数据仓库技术简介
数据仓库和数据挖掘的OLAP技术
感谢您的观看
THANKS
大数据OLAP技术可以提供多 维度的数据分析,帮助用户 深入了解数据的内在联系和 规律。
云端OLAP
01
云端OLAP技术将OLAP服务部署在云端,为用户提供灵活、可伸缩的数据分析 服务。
02
云端OLAP技术可以利用云计算的优势,实现快速部署、自动扩缩容和按需付 费等特性,降低用户的IT成本。
03
云端OLAP技术可以支持多用户同时访问和操作,提高数据分析的效率和协作 性。
雪花模型
维度表之间存在层级关系,数据结构 复杂,适用于数据量较大的情况。
多维数据的存储
分布式存储
将数据分散存储在多个节点上,提高存储容量和查询效率。
压缩存储
对数据进行压缩,减少存储空间占用,但会增加查询时的解压缩开销。
多维数据的查询
MDX查询语言
用于查询多维数据的专用语言,功能强大且灵活。
SQL查询
数据挖掘利用机器学习、统计学等方法,从大量数据中发现有价值的模式和规律,为企业提供新的商业 机会和竞争优势。
06
OLAP技术的发展趋势
实时OLAP
01
实时OLAP技术能够提供实时 的数据分析和查询,满足用户 对数据实时性的需求。
02
实时OLAP技术通过采用高性 能的数据存储和查询技术,如 列式存储、分布式计算等,提 高了数据查询的响应速度。
OLAP技术通过多维数据分析模型, 提供交互式的查询、报表、仪表板 等功能,使得用户能够从多个角度 分析数据,获得深入的业务洞察。
决策支持系统
决策支持系统(DSS)是利用数据仓库和OLAP技术,为决策者提供数据 分析和决策建议的系统。
DSS通过整合企业内外部数据,提供多维度的数据分析工具,帮助决策者 了解业务状况、预测未来趋势,从而做出科学、合理的决策。
数据仓库技术概述
数据仓库技术概述数据仓库技术随着数据库技术的日趋成熟以及应用系统逐渐完善,不管是利用早期的RDB、Dbase,依旧后来以其领先的核心技术日渐垄断关系数据库市场的Oracle、Sysbase、DB2,企业差不多积存了大量的数据,这些数据信息为企业的开展提供了客瞧依据。
毫无疑咨询,在竞争剧烈的商业环境下,信息将是取胜的要害因素,决策者必须能快速可靠、随时自主地访咨询企业数据,才能有效地做出方案和决策。
在这种需求牵引下,形成了数据仓库〔DataWarehouse〕的新概念、新技术。
1数据仓库的概念数据仓库的提出是以关系数据库、并行处理和分布式技术的飞速开展为根底,是解决信息技术〔IT〕在开展中存在的拥有大量数据,而其中有用信息贫乏的综合解决方案。
数据仓库是一种新的数据处理体系结构,是对企业内部各部门业务数据进行统一和综合的中心数据仓库。
它为企业决策支持系统〔DSS〕和经理信息系统〔EIS〕提供所需的信息。
它是一种信息治理技术,为推测利润、风险分析、市场分析以及加强客户效劳与营销活动等治理决策提供支持的新技术。
数据仓库技术对大量分散、独立的数据库通过、平衡、协调和编辑后,向治理决策者提供辅助决策信息,发扬大量数据的作用和价值。
概括地讲,数据仓库是面向主题的〔Subject-Oriented〕、集成的(Integrated)、稳定的(Nonvolatile)、不同时刻的(Timer-Variant)数据集合,用于支持经营治理中决策制订过程。
数据仓库中的数据面向主题,与传统数据库面向应用相对应。
主题是一个在较高层次上将数据回类的标准,每一个主题对应一个宏瞧的分析领域:数据仓库的集成特性是指在数据进进数据仓库之前,必须通过数据加工和集成,这是建立数据仓库的要害步骤,首先要统一原始数据中的矛盾之处,还要将原始数据结构做一个从面向应用向面向主题的转变;数据仓库的稳定性是指数据仓库反映的是历史数据的内容,而不是日常事务处理产生的数据,数据经加工和集成进进数据仓库后是极少或全然不修改的;数据仓库是不同时刻的数据集合,它要求数据仓库中的数据保持时限能满足进行决策分析的需要,而且数据仓库中的数据都要标明该数据的历史时期。
大数据分析知识:数据存储与管理——数据仓库、云计算和数据库
大数据分析知识:数据存储与管理——数据仓库、云计算和数据库随着技术的不断发展,越来越多的数据产生并蓄积,如何进行有效管理和利用已成为人们关注的焦点之一。
本文将从数据存储和管理的角度出发,分别介绍数据仓库、云计算和数据库的概念、特点及其在大数据领域的应用。
一、数据仓库数据仓库(Data Warehouse)是指从各个数据源中提取数据并经过处理后存储到一个统一且独立的数据集合中,以方便用户进行分析和决策的系统。
数据仓库通过将数据分析和查询分离,实现了数据决策支持系统的高效运行,从而提高数据的利用率。
数据仓库的特点:1.面向主题:数据仓库是面向主题的,即数据集中一般针对某个主体领域或数据分析任务。
例如,销售数据仓库、人力资源数据仓库等。
2.集成性:数据仓库具有集成性,可以将不同类型的数据源通过ETL(Extract-Transform-Load)的方式进行标准化、转换和加载,并保证数据之间的一致性和完整性。
3.时间性:数据仓库关注历史数据的存储和分析,并提供不同时间维度的数据展示方式,为决策者提供多样化的选择。
