 016;(2)1+3-1+3-2+…+3-n(n为正整数).25.x n+1·x n-1÷(x n) 2 (x≠0)参考答案:1.B【解析】【分析】根据运算法则逐一计算判断即可【详解】①347⋅=,a a a①A式计算错误;①()326=,a a①B式计算正确;①()22=,24a a①C式计算错误;①44a a÷=,22①D式计算错误;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,单项式除以单项式,熟练掌握公式和运算的法则是解题的关键.2.C【解析】【分析】根据运算法则逐一计算判断即可【详解】①325⋅=,a a a①A式计算正确,不符合题意;①222+=,a a a2①B式计算正确,不符合题意;①()326a a-=-,①C式计算错误,符合题意;①826a a a ÷=,①D 式计算正确,不符合题意;故选C【点睛】本题考查了整式的加减,幂的乘方,同底数幂的除法,熟练掌握运算的法则和化简的方法是解题的关键.3.C【解析】【分析】根据合并同类项的法则判断A ;根据积的乘方法则判断B ;根据同底数幂的除法法则判断C ;根据完全平方公式判断D .【详解】A 、3332a a a +=,计算错误,故本选项不符合题意;B 、()2326xy x y =,计算错误,故本选项不符合题意; C 、624a a a ÷=,计算正确,故本选项符合题意;D 、22(31)961m m m +=++,计算错误,故本选项不符合题意; 故选:C .【点睛】本题考查了合并同类项,积的乘方,同底数幂的除法,完全平方公式,掌握公式与法则是解题的关键.4.B【解析】【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意; C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.5.D【解析】【分析】分别根据同底数幂的除法,合并同类项,幂的乘方,同底数幂的乘法法则逐项判断即可.【详解】A 、32a a a ÷=,原计算错误,不符合题意;B 、a 和2a 不是同类项,不能合并,不符合题意;C 、()236a a =,原计算错误,不符合题意; D 、426a a a ⋅=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的除法,幂的乘方,同底数幂的乘法,解题的关键是掌握运算法则.6.B【解析】【分析】按照幂的运算法则计算判断即可.【详解】①()212=a a , ①选项A 错误;①221a a -=, ①选项B 正确;①6642-2=a a a a ÷=,①选项C 错误;①()2224ab a b =,①选项D 错误;故选B .【点睛】本题考查了同底数幂的乘方,同底数幂的除法,积的乘方,负整数指数幂的运算,熟练掌握各类运算的法则是解题的关键.7.4xy -【解析】【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键 8.-3【解析】【分析】现将8化成32,在利用零指数,得出m ,n 的值计算即可【详解】解:①28m =,38=2①322m =①m =3①031=①n =0①n -m =0-3=-3故答案为:-3【点睛】本题考查乘方的含义,零指数.灵活应用概念是关键.9.934- 【解析】【分析】先算负指数、绝对值,再进行计算即可.【详解】解:2﹣2+|3﹣2|=1234+- =934-; 故答案为:934-. 【点睛】本题考查了实数的混合运算,解题关键是熟练运用相关法则计算负指数和绝对值. 10.2.【解析】【分析】 先计算有理数的乘方、负整数指数幂、零指数幂,再计算有理数的加法即可得.【详解】解:原式141=-+-,2=故答案为:2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂,熟记各运算法则是解题关键. 11.452. 【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】解:①23x =,25y =,①212x y +-=()2222x y ⨯÷=32×5÷2=452故答案为:452. 【点睛】本题考查了同底数幂的除法,幂的乘方,掌握运算法则是解题关键.12.9【解析】【分析】根据幂的运算的逆运算,把所求式子变成幂的运算即可.【详解】6m a =,4n a =,222()643649m n m n a a a -∴=÷=÷=÷=.故答案为:9.【点睛】 本题考查了幂的运算的逆运算,解题关键是灵活运用幂的运算的逆运算,把所求式子转换成幂的运算.13.0【解析】【分析】根据实数的运算法则计算.【详解】解:原式1221=+--0=.【点睛】本题考查实数的混合运算,熟练掌握负整数指数幂和零指数幂运算、绝对值运算和负数的偶次幂运算是解题关键.14.(1)2;(2)8;(3)52. 【解析】【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)①8,2322m n ==,①()22222283264322m n m n -=÷=÷=÷=;①22m n -的值为2.(2)①2330x y +-=,①233x y +=,①232334822228x y x y x y +⋅=⋅===;①48x y ⋅的值为8.