八年级下学期一次函数单元测试题(含答案)
八年级数学下册《一次函数》单元测试卷(附带答案)
八年级数学下册《一次函数》单元测试卷(附带答案)一.选择题(每题3分,共30分)1现有变量x和y的四个关系式:y=|x|,|y|=x,y2=2x,y=2x2,其中y是x的函数的有()A.1个B.2个C.3个D.4个2下列各图象不表示函数的是()A.B.C.D.3.下列函数中,是正比例函数的是()A.y=﹣x﹣1B.C.y=﹣x+2D.y=5x24.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD 的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.5.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到距A地18千米的B地,他们离开A地的距离S(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据题目和图象所提供的信息,下列说法正确的是()A .乙比甲先到达B 地 B .乙在行驶过程中没有追上甲C .乙比甲早出发半小时D .甲的行驶速度比乙的行驶速度快6.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k≤3 C .0≤k<3 D .0<k<3 7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位 C .向上平移53个单位 D .向下平移53个单位 8.经过一、二、四象限的函数是 A.y=7 B.y=-2xC.y=7-2xD.y=-2x -79. 甲、乙两人准备在一段长为1200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m /s 和6 m /s ,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )的函数图象是( )10. 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是( ) A .⑴B .⑶C .⑴⑶D .⑴⑵⑶二、填空题(每题3分,共30分)11. 直线2(2)y x =-可以由直线2y x =向 平移 个单位得到的.12. 若一次函数2(1)12k y k =-+-的图象不经过第一象限,则k 的取值范围是 .13. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.14.直线y =kx +b 的上有两点A (﹣1,0)、B (2,1),则此直线的解析式为 . 14.一次函数y =(m +2)x +1若y 随x 的增大而增大,则m 的取值范围是___________. 15.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的 不等式0ax b +<的解集是 .16.直线12+-=x y 关于y 轴对称的直线的解析式_________.17.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 6的坐标是 .18某地出租车计费方法如图,x (km )表示行驶里程,y (元)表示车费,请根据图象解答下列问题:(1)该出租车的起步价是 元;(2)当x >2时,写出y 与x 的关系式 .甲 乙 丙60506543201211020时间(小时)时间(小时)时间(小时)出水量(立方米)进水量(立方米)O O O(3)小强有一次乘出租车的里程为18km,则他应付出租车车费为.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.如图,在平面直角坐标系中,一次函数y=﹣2x+1的图象与x轴、y轴分别交于A、B两点.(1)求A、B两点的坐标.(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.20.如图,直线y=kx+b分别交x轴于点A(4,0),交y轴于点B(0,8).(1)求直线AB的函数表达式;(2)若点P(2,m),点Q(n,2)是直线AB上两点,求线段PQ的长.21.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?22.如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?23.在抗击“新冠肺炎”工作中,某医院研制了一种防治“新冠肺炎”的新药,在试验药效时发现,如果成人按规定的剂量服用,那么服药后2小时血液中含药量最高,达每毫升8微克(1微克毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,当成人按剂量服药后. (1)分别求出和时与之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时对治病是有效的,那么这个有效时间是多长?310-=y x 2x ≤2x >yx24.某品牌包子铺出售两种包子:肉馅包子每个卖3元,素馅包子每个卖1元,春节来临之际,为酬谢新老客户,同时也为扩大店面影响,老板制定了两种让利方案. 甲方案:买一个肉馅包子就免费送一个素馅包子; 乙方案:均按八折出售.小马家筹备年货,计划在该店买20个肉馅包子,x (x 20)个素馅包子.(1)分别写出小马家按两种方案购买所需的费用y(元)与x (个)之间的函数关系式; (2)若小马家预计买肉馅包子20个,素馅包子30个,设按甲方案买n 个肉馅包子,余下的按乙方案购买,如何购买才能使老板让利最多?并求出让利的金额。
八年级下学期一次函数单元测试题(含答案)
八年级下学期一次函数单元测试题(含答案)一次函数测试题1.下列函数中,自变量x的取值范围是x≥2的是()A。
y=2-x。
B。
y=1/x+1.C。
y=4-x^2.D。
y=(x+2)/(x-2)2.下面哪个点在函数y=1/(2x+1)的图象上()A。
(2,1)。
B。
(-2,1)。
C。
(2,-1/5)。
D。
(-2,-1/5)3.下列函数中,y是x的正比例函数的是()A。