数据仓库在大数据领域的应用:1.数据分析和挖掘:通过数据仓库中的数据进行多维分析和数据挖掘,为决策者提供全面的数据支持。
2.企业级统一视图:数据仓库可以实现企业级统一视图,使决策者可以获得一份全面的数据报告。
3.交互式查询:数据仓库提供交互式的查询功能,用户可以根据需要自定义查询条件和维度,获得满足自己需求的数据结果。
二、云计算云计算(Cloud Computing)是指通过网络以服务方式提供计算资源的一种模式。
云计算基于分布式计算、虚拟化技术和自动化管理,通过网络实现数据处理和存储,通过服务模式进行资源使用和计费。
云计算的特点:1.弹性伸缩:云计算可以根据需求进行弹性伸缩,为企业和个人提供更加灵活的资源使用方式,从而降低IT成本、提高效率。
2.服务化:云计算基于服务的方式提供资源,用户可以根据需要选择提供商和服务类型,并根据实际使用量进行计费,降低了技术和资金门槛。
数据仓库技术在气象预测中的应用案例分析(一)
气象预测一直是人类生活中不可或缺的一环。
随着科技的进步和数据的爆炸式增长,对于气象预测精度的要求也越来越高。
数据仓库技术应运而生,为气象预测提供了全新的解决方案。
一、数据仓库技术简介数据仓库技术起源于20世纪80年代,它是一种将多个数据源中的数据集中存储和管理的技术。
通过数据仓库,我们可以将散乱的数据整合起来,并在此基础上进行数据分析和决策支持。
二、气象预测的复杂性气象预测是一项复杂的任务,涉及到大量的数据和多个因素的综合分析。
气象数据包括气温、湿度、风速等多个指标,同时还有地理位置、季节等因素的影响。
这种复杂性使得传统的预测方法面临一系列的挑战,例如数据分析的效率低下、预测精度不高等问题。
三、数据仓库技术在气象预测中的应用案例1. 数据整合数据仓库技术可以将不同来源的气象数据整合在一起,包括气象局、卫星数据等。
通过数据仓库,气象预测人员可以快速获取并整合各种数据,为后续的分析和预测提供便利。
2. 数据清洗和预处理由于气象数据是通过多个传感器采集的,所以可能存在一些缺失值、异常值或错误值。
数据仓库技术可以对这些数据进行清洗和预处理,例如填充缺失值、平滑时间序列等,从而提高数据的质量和准确性。
3. 数据分析和挖掘数据仓库技术可以为气象预测提供强大的数据分析和挖掘功能。
通过对历史气象数据的挖掘和分析,可以发现一些潜在的规律和趋势,为未来的气象预测提供参考依据。
4. 预测模型的建立基于数据仓库中的数据,可以建立各种预测模型,例如基于时间序列的ARIMA模型、基于机器学习的回归模型等。
这些预测模型能够根据历史数据的趋势和规律,来预测未来的气象情况。
5. 实时预测和决策支持通过数据仓库技术,气象预测结果可以实时更新,为决策者提供准确的气象情况。
例如在台风到来之前,预测模型可以根据实时数据来预测其路径和强度,从而为相应的防灾措施提供科学依据。
四、数据仓库技术在气象预测中的优势相比于传统的气象预测方法,数据仓库技术在以下几个方面有着明显的优势:1. 数据整合和共享:数据仓库可以将各种数据整合在一起,并实现共享,从而提高数据利用率和分析效率。
数据仓库的描述
数据仓库的描述数据仓库是一种技术性的建模工具,它可以为企业提供有用的信息,有助于实现组织的商业目标。
近年来,由于企业对数据分析的日益重视,数据仓库的需求也在不断增长。
这里,我将介绍数据仓库的概念、特征以及建造方法。
一、念数据仓库是一种特殊的数据库,它用于存储和管理组织的历史数据,有助于组织实现其商业目标。
它是一个集中的,统一的,完整的数据存储库,它被设计成可以满足决策支持系统的要求。
数据仓库通常包括一个大型的数据库,用于存储组织数据。
这些数据可以是历史数据、实时数据、混合数据或经过处理的数据。
它们可以从不同的数据源中提取,例如企业资源计划系统(ERP)、交易处理系统(TPS)、会计系统等。
二、特征数据仓库具有以下特点:(1)集中:数据仓库可以把企业的数据集中存放在一起,减少数据的冗余,提高数据的准确性。
(2)统一:数据仓库可以将来自不同数据源的数据统一进行分类和管理,提高数据的一致性和可比性。
(3)完整:数据仓库在存储数据时,可以把企业的所有历史数据都存储起来,从而支持更好地决策分析。
(4)可靠:数据仓库可以提供可靠和弹性的数据存储,可以不受客观环境的影响,充分保护企业数据的安全。
(5)可扩展性:数据仓库可以根据企业业务的发展情况,对数据存储进行扩容,以满足企业对数据存储的需求。
(6)可分析性:数据仓库可以支持复杂的数据分析,例如商业智能、数据挖掘和机器学习等,可以提供企业更有效的决策分析支持。
三、建造方法建造数据仓库通常需要经过以下步骤:(1)数据收集:收集并清洗企业信息,将企业的业务数据以结构化的形式存储在数据仓库中。
(2)数据整合:将企业的来自不同部门的数据进行整合,以满足数据仓库的需求。
(3)数据质量:定义数据的质量指标,对数据仓库中的数据进行检查,以确保数据的准确性。
(4)数据建模:根据组织的业务需求,使用结构化概念技术(SDT)来建模数据,以便于后续数据分析。