(3)①2222510x x x +++⋅=,①2331010x x +-=,①233x x +=-,①52x =, ①x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.15.(1)9;(2)108;(3)c =2a +3b【解析】【分析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据幂的乘方法则以及同底数幂的乘法法则,即可得到结论.【详解】解:(1)①5a=3,①25a=(5a)2=32=9;(2)①5a=3,5b=2,5c=72,①5a b c-+=5a×5c÷5b=.3×72÷2=108;(3)①72=32×23=(5a)2×(5b)3=2+35a b,572c=①2+35a b=5c,①c=2a+3b;故答案为:c=2a+3b.【点睛】本题主要考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.16.(1)-2;(2)103x【解析】【分析】(1)原式根据绝对值的代数意义,零指数幂的运算法则以及负整数指数幂的运算法则化简各项,然后再进行加减运算即可;(2)原式根据积的乘方运算法则,单项式乘以单项式、单项式除以单项式运算法则化简各项后再合并即可得到答案.【详解】解:(1)11 |2|(2)3π-⎛⎫---+-⎪⎝⎭=2-1-3 =-2;(2)()()254822()x x x x +-⋅÷- =481024x x x x -⋅÷=101224x x x -÷=10104x x -=103x【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.17.(1)27;(2)32x =. 【解析】【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b +=⨯÷2423333a b +=⨯÷4433a b +-=4343a b -+=①4310a b -+=①431a b -=-①原式1433327-+===;(2)①24222296x x ++-=①2222222926x x ++-=⨯①()22222196x +-=⨯①229326x +⨯=①22232x +=①22522x +=①225x +=①32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.18.(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【解析】【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立; (3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,①左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,①左边=右边,①2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101①由①-①得:a =2101-1①20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【解析】【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --; (4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.20.(1)9-;(2)0.【解析】【分析】(1)分别化简绝对值,计算乘方、零指数幂和负整数指数幂,再相加减即可; (2)分别计算同底数幂的乘法、积的乘方,再合并同类项即可.【详解】解:(1)原式=1(8)13+-+-=9-;(2)原式=666910a a a +-=0.【点睛】本题考查同底数幂的乘法、积的乘方、零指数幂和负整数指数幂等.熟练掌握相关运算法则,并能熟练运用是解题关键.21.(1)m =52;(2)2008. 【解析】【分析】(1)由33•9m +4÷272m -1的值为81,易得3+2(m +4)-3(2m -1)=4,继而求得答案;(2)由4434,381m m n -==易得34n =81=34,继而求得n =1,则可求得2008n 的值. 【详解】解:(1)①33•9m +4÷272m -1=33•32(m +4)÷33(2m -1)=33+2(m +4)-3(2m -1)=81=34,①3+2(m +4)-3(2m -1)=4,解得:m =52; (2)①3m =4,①44443334381m n m n n -=÷=÷=, ①34n =81=34,①4n =4,解得:n =1,①2008n =2008.【点睛】此题考查了同底数幂的乘法运算、幂的乘方以及同底数幂的除法.此题难度适中,注意掌握指数的变化是解此题的关键.22.(1)8128x ;(2)9512x -,11513x -;(3)12.【解析】【分析】(1)观察第①行的前四个单项式,归纳类推出一般规律即可得;(2)分别观察第①行和第①行的前四个单项式,归纳类推出一般规律即可得;(3)先计算整式的加减进行化简,再将x 的值代入即可得.