y=2x-1.B。
y=x/3.C。
y=2x。
D。
y=-2x+14.一次函数y=-5x+3的图象经过的象限是()A。
一、二、三。
B。
二、三、四。
C。
一、二、四。
D。
一、三、四5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A。
m>1/2.B。
m=1/2.C。
m<1/2.D。
m=-1/26.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A。
k>3.B。
0<k≤3.C。
-3<k<0.D。
0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A。
y=-x-2.B。
y=-x-6.C。
y=-x+10.D。
y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()图略)9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校,在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()图略)10.一次函数y=kx+b的图象经过点(2,-1)和(3,0),那么这个一次函数的解析式为()A。
y=-2x+3.B。
y=-3x+2.C。
y=3x-2.D。
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷
第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
初二数学下《一次函数》单元测试题含答案
人教版八年级数学《一次函数》单元测试之蔡仲巾千创作完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)1.函数y=1x-3+2.x-1的自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3D.1≤x≤33.下列各曲线中暗示y是x的函数的是()A B C D4.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD 的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24xB.y=-2x+24 C.y=2x-24 D.y=12x-12第4题图第9题图第10题图5.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A B C D6.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是()A B C D7.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0C.m<12D.m>128.若点M(-7,m),N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不克不及确定9.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.x>2 B.x<2C.x>-1 D.x<-110.如图是当地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(每题5分,共20分)11.在函数y=x-1x-2中,自变量x的取值范围是.12.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为.第12题图第13题图第14题图13.有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为小时.14.如图,经过点B(-2,0)的直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为.三、解答题(共90分)15.(8分)已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?16.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.17.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.18.(8分)已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.19.(10分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.20.(10分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.21.(12分)为更新果树品种,某果园计划购进A,B两个品种的果树苗栽植培育.若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.求y与x的函数解析式.22.(12分)如图,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标;(2)求两直线交点C的坐标;(3)求△ABC的面积.23.(14分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据分歧的骑行时间帮他确定选择哪种支付方式比较合算.参考答案姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
人教版八年级下学期一次函数单元测试卷与参考答案