(5)数据应用:利用数据仓库中的数据,以及运用数据挖掘和机器学习等技术,为企业提供决策支持。
数据仓库与数据挖掘技术解析
数据仓库与数据挖掘技术解析在现代信息化的时代,数据已经成为了一种非常重要的资产。
在这些海量的数据之中,有很多有价值的信息被隐藏其间。
这就需要我们使用数据仓库与数据挖掘技术,通过对数据的分析和挖掘,向我们呈现出内在有价值的数据信息,帮助我们更好地理解数据,并从中发现我们需要的信息。
一、什么是数据仓库?在这个信息时代,数据已经成为企业不可缺少的一部分。
数据仓库是一个专门用于存储数据的系统。
它是一个集成的数据存储库,可以提供数据分析、数据挖掘、Web 搜索和企业报告等功能,以帮助企业快速响应客户需求、创造商业价值。
数据仓库是一个面向主题、集成、时间相对稳定和可刷新的数据存储库,用于支持企业智能化决策的整个过程。
面向主题: 数据仓库是围绕企业内关键业务件建立的,如销售、供应、市场等;集成: 数据仓库可集成不同来源的数据;时间相对稳定: 数据仓库存储的数据相对长周期,如一年或更长;可刷新: 数据仓库是可刷新的,数据可以通过批处理或实时方式更新。
二、数据仓库的重要性数据仓库非常重要,因为它提供了企业知识管理的基础。
企业知识管理是智能化决策和企业的长期成功的基础。
数据仓库可以帮助企业了解他们的客户、业务和市场动态。
由于大量的数据每天产生,数据仓库是必要的,以便企业能够应对不断变化的市场需求和管理信息的日益复杂的挑战。
数据仓库的另一个重要方面是它可以帮助企业洞察和理解他们的客户。
通过数据仓库分析数据可以确定客户的购买模式、使用历史和趋势,以及他们对于企业的反应。
这有助于企业制定更好的战略、优化点,以更好地满足客户需求。
三、数据挖掘技术数据挖掘是一种从大量数据中提取信息、关系和模式的技术。
数据挖掘不是单纯的筛选和过滤数据,而是在数据中寻找隐含的知识和模式。
如同羊毛出在羊身上,这些我们不曾发现过的、规律性强的数据关联,本身就是数据中蕴藏的财富。
数据挖掘使用抽样、统计分析、模型构建等技术,将庞大、复杂的数据库处理成有价值的信息,一方面为业务提供帮助,一方面成为指导企业决策的可靠的数据来源。
数仓的概念
数仓的概念一、概述数仓(Data Warehouse)是一个面向主题、集成、稳定、随时间变化而变化的数据集合,用于支持企业决策。
它是一个大型的数据存储库,包括历史和当前的数据,并且被设计为支持企业分析和报告。
数仓不同于传统的数据库,它更加注重数据的整合和分析。
二、数仓的特点1. 面向主题:数仓是按照业务主题进行组织的,而不是按照应用程序或者部门进行组织。
2. 集成:数仓包含了来自多个源系统的数据,并且经过了清洗、转换和整合处理。
3. 稳定性高:数仓中存储的数据是经过验证和清洗后的高质量数据,保证了数据的准确性和一致性。
4. 面向时间:数仓中存储了历史和当前的数据,方便用户进行趋势分析和历史比较。
5. 支持多种查询方式:数仓支持复杂查询和分析操作,并且能够提供多种查询方式,如OLAP、报表等。
三、数仓架构1. 数据源层:包括各种内部或外部系统中产生的原始数据源,如ERP系统、CRM系统、生产数据等。
2. 数据抽取层:将数据源层的数据进行抽取、清洗和转换,生成适合数仓存储的数据格式。
3. 数据存储层:存储经过清洗和转换后的数据,包括维度表和事实表。
4. 数据访问层:提供多种查询方式和分析工具,如OLAP分析、报表查询等。
5. 元数据管理层:管理数仓中各种对象(如表、字段、维度等)的定义信息,方便用户进行查询和分析操作。
四、数仓建设流程1. 需求分析阶段:明确企业的需求和目标,并确定数仓建设的范围和规模。
2. 设计阶段:设计数仓架构,并确定各个层次的数据模型、ETL流程以及元数据管理策略等。
3. 实施阶段:按照设计方案进行开发和实施,并对ETL流程进行测试和优化。
4. 上线运行阶段:将数仓上线并投入使用,同时对其进行监控和维护,确保其稳定性和可靠性。
五、数仓应用场景1. 企业决策支持:通过对历史数据的分析和趋势预测,帮助企业做出更加准确的决策。
2. 业务分析和监控:通过对业务数据的分析和监控,帮助企业了解业务运营情况,并及时发现问题和机会。
数据仓库
9.1.1数据仓库技术的产生数据仓库(Data Warehouse)技术完全是在需求的驱动下产生与发展起来的。
在过去的十年中,数据库技术,特别是联机事务处理(OLTP:On-line Transaction Processing),主要是为自动化生产、精简工作任务和高速采集数据服务的。
它是事务驱动的、面向应用的。
随着社会的发展,人们产生了使用现有的数据,进行分析和推理,为决策提供依据。
这样的需求导致了决策支持系统(DDS:Decision Support System)的产生。
目前,传统的数据库(DB)仅对当前事务所产生的数据记录保存下来,并对这些数据进行各种日常事务处理。
随着数据量的增大,查询要求也越来越复杂,DB逐渐出现了许多难以克服的问题,集中表现为:数据分散、缺乏组织性;数据难以转化为有用信息;不能满足复杂的查询要求;只保存短期数据,分析时不能满足长期预测需要。