【详解】(1)第①行的第1个单项式为112x x -=,第①行的第2个单项式为221222x x -=,第①行的第3个单项式为313342x x -=,第①行的第4个单项式为414482x x -=,归纳类推得:第①行的第n 个单项式为12n n x -,其中n 为正整数,则第①行的第8个单项式为81882128x x -=,故答案为:8128x ;(2)第①行的第1个单项式为()122x x -=-,第①行的第2个单项式为()22242x x =-,第①行的第3个单项式为()33382x x --=,第①行的第4个单项式为()444162x x -=,归纳类推得:第①行的第n 个单项式为()2n n x -,其中n 为正整数,则第①行的第9个单项式为()9992512x x -=-,第①行的第1个单项式为()()11211112211x x -+-+=-,第①行的第2个单项式为()()21132213211x x +---+=-, 第①行的第3个单项式为()()11433135211x x -+-+=-, 第①行的第4个单项式为()()41154419211x x +---+=-,归纳类推得:第①行的第n 个单项式为()()111211n n n x --++-,其中n 为正整数, 则第①行的第10个单项式为()()10101101111121513x x --+-=-+, 故答案为:9512x -,11513x -; (3)由题意得:()89998102221A x x x =-++,当12x =时,()99108981112221222A ⎛⎫⎛⎫⎛⎫=⨯-⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⨯⎭, 101111242=-++, 101142=-+, 则910111151224424A ⎛⎫⎛⎫+=⨯-++ ⎪ ⎪⎝⎭⎝⎭, 910122=⨯,12=. 【点睛】本题考查了单项式的规律型问题、整式的化简求值,正确归纳类推出一般规律是解题关键.23.(1)23;(2)10121-.【解析】【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)①2x a =,3y a =,①23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,①S=2S-S=10121-.【点睛】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键. 24.(1)-2?0163-3 2(2) -3-32n 【解析】【详解】试题分析:(1)类比题目中的解题方法计算即可;(2)类比题目中的解题方法计算即可. 试题解析:(1)设M=1+3-1+3-2+…+3-2 016,①则3M=3+1+3-1+…+3-2 015,①①-①得2M=3-3-2 016,即M=-20163-32. (2)设N=1+3-1+3-2+…+3-n ,①则3N=3+1+3-1+…+3-n+1,①①-①得2N=3-3-n,即N=-3-32n.点睛:本题是一道阅读理解题,根据题目中所给的运算顺序或解题方法解决所给的问题,是处理这类问题的基本思路.25.1【解析】【详解】试题分析:根据幂的混合运算,先算同底数幂相除及幂的乘方,再算同底数相乘即可.试题解析:x n+1·x n-1÷(x n) 2 =x(n+1)+(n-1)-2n=x0=1。

七年级数学下册同步习题课件(图片版)第1章 整式的乘除 (共291张PPT)

七年级数学下册同步习题课件(图片版)第1章    整式的乘除 (共291张PPT)
1.1 同底数幂的乘法…………………………………………………………2 1.2 幂的乘方与积的乘方
第1课时 幂的乘方……………………………………………………….20 第2课时 积的乘方……………………………………………………….30 1.3 同底数幂的除法………………………………………………………...40 1.4 整式的乘法 第1课时 单项式与单项式相乘………………………………………….62 第2课时 单项式与多项式相乘………………………………………….83 第3课时 多项式与多项式相乘………………………………………….103 1.5 平方差公式 第1课时 平方差公式…………………………………………………….124 第2课时 平方差公式的运用…………………………………………….146 1.6 完全平方公式 第1课时 完全平方公式…………………………………………………..167 第2课时 完全平方公式的运用………………………………………….188 1.7 整式的除法 第1课时 单项式除以单项式……………………………………………..209 第2课时 多项式除以单项式……………………………………………..229 专题(一)幂的运算与创新学习…………………………………………….250 专题(二)乘法公式………………………………………………………….262 第一章 复习与提升………………………………………………………….
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档