人教版八年级下学期一次函数单元测试卷(时间:45分钟 满分:100分)班级 姓名 座号 成绩一、选择题(每小题4分,共40分)1、下列函数中,是一次函数的有( )(1)x y π= (2)12-=x y (3)xy 1= (4)x y 32-= (5)12-=x y . A 、4个 B 、3个 C 、2个 D 、1个2、一次函数1-=x y 的图像不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、若点A (2-,m )在正比例函数x y 21-=的图象上,则m 的值是( ) A 、41 B 、41- C 、1 D 、1- 4、已知一次函数的图象与直线1+-=x y 平行,且过点(8,2),那么此一次函数的解析式为( )A 、2--=x yB 、6--=x yC 、10+-=x yD 、1--=x y5、已知(-5,1y ),(-3,2y )是一次函数231+-=x y 图象上的两点,则1y 与2y 的关系是( )A 、1y <2yB 、1y =2yC 、1y >2yD 、无法比较6、在同一平面直角坐标系中,若一次函数图象交于点,则点的坐标为( )A 、(1-,4)B 、(1-,2)C 、(2,1-)D 、(2,1)7、一次函数b kx y +=的图象经过点(m , 1)和点(1-, m ),其中m >1,则k , b 应满足的条件是( )A 、k >0且b >0B 、k <0且b >0C 、k >0且b <0D 、k <0且b <0 8、某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y (公里)和所用的时间x (分)之间的函数关系.下列说法错误的是( )A 、小强从家到公共汽车站步行了2公里B 、小强在公共汽车站等小明用了10分钟C 、公共汽车的平均速度是30公里/小时D 、小强乘公共汽车用了20分钟533-=+-=x y x y 与M M9、如图所示,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;…;按此作法继续下去,则点4A 的坐标为( )A 、(0,64)B 、(0,128)C 、(0,256)D 、(0,512)10、如图,在平面直角坐标系中,点A (1-,m )在直线32+=x y 上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线b x y +-=上,则b 的值为( )A 、﹣2B 、1C 、1.5D 、2 二、填空题(每小题4分,共24分)11、使函数133+-=x y 有意义的自变量x 的取值范围是 .12、已知函数2)4(3+-=-m m y 是一次函数,则=m __ __.13、已知一次函数5)1(+-=x k y 随着x 的增大,y 的值也随着增大,那么k 的取值范围是__________.14、已知y 与12+x 成正比例,当5=x 时,2-=y ,则y 与x 之间的函数关系式为 .15、将直线13+=x y 向上平移1个单位长度后得到的直线是 .16、如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图像,图中s ,t 分别表示行驶距离和时间,则这两人骑自行车的速度相差_______h km /.第9题 第8题 第10题三、解答题(共36分)17、过点(0,﹣2)的直线1l :b kx y +=1(0≠k )与直线2l :12+=x y 交于点P (2,m ).(1)写出使得1y <2y 的x 的取值范围;(2)求点P 的坐标和直线1l 的解析式.18、如图,在直角坐标系中,直线4+=kx y 与x 轴正半轴交于一点A ,与y 轴交于点B ,已知△OAB 的面积为10,求这条直线的解析式.19、某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)根据图象求y 与x 的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?20、如图,直线l :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式;(3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标.单元测试参考答案1、B2、C3、C4、C5、C6、D7、B8、D9、C 10、D11、x >31-12、4-13、k >114、112114--=x y 15、23+=x y16、417、(1)x <2 (2)2251-=x y 18、454+-=x y 19、(1)2402+-=x y (40≤x ≤120) (2)100元20、(1)A (4,0),B (0,2) (2)|4|2t S -= (3)M (2,0)或(-2,0)。
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。
人教版数学八年级下册第19章一次函数单元测试卷4份含答案
人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。
八年级下学期一次函数单元测试题(含答案)(最新整理)
9.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按
时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是(10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=x-31
2
二、填空
11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________, 该函数的解析式为_________
分)如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t 之间的函数
2分钟应付通话费多少元?通话7
分)已知雅美服装厂现有A种布料70米,B种
米, 现计划用这两种布料生产M、N两种型
套.已知做一套M型号的时装需用A
种布料0.4米,可获利50元;做
B种布料0. 9米,
种布料0.6米,
型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
(套)的函数关系式,并求出自。
新人教版八年级下《一次函数》测试题及答案
八年级(下)第十九章一次函数单元检测题班级____姓名_____得分_____一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