于是,人们开始尝试对DB中的数据进行再加工,形成一个综合的、面向分析的环境,以更好的支持决策分析,数据仓库的思想便逐渐形成了。
传统的信息技术一直未能提供一种行之有效的手段,帮助管理人员方便地访问制定决策需要的信息,辅助他们制定决策。
数据仓库的出现改变了这一状况,它能帮助人们正确的判断即将出现的机会,提高企业对市场变化的反应速度,帮助决策者解决商业过程中存在的问题。
DW的真正价值在于帮助人们制定能改进商业化过程的决策,而不只是使商业过程自动化。
1.数据仓库的效益数据仓库可以给企业带来许多无形的收益,主要体现在以下几方面:(1) 改变了企业的经商之道以前,企业只注重生产什么样的产品,以产品定位市场。
随着行业竞争的加剧和用户需求趋于多样化、个性化,企业的生产必须以用户需要为目标,及时捕捉用户信息,根据用户的需求来进行产品的生产和销售,而这一切都源于对数据仓库中所存储的大量信息的追踪和分析。
使用数据仓库可以行进行有目标的市场销售,把最满意的产品和服务送到可获得最大利润的客户手中。
数据仓库技术名词解释
数据仓库技术名词解释
数据仓库技术是一种用于帮助企业集成、存储和分析大量数据的技术。
这种技术主要基于数据库系统技术发展而来,逐步形成了一系列独立的新应用技术。
通过数据仓库技术,大量的数据可以从不同的数据源中提取、转换并加载到一个数据存储库中。
然后,对这些数据进行多维分析和报告,以帮助企业做出更明智的商业决策。
数据仓库是一个为企业提供决策支持的数据存储系统,可以提供包括历史数据、实时数据、汇总数据等在内的所有类型的数据支持。
数据仓库的架构通常采用星型模型或雪花模型,以方便进行多维分析和查询。
此外,数据仓库技术还可以帮助企业提高数据质量,通过对收集到的数据进行清理和转换,提高数据的质量和准确性。
以上内容仅供参考,如需更多信息,建议查阅数据仓库相关书籍或咨询该领域专业人士。
数据仓库的技术要求
数据仓库的技术要求
x
数据仓库的技术要求
一、基础技术
1、硬件要求:数据库存储服务器应采用高性能的服务器,具有足够的内存容量和IO性能;
2、存储层:采用磁盘阵列等存储技术,支持高容量的数据存储、高IO性能等;
3、数据库层:采用Oracle、MySQL等主流数据库,支持多用户访问;
4、数据交换技术:支持从关系型数据库、文件系统、外部数据源进行数据传输,以满足数据采集、清洗等功能的需要;
5、数据挖掘技术:支持关联规则挖掘、分类、回归、聚类等算法,帮助分析系统挖掘出数据仓库中隐藏的关联及模式;
二、数据仓库技术
1、数据模型:支持多维结构的数据模型,通过分层存储、元数据管理、维度管理等技术,实现高效的数据分析及查询;
2、数据集成技术:支持多数据源的集成,实现对不同数据源的快速访问,支持多种格式的数据转换及ETL技术;
3、查询及分析技术:支持OLAP、SQL等多种查询及分析技术,满足用户的复杂分析需要;
4、数据可视化技术:采用数据可视化技术,更直观的将复杂的
数据模型及分析结果展现出来,便于用户阅读;
5、安全技术:采用数据加密、数据审计、灾难恢复等技术保障数据安全,支持多级用户权限管理;
6、元数据管理:支持元数据的抽取分析,帮助用户更快的完成数据集成及元数据的管理。
数据仓库的描述
数据仓库的描述数据仓库是企业管理信息系统中最为核心的部分,它能够对大量原始数据进行综合、分析与挖掘,从而支持高级决策,成为信息系统的“心脏”。
本章描述数据仓库系统的功能、技术基础和发展过程,阐述数据仓库的各项内容及相互之间的关系。
第一节数据仓库系统的功能数据仓库是用来收集、存储、管理和分析企业中的所有历史数据。
在使用数据仓库系统之前,必须要掌握企业历史数据的特点,这样才能将数据仓库建设成为一个真正具有实际意义的应用系统。
一、数据仓库系统的主要功能数据仓库系统包括数据采集子系统、数据整理子系统、数据加工子系统和数据存储子系统等四个基本模块。
其中数据整理子系统完成数据的清洗、集成、转换、统计和压缩等操作;数据加工子系统提供了对海量数据进行分类、汇总、合并等操作;数据存储子系统提供了对数据仓库中的各种数据存储到企业业务处理系统中去,以便进行各种查询、统计、计算和分析等操作。
二、数据仓库系统的技术基础数据仓库系统的技术基础是指其建立在何种技术基础之上。
随着IT技术的飞速发展,目前数据仓库技术已经渗透到数据仓库系统的方方面面。
为了更好地理解数据仓库的各项内容,首先介绍了数据仓库的概念、功能及结构,然后简要回顾了数据仓库产生的背景、应用现状及发展趋势。
三、国内外研究现状我们知道数据仓库(DF)是一种新兴的技术手段,但数据仓库是如何发展起来的,它是怎样体现出自身的价值呢?这些问题也许很少有人想过。
国外学者对数据仓库的研究主要集中在理论方面,而国内研究多集中于具体应用领域的探讨。
以下通过简单的介绍说明国内外数据仓库的研究现状。
首先,国外研究领域涉及数据仓库的学者较多,他们的研究比较全面、深入,为数据仓库的发展奠定了坚实的理论基础。
其次,我国也开展了数据仓库的研究,只不过由于起步晚,加之条件限制,发展速度相对缓慢,很多理论性的研究成果并没有被引入实践。