A.(0,2-)B.(32,0)C.(8,20)D.(12,12)2.变量x,y有如下关系:①x+y=10②y=x5-③y=|x-3④y2=8x.其中y是x的函数的是A.①②②③④B. ①②③C. ①②D. ①3.下列各曲线中不能表示y是x的函数是().A.B.C.D.4.已知一次函数2y x a=+与y x b=-+的图象都经过A(2-,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3xy=得到53xy+=的图象,那么直线3xy=必须().A.向上平移5个单位B.向下平移5个单位C.向上平移53个单位D.向下平移53个单位8.经过一、二、四象限的函数是 A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
新人教版八年级下《一次函数》测试题及答案
新人教版八年级下《一次函数》测试题及答案2019-2020学年度第二学期八年级(下)第十九章一次函数单元检测题一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
1.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是().A.(3,1)B.(1,-2)C.(8,20)D.(-2,-6)2.变量x,y有如下关系:①x+y=10②y=|x-3|③y=8x。
其中y是x的函数的是A.①②②③④B.①②③C.①②D.①3.下列各曲线中不能表示y是x的函数是().A. B. C. D.4.已知一次函数y=2x+a与y=-x+b的图象都经过A(-2,),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.75.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k 的取值范围是A.k>5B.k<5C.k>-5D.k<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B.二象限C.四象限D.不能确定7.如果通过平移直线y=x+5得到y=|x|+5的图象,那么直线y=x必须().A.向上平移5个单位 B.向下平移5个单位 C.向上平移3个单位 D.向下平移3个单位8.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是A.一次函数的图象B.二次函数的图象C.指数函数的图象D.对数函数的图象10.若方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,则k的值为A.2B.0C.-2D.±211.根据如图的程序,计算当输入x=3时,输出的结果y=.输入 x y=-x+5(x>1) y=x+5(x≤1) 输出 y12.已知直线y=2x与直线y=-2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y=2x与直线y=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是间x(分钟)之间的函数关系,其中AB段表示每分钟0.5元,BC段表示每分钟0.3元,AC段表示每分钟0.2元。
人教版数学八年级下册 第十九章 一次函数单元测试卷(含简单答案)
人教版数学八年级下册 第十九章 一次函数一、单选题1.下列函数中,是正比例函数的是( )A .y =7−xB .y =−4xC .y =2x−3D .y =2x 2+x−12.对于直线y =−12x−1的描述,正确的是( )A .y 随x 的增大而增大B .图象不经过第二象限C .经过点(−2,−2)D .与y 轴的交点是(0,−1)3.在平面直角坐标系中,将函数y =−2x +1的图象向下平移2个单位长度,所得函数图象的表达式是( )A .y =−2x +3B .y =−2x−3C .y =−2x +1D .y =−2x−14.如图,直线l 1:y =x +2与直线l 2:y =kx +b 相交于点P ,则方程组{y =x +2y =kx +b的解是( )A .{x =2y =0B .{x =1y =4C .{x =4y =2D .{x =2y =45.点A(2,y 1)和点B(−1,y 2)在直线y =−3x +b 上,则y 1,y 2的关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定6.一蓄水池中有50m 3的水,打开排水阀门开始放水后水池中的水量与放水时间有如下关系:放水时间/分1234…水池中的水量/m 348464442…下列说法不正确的是( )A .蓄水池每分钟放水2m 3B .放水18分钟后,水池中的水量为14m 3C .放水25分钟后,水池中的水量为0m 3D .放水12分钟后,水池中的水量为24m 37.如图,直线y =kx +b 与x 轴的交点的坐标是(﹣3,0),那么关于x 的不等式kx +b >0的解集是( )A .x >﹣3B .x <﹣3C .x >0D .x <08.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晩,乌龟还是先到达了终点.下图中与故事情节相吻合的是( )A .B .C .D .9.小丽和小明相约一起去体育公园锻炼身体.小丽从学校出发,小明从家里出发,学校、体育公园和小明家在同一直线步道上,两人同时出发,相向而行,同时到达体育公园,小明锻炼了半小时后,以原速度的23继续去学校,小丽锻炼了35分钟后,以原速度的56也返回学校,结果小明比小丽早7分钟到达学校.两人之间的距离s (m )与小丽出发的时间t (min )函数图象如图所示,则下列说法中错误的是( )A .小丽的原速度为60m/minB .小明的原速度是小丽的原速度的1.5倍C.点A的坐标是(52,0)D.当小明到达学校时,小丽距离小明家1150m 10.如图,在直角坐标系中,正方形A1B1C1O、A2B2C2C1、…、A n B n C n C n−1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=x+1的图象上,点C1、C2、C3、…、C n均在x轴上,则点A2021的坐标为()A.(22021−1,22021)B.(22020−1,22020)C.(22021−1,22020)D.(22020−1,22021)二、填空题11.若函数y=(m−3)x|m−2|+3是一次函数,则m的值为.12.在平面直角坐标系xOy中,若正比例函数y=kx(k≠0)的图象经过A(1,3)和B(﹣1,m),则m的值为.13.若一次函数y=kx+b(k,b为常数,k≠0)的图像经过点A(−2,−1)和点B(1,2),则不等式kx+b≥2的解集为.14.已知点A(6,0)及在第一象限的动点P(x,y),且x+y=8.设△OPA的面积为S,则S关于x的函数解析式为.15.如图,在平面直角坐标系中,点P坐标(3,0),有一长度为2的线段AB在直线y=x+1的图象上滑动,则PA+PB的最小值为.16.如图1,已知长方形ABCD,动点P沿长方形ABCD的边以B→C→D的路径运动,记△ABP 的面积为y,动点P运动的路程为x,y与x的关系如图2所示,则图2中的m的值为.17.如图,在平面直角坐标系中,点A,B的坐标分别为(1,1),(1,4),直线y=2x+b与线段AB有公共点,则b的取值范围是.18.在某中学一次趣味运动会50米托盘乒乓球接力项目中(即乒乓球放入托盘内,参赛队员用手托住托盘运送乒乓球),初一(1)班和初一(2)班同台竞技,某时刻,1班的小敏和2班的小文分别位于50米赛道的起点A地和终点B地,他们同时出发,相向而行,分别以各自的速度匀速直线奔跑,过程中的某时刻,小敏不慎将乒乓球落在C地(A、B、C在同一直线上且乒乓球落在C地后不再移动),第6秒时小敏才发现并迅速掉头以原速去捡乒乓球,捡到球后,小敏将速度提升到小文速度的两倍迅速往B地匀速跑去,小敏掉头和捡球的时间忽略不计,如图是两人之间的距离y(米)与小敏出发的时间x(秒)之间的函数图象,则当小敏到达B地时,小文离A地还有米.三、解答题19.如图,在平面直角坐标系中,直线y=−x+8分别交x轴、y轴于A、B两点,点C(a,4)是直线上一点,点D在线段OA上,且AD=6.(1)求点D的坐标;(2)求CD所在直线的解析式;(3)在直线AB上是否存在一点P,使得S△ADP=18?若存在,求出点P的坐标;若不存在,请说明理由.20.如图,是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据函数图象,蓄电池剩余电量为35千瓦时汽车已经行驶的路程为____千米.当0≤x≤150时,消耗1千瓦时的电量,汽车能行驶的路程为_____千米.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶160千米时,蓄电池的剩余电量.21.上党腊驴肉是山西长治的传统名吃,其肉质肥而不腻、瘦而不柴,香味四溢、回味无穷.某特产专卖店购进一批袋装上党腊驴肉,进价为40元/袋.经市场调研发现,当销售单价为60元时,每天可售出300袋;销售单价每降低1元,每天可多售出20袋.设销售单价降低x元时,每天的销售量为y袋.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)该特产专卖店考虑房租、人工费等因素,计划销售这种腊驴肉的利润率不得低于40%,那么当销售单价定为多少元时,每天的销售量最大?最大销售量为多少袋?22.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)23.描点画图是探究未知函数图象变化规律的一个重要方法,下面是通过描点画图感知函数y=−|x+2|+1图象的变化规律的过程:2(1)化简函数解析式,当x≥−2时,y=,x<−2时,y=;(2)根据表中的数据,完成如表,并画出该函数的图象:x…−301…y……(3)若另一个一次函数y=kx+b过点(−2,2),且与y=−|x+2|+1的图象有交点,则k的2范围是24.某公司为了计算游客游览,设置了观光接驳车,如图1所示,公园设计的其中一条观光路线上设有A,B,C,D四个站点,相邻两个站点的距离是相同的,游客只能在站点上下车,一两接驳车在A,D之间匀速往返行驶,某时刻这辆接驳车从点A站出发,当运行时间为t分钟时(游客上下车的时间忽略不计),这辆接驳车与A站的距离为y千米,y与t的函数图象如图2所示.综合上面信息,回答问题:(1)这辆接驳车的运行速度为千米/分钟,站点A,B之间的距离为千米;(2)当这辆接驳车运行到B站时,其对应的运行时间t为分钟;(3)小宇沿观光路线徒步游览,当他到达站点B,D之间的M处时,正好遇到开往D站的接驳车,此时他临时有事要赶回A站,于是他决定先返回走到B站,等待刚才那辆接驳车从D站开回,已知小宇步行的平均速度为0.1千米/分钟,若他能够不晚于这辆接驳车到达B 站,则M处离A站的最远距离为千米.参考答案1.B2.D3.D4.D5.B6.D7.A8.C9.C10.B11.112.-313.x ≥114.S =-3x +2415.3416.1217.−1≤b ≤218.1219.(1)点D 的坐标为(2,0)(2)y =2x−4(3)存在,点P 的坐标为(2,6)或(14,−6)20.(1)150,6;(2)y =−12x +110,3021.(1)y =300+20x (2)当销售单价定为4元时,每天的销售量最大,最大销售量为380袋22.(1)1280,6;(2)小华的速度为80米/分钟,小明从广场跑去学校的速度为120米/分钟;(3)7:51;(4)在保证不迟到的情况下,小明最多可以讲解1次23.(1)−x−32;x +52;(3)k <−1或k >1.24.(1)0.5;5;(2)10分钟和50分钟;(3)253。
八年级下学期一次函数单元测试题(含答案)(K12教育文档)
八年级下学期一次函数单元测试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级下学期一次函数单元测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级下学期一次函数单元测试题(含答案)(word版可编辑修改)的全部内容。