虽然如此,还是有一批专家学者对此投入了极大的热情。
总的来说,近几年我国数据仓库研究取得了长足的进步,成果丰硕,但是与国外相比还有一定的差距。
数据仓库技术架构及方案
数据仓库技术架构及方案数据仓库技术架构及方案是指一种将企业的各种数据进行集成、转换和存储的技术架构及解决方案。
在数据仓库技术架构及方案中,数据从多个不同的源进行提取、转换和加载,最后存储在一起以供查询和分析。
本文将介绍数据仓库技术架构及方案的关键组成部分和流程。
一、数据仓库技术架构的关键组成部分:1.数据源:数据仓库的数据可以来自于多种不同的源,如企业内部系统、外部数据供应商和第三方数据等。
2.数据抽取:将数据从源系统中提取出来,并进行清洗、转换和整合,以适应数据仓库的存储和分析需求。
3.数据加载:将经过处理的数据加载到数据仓库中的存储层,通常包括数据仓库数据库、数据仓库服务器等。
4.元数据管理:对数据仓库中的数据进行元数据管理,包括对数据的描述、定义和分析,以支持数据仓库的查询和分析需求。
5.数据查询和分析:通过数据仓库中的分析工具和查询语言,使用者可以对数据仓库中的数据进行查询、分析和报表生成等操作。
6.数据治理:数据仓库需要进行数据治理,包括数据质量管理、数据安全管理等,以保障数据仓库的可靠性和安全性。
二、数据仓库技术架构及方案的关键流程:1.数据需求分析:根据企业的业务需求,确定数据仓库的基本数据模型和存储需求,包括事实表、维度表、指标等。
2.数据抽取和清洗:根据数据需求,将数据从源系统中提取出来,并进行清洗、转换和整合,以适应数据仓库的存储和分析需求。
3.数据加载和转换:将经过处理的数据加载到数据仓库中的存储层,同时进行数据的转换和集成,以确保数据的一致性和准确性。
4.元数据管理:对数据仓库中的数据进行元数据管理,包括对数据的描述、定义和分析,以支持数据仓库的查询和分析需求。
5.数据查询和分析:通过数据仓库中的分析工具和查询语言,使用者可以对数据仓库中的数据进行查询、分析和报表生成等操作,支持企业决策和业务分析。
6.数据治理:数据仓库需要进行数据治理,包括数据质量管理、数据安全管理等,以保障数据仓库的可靠性和安全性。
数据仓库技术
⑦InfoPrintBusinessIntelligenceSolution
⑧GlobalServicesBIOffering ⑨InsuranceUnderwritingProfitabilityAnalysis
• 2. Oracle数据仓库解决方案
1) Oracle数据仓库包含了一整套的产品和服务,覆盖了数据仓库定义, 设计和实施的整个过程。
• 1)建立DSS应用 • 2)理解需求,改善和完善系统,维护数据仓库
DSS应用开发的大致步骤
• 1)确定所需的数据。 • 2)编程抽取数据。 • 3)合并数据。 • 4)分析数据。 • 5)回答问题。 • 6)例行化、一次分析处理的最后、我们要决定是否将
在上面已经建立的分析处理例行化。
1.6 数据仓库的解决方案及工具介绍
三、面向对象数据模型
• 面向对象数据仓库系统包括一个面向对象的数据仓库 和各种面向对象的数据源。有两种面向对象的数据仓 库模型:未压缩模型和压缩模型。未压缩模型在面向对 象模型中保持了数据Q的原始结构。当数据源中的数据 改变时,数据仓库中的数据相应地跟着改变。这种模 型易于维护实例之间的关系,并能保持数据的完整性, 但查询性能不高。压缩模型,又叫棍合模型,把由视 图定义的各种类的属性联合起来,形成一个新类。根 据这个新的类产生新的实例,并存储到数据仓库中。 这种模型的查询性能大大提高。面向对象的数据模型 也有许多改进模式。
随时间变化的特点
• 特点: • 1)数据仓库随时间变化不断增加新的数据内容。 • 2)数据仓库也会随时间定期删除旧的数据。 • 3)数据仓库中包含大量的综合数据,这些综合数据中
很多跟时间有关,如数据经常按照时间段进行综合。随 时间的变化,这些综合数据可能需要被重新处理和在更 高层次上被综合。
大数据的存储技术
大数据的存储技术大数据存储技术是指用于存储和管理大数据的各种技术和方法。
随着互联网、物联网和移动互联网的快速发展,大数据的规模和复杂度越来越大,传统的存储技术已经无法满足大数据的存储需求。
因此,大数据存储技术变得越来越重要。
本文将介绍大数据存储技术的相关概念、特点和技术,以及目前主流的大数据存储技术,包括分布式文件系统、NoSQL数据库、数据仓库等。
同时,我们还将讨论大数据存储技术的应用场景和未来发展趋势。
一、大数据存储技术的相关概念和特点1.1大数据存储技术的概念大数据存储技术是指用于存储和管理大数据的各种技术和方法。
大数据存储技术与传统的数据存储技术相比,具有以下特点:1)大规模:大数据存储技术需要能够存储和处理非常庞大的数据量,通常是TB、PB甚至EB级别的数据。
2)高可扩展性:大数据存储技术需要具有良好的可扩展性,能够在不影响性能的情况下动态地扩展存储容量。
3)高性能:大数据存储技术需要具有高性能,能够快速地读写大规模的数据。
同时,还需要能够支持并发访问和复杂的数据分析操作。