一次函数测试题一、选择1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( )A .(2,1)B .(-2,1)C .(2,0)D .(—2,0) 3.下列函数中,y 是x 的正比例函数的是( )A .y=2x —1B .y=3x C .y=2x 2D .y=-2x+14.一次函数y=—5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m 〈12D .m=—126.若一次函数y=(3-k)x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k 〉3 B .0<k ≤3 C .0≤k<3 D .0<k 〈3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=—x —2 B .y=—x —6 C .y=-x+10 D .y=-x-1⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,—1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=—3x+2C .y=3x —2D .y=12x —3二、填空11.已知自变量为x 的函数y=mx+2—m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b 的图象经过点A (1,3)和B(—1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x —2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=—x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,—8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(—2,b),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、解答21.根据下列条件,确定函数关系式: (1)y+1与x —2成正比,且当x=9时,y=16; (2)y=kx+b 的图象经过点(3,2)和点(-2,1). 566-2xy1234-2-15-14321O22。
人教版八年级下册数学 第十九章 一次函数 单元测试卷(含答案)
第十九章 一次函数 单元测试卷一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( ) A.x >2 B.x <2C.x ≠2D.x ≠-22.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤15.若一次函数y=(1-2m)x+m 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则 m 的取值范围是( ) B.m < 21 A.m >0 C.0<m <21 D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6± B.4C. 6±或4D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为 5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )C8.一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0B. -4<y<0C. y<-2D. y<-49.将直线y=-2x向右平移2个单位所得直线的解析式为()A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与x之间关系的函数图象是()二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为。
人教版八年级数学下册《一次函数》单元测试卷及答案
人教版八年级数学下册《一次函数》单元测试卷1班级____姓名_____得分_____一、 选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
A .(0,2-) B .(32,0) C .(8,20) D .(12,12) 2.变量x,y 有如下关系:①x+y=10②y=x5-③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④ B. ①②③ C. ①②D. ①3. 下列各曲线中不能表示y 是x 的函数是( ).A .B .C .D .4. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 5.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5C.k >-5D.k <-56.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位8.经过一、二、四象限的函数是 A.y=7B.y=-2xC.y=7-2xD.y=-2x-7题号 1 2 3 4 5 6 7 8 9 10 11 12 答案9.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
八年级数学(下)第十九章《一次函数》单元测试卷含答案
八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。
新人教版八年级下册一次函数单元测试题(附答案)
新人教版八年级下册一次函数单元测试题(附答案)一次函数单元测试题一、填空(30分)1.已知函数y=(k-3)xk-8是正比例函数,则k=4.2.函数表示法有三种,分别是解析式、图象、数据表。
3.函数y=(x-1)/(x-2),自变量x的取值范围是x≠2.4.已知一次函数经过点(-1,2)且y随x增大而减小,请写出一个满足上述条件的函数关系式y=-x+1.5.已知y+2和x成正比例,当x=2时,y=4且y与x的函数关系式是y=2x。
6.直线y=3x+b与y轴交点(0,-2),则这条直线不经过第三象限。
7.直线y=x-1和y=x+3的位置关系是平行,由此可知方程组y=x-1y=x+3解的情况为无解。
8.一次函数图象经过第二、三、四象限,那么它的表达式是y=-x。
9.已知点A(a,-2)。
B(b,-4)在直线y=-x+6上,则a、b的大小关系是a>b。
10.从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间七分钟(t≥3且t是整数),则付话费y元与t分钟函数关系式是y=2.4+(t-3)。
二、选择(30分)1.下列函数,y随x增大而减小的是(B)。
A.y=xB.y=x-1C.y=x+1D.y=-x+12.若点A(2,4)在直线y=kx-2上,则k=(C)。
A.2B.3C.4D.53.y=kx+b图象如图则(B)。
A.k>0.b>0B.k>0.b<0XXX<0.b<0D.k04.已知直线y=(k-2)x+k不经过第三象限,则k的取值范围是(D)。
A.k≠2B.k>2C.0<k<2D.k≤25.函数y=3-x自变量x取值范围是(C)。
A.x≥3B.x>3C.x≤3D.x<36.y=kx+k的大致图象是(C)。
ABCD7.函数y=kx+2,经过点(1,3),则y=0时,x=-2. A.-2B.2C.0D.±28.直线y=x+1与y=-2x-4交点在(A)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数测试题
一、选择
1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=
1
2
x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=
1
2
x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=
3
x
C .y=2x 2
D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四
5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>
12 B .m=12 C .m<12 D .m=-12
6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3
7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-1
⑧.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )
9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按
时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=1
2
x-3 二、填空
11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.
13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.
15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.
16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)
17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220
x y x y --=⎧⎨
-+=⎩的解是________.
18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.
19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.
20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、解答
21.根据下列条件,确定函数关系式:
(1)y+1与x-2成正比,且当x=9时,y=16;
(2)y=kx+b 的图象经过点(3,2)和点(-2,1).
566
-2
x
y
1
23
4
-2-15
-1
43
21O
22.一次函数y=kx+b 的图象如图所示:
(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?
23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)
之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?
25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.
①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;
②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
x
y
12
34
-2
-1
C
A
-1
4
3
21
O
答案:
1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.16
16.<;< 17.
5
8
x
y
=-
⎧
⎨
=-
⎩
18.0;7 19.±6 20.y=x+2;4
21.①y=17/7x;②y=1
5
x+
7
5
22.y=x-2;y=8;x=14
23.①5元;②0.5元;③45千克
24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.
②2.4元;6.4元
25.①y=50x+45(80-x)=5x+3600.
∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,
共用B种布料[0.4x+0.9(80-x)]米,
∴解之得40≤x≤44,
而x为整数,
∴x=40,41,42,43,44,
∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);
②∵y随x的增大而增大,
∴当x=44时,y最大=3820,
即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。