4)多样性:大数据存储技术需要能够存储和管理各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。
1.2大数据存储技术的特点大数据存储技术具有以下特点:1)分布式存储:大数据存储技术通常基于分布式存储架构,能够将数据存储在多台独立的服务器上,并实现数据的分布式访问和处理。
2)高可靠性:大数据存储技术需要具有高可靠性,能够在硬件故障或其他问题出现时保证数据的安全性和完整性。
3)高性能:大数据存储技术需要具有高性能,能够快速地读写大规模的数据,并支持复杂的数据处理和分析操作。
4)低成本:大数据存储技术通常以低成本的硬件和开源软件为基础,能够降低存储成本并提高存储效率。
以上是大数据存储技术的相关概念和特点,接下来我们将介绍目前主流的大数据存储技术。
二、主流的大数据存储技术大数据存储技术包括分布式文件系统、NoSQL数据库、数据仓库等多种技术和方法,下面我们将介绍这些主流的大数据存储技术。
数据仓库技术
.
四、数据仓库关键技术
2.元数据 关于数据的数据,例:数据字典。元数据是描述数据仓库 内数据的结构和建立方法的数据。元数据为访问数据仓库
提供了一个信息目录,这个目录全面描述了数据仓库中都
有什么数据、这些数据怎么得到的、和怎么访问这些数据。 是数据仓库运行和维护的中心,数据仓库服务器利用他来 存贮和更新数据,用户通过他来了解和访问数据。可将其 按用途的不同分为两类,技术元数据和商业元数据。
Office Day
.
A Sample Data Cube
TV 1Qtr PC VCR sum
Date
2Qtr 3Qtr
Total annual sales 4Qtr sum of TV in U.S.A.
U.S.A
Canada
Country
Mexico
sum
.
五、数据模型
多维数据模型 1.星型模型
J Jones 两个孩子 高血压 。。。。。
顾客
J Jones 女 1945年7月20日出生 去年两张罚单 一次大事故 已婚 两个孩子 高血压 。。。。。。
.
2.2 集成
数据库
应用A m,f 应用B 1,0 应用C x,y 应用D 男,女
应用A 管道cm 应用B 管道inches 应用C 管道mcf 应用D 管道yds
电子商务技术
.
一、产生
• 需求: – 业务自动化->分析自动化
• 传统数据库(事务型)不适合分析应用: – 性能要求不同:事务型要求快速反应 – 数据集成问题:多种事务型数据库 – 数据内容不同:事务型主要是当前数据,分析 要求历史数据 – 数据综合程度不同:事务型要求细节数据,分 析要求综合
数据仓库技术知识
一、数据仓库数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。
数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。
它是单个数据存储,出于分析性报告和决策支持目的而创建。
为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
1、数据仓库是面向主题的;操作型数据库的数据组织面向事务处理任务,而数据仓库中的数据是按照一定的主题域进行组织。
主题是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。
2、数据仓库是集成的,数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出数据仓库的核心工具来,进行加工与集成,统一与综合之后才能进入数据仓库;数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到当前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
3、数据仓库是不可更新的,数据仓库主要是为决策分析提供数据,所涉及的操作主要是数据的查询;4、数据仓库是随时间而变化的,传统的关系数据库系统比较适合处理格式化的数据,能够较好的满足商业商务处理的需求。
稳定的数据以只读格式保存,且不随时间改变。
5、汇总的。
操作性数据映射成决策可用的格式。
6、大容量。
时间序列数据集合通常都非常大。
7、非规范化的。
Dw数据可以是而且经常是冗余的。
8、元数据。
将描述数据的数据保存起来。
数据库技术的主要介绍及应用方法
数据库技术的主要介绍及应用方法数据库技术是信息系统的一个核心技术。
是一种计算机辅助管理数据的方法,数据库技术也有一定的应用方法。
以下是由店铺整理数据库技术的内容,希望大家喜欢!数据库技术的概述数据库技术是通过研究数据库的结构、存储、设计、管理以及应用的基本理论和实现方法,并利用这些理论来实现对数据库中的数据进行处理、分析和理解的技术。
即:数据库技术是研究、管理和应用数据库的一门软件科学。
数据库技术研究和管理的对象是数据,所以数据库技术所涉及的具体内容主要包括:通过对数据的统一组织和管理,按照指定的结构建立相应的数据库和数据仓库;利用数据库管理系统和数据挖掘系统设计出能够实现对数据库中的数据进行添加、修改、删除、处理、分析、理解、报表和打印等多种功能的数据管理和数据挖掘应用系统;并利用应用管理系统最终实现对数据的处理、分析和理解。
数据库技术是信息系统的一个核心技术。
是一种计算机辅助管理数据的方法,它研究如何组织和存储数据,如何高效地获取和处理数据。
是通过研究数据库的结构、存储、设计、管理以及应用的基本理论和实现方法,并利用这些理论来实现对数据库中的数据进行处理、分析和理解的技术。
即:数据库技术是研究、管理和应用数据库的一门软件科学。
数据库技术是现代信息科学与技术的重要组成部分,是计算机数据处理与信息管理系统的核心。
数据库技术研究和解决了计算机信息处理过程中大量数据有效地组织和存储的问题,在数据库系统中减少数据存储冗余、实现数据共享、保障数据安全以及高效地检索数据和处理数据。
数据库技术的产生背景数据库技术产生于20世纪60年代末70年代初,其主要目的是有效地管理和存取大量的数据资源.数据库技术主要研究如何存储,使用和管理数据. 数年来,数据库技术和计算机网络技术的发展相互渗透,相互促进,已成为当今计算机领域发展迅速,应用广泛的两大领域.数据库技术不仅应用于事务处理,并且进一步应用到情报检索,人工智能,专家系统,计算机辅助设计等领域.数据库技术的发展应用从20世纪60年代末期开始到如今,数据库技术已经发展了30多年。
《数据仓库技术》课程思政教案
主题:数据仓库技术一、课程简介数据仓库技术是一门涉及信息管理、数据分析和决策支持的重要课程,旨在培养学生对大数据处理和管理的能力。
通过本课程的学习,学生将掌握数据仓库的概念、架构、设计和实现方法,并了解数据挖掘、商业智能和决策支持系统的相关知识。
二、教学目标1.理论与实践相结合,使学生能够全面掌握数据仓库技术的基本原理和应用方法。
2.培养学生对于数据分析和决策支持的能力,提高他们的信息化素养和实际工作能力。
3.引导学生运用数据仓库技术进行综合实践,培养其团队协作和问题解决能力。
三、教学内容1.数据仓库基本概念(1)数据仓库和数据集市的定义和特点(2)数据仓库的架构和组成2.数据仓库设计和建模(1)数据仓库的设计原则(2)星型模型与雪花模型(3)ETL(Extract, Transform, Load)过程3.商业智能和数据挖掘(1)商业智能和数据挖掘的基本概念(2)常用的数据挖掘算法和技术4.数据仓库的应用和实践(1)数据仓库在企业管理决策中的应用(2)数据仓库的建设和维护(3)数据仓库的性能优化和监控四、教学方法1.理论讲解与案例分析相结合,以案例为导向,让学生理论联系实际。
2.课堂互动和小组讨论,引导学生主动参与,培养团队合作能力。
3.实践教学,通过数据仓库软件的操作和设计,让学生提高实际应用能力。
五、教学评价和考核1.平时成绩包括课堂表现、作业和小组讨论等,占总成绩的30。
2.期末考核以闭卷考试和实际操作项目为主,占总成绩的70。
3.教师将根据学生的全面表现,对学生进行综合评价和考核,以此来评定学生的学业成绩。
六、教学参考1.书籍:《数据仓库与数据挖掘》、《数据仓库与商务智能》2.全球信息湾:国内外相关学术机构和企业官方全球信息湾3.案例:企业数据仓库建设案例和商业智能应用案例七、结语通过本课程的学习,学生将能够全面了解数据仓库技术的基本概念和应用方法,掌握数据分析和决策支持的相关技能,为其未来从事信息管理和数据分析工作打下良好的基础。
数据仓库与数据挖掘
数据仓库与数据挖掘数据仓库与数据挖掘是现代信息技术领域中重要的概念和技术,它们在数据管理和分析方面起着关键作用。
本文将详细介绍数据仓库与数据挖掘的定义、原理、应用以及相关技术。
一、数据仓库的定义与原理数据仓库是一个用于存储和管理大量结构化和非结构化数据的系统,它将来自多个数据源的数据进行提取、转换和加载,以便进行高效的查询和分析。
数据仓库的主要特点包括:集成性、主题性、稳定性和可扩展性。
数据仓库的建立通常经历以下几个步骤:1. 数据提取:从各个数据源中提取数据,并进行清洗和转换,以确保数据的一致性和准确性。
2. 数据加载:将清洗和转换后的数据加载到数据仓库中,并进行索引和分区,以提高查询效率。
3. 数据建模:根据业务需求,设计和构建数据仓库的逻辑模型,包括维度模型和事实模型。
4. 数据查询与分析:通过使用数据仓库中的数据,进行复杂的查询和分析,以获取有价值的信息和洞察。
二、数据挖掘的定义与原理数据挖掘是从大量数据中发现隐藏的模式、关联和知识的过程。
它是通过应用统计学、机器学习和人工智能等技术,从数据中提取实用的信息,以支持决策和预测。
数据挖掘的主要任务包括:1. 分类:将数据分为不同的类别,以预测新数据的分类。
2. 聚类:将数据分为不同的群组,以发现数据中的相似模式。
3. 关联规则挖掘:发现数据中的相关关系和规律。
4. 预测:基于历史数据,预测未来的趋势和结果。
数据挖掘的过程通常包括以下几个步骤:1. 数据预处理:对原始数据进行清洗、转换和集成,以提高数据质量和一致性。
2. 特征选择:选择最具代表性和相关性的特征,以减少数据维度和提高模型的准确性。
3. 模型构建:选择合适的数据挖掘算法,并使用训练数据构建预测模型。
4. 模型评估:通过使用测试数据集,评估模型的性能和准确性。
5. 模型应用:将训练好的模型应用于新的数据,以进行预测和决策支持。
三、数据仓库与数据挖掘的应用数据仓库与数据挖掘在各个领域都有广泛的应用,包括市场营销、金融、医疗、电子商务等。
数仓基本知识
数仓基本知识什么是数仓数仓(Data Warehouse)是指将企业各个业务系统中的数据进行整合、清洗、转换和存储,以支持企业决策分析和业务需求的一种数据管理系统。
数仓将数据从不同的源系统中提取出来,并进行一系列的处理和加工,最终形成一个统一、一致、可信的数据集合,供企业用户进行数据分析、报表生成、决策支持等工作。
数仓的目标数仓的主要目标是提供高质量的、一致的和可信的数据,以支持企业的决策分析和业务需求。
具体来说,数仓的目标包括:1.数据整合:将来自不同业务系统的数据整合到一个统一的数据存储中,消除数据的冗余和不一致性。
2.数据清洗:对数据进行清洗和校验,确保数据的准确性和完整性。
3.数据转换:将数据进行转换和加工,使其适应不同的数据分析和报表生成需求。
4.数据存储:将经过整合和加工的数据存储到数据仓库中,提供高效的数据访问和查询能力。
5.数据分析:为企业用户提供灵活、高效的数据分析工具和技术,支持数据挖掘、业务智能和决策支持等工作。
数仓的架构数仓的架构通常包括以下几个组成部分:1.数据源:数仓的数据源包括企业各个业务系统中的数据,如销售系统、采购系统、财务系统等。
这些数据源可以是关系型数据库、文件系统、API接口等。
2.数据抽取:数据抽取是将数据从源系统中提取出来的过程。
通常可以使用ETL(Extract, Transform, Load)工具来完成数据抽取,将数据导入到数据仓库中。
3.数据存储:数据存储是指将经过整合和加工的数据存储到数据仓库中。
数据仓库可以采用关系型数据库、列式数据库、分布式文件系统等存储技术。
4.数据加工:数据加工是指对数据进行转换和加工的过程,以满足不同的数据分析和报表生成需求。
数据加工可以包括数据清洗、数据转换、数据聚合等操作。
5.数据分析:数据分析是指对数据进行统计、挖掘和分析的过程,以发现数据中的规律和模式。
数据分析可以使用各种工具和技术,如SQL查询、数据挖掘算法、机器学习模型等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据仓库技术概述数据仓库技术随着数据库技术的日趋成熟以及应用系统逐渐完善,无论是利用早期的RDB、Dbase,还是后来以其领先的核心技术日渐垄断关系数据库市场的Oracle、Sysbase、DB2,企业已经积累了大量的数据,这些数据信息为企业的发展提供了客观依据。
毫无疑问,在竞争激烈的商业环境下,信息将是取胜的关键因素,决策者必须能快速可靠、随时自主地访问企业数据,才能有效地做出计划和决策。
在这种需求牵引下,形成了数据仓库(Data Warehouse)的新概念、新技术。
1数据仓库的概念数据仓库的提出是以关系数据库、并行处理和分布式技术的飞速发展为基础,是解决信息技术(IT)在发展中存在的拥有大量数据,而其中有用信息贫乏的综合解决方案。
数据仓库是一种新的数据处理体系结构,是对企业部各部门业务数据进行统一和综合的中央数据仓库。
它为企业决策支持系统(DSS)和经理信息系统(EIS)提供所需的信息。
它是一种信息管理技术,为预测利润、风险分析、市场分析以及加强客户服务与营销活动等管理决策提供支持的新技术。
数据仓库技术对大量分散、独立的数据库经过规划、平衡、协调和编辑后,向管理决策者提供辅助决策信息,发挥大量数据的作用和价值。
概括地说,数据仓库是面向主题的(Subject-Oriented)、集成的(Integrated)、稳定的(Nonvolatile)、不同时间的(Timer-Variant)数据集合,用于支持经营管理中决策制订过程。
数据仓库中的数据面向主题,与传统数据库面向应用相对应。
主题是一个在较高层次上将数据归类的标准,每一个主题对应一个宏观的分析领域:数据仓库的集成特性是指在数据进入数据仓库之前,必须经过数据加工和集成,这是建立数据仓库的关键步骤,首先要统一原始数据中的矛盾之处,还要将原始数据结构做一个从面向应用向面向主题的转变;数据仓库的稳定性是指数据仓库反映的是历史数据的容,而不是日常事务处理产生的数据,数据经加工和集成进入数据仓库后是极少或根本不修改的;数据仓库是不同时间的数据集合,它要求数据仓库中的数据保存时限能满足进行决策分析的需要,而且数据仓库中的数据都要标明该数据的历史时期。
数据仓库最根本的特点是物理地存放数据,而且这些数据并不是最新的、专有的,而是来源于其它数据库的。
数据仓库的建立并不是要取代数据库,它要建立在一个较全面和完善的信息应用的基础上,用于支持高层决策分析,而事务处理数据库在企业的信息环境中承担的是日常操作性的任务。
数据仓库是数据库技术的一种新的应用,而且到目前为止,数据仓库还是用关系数据库管理系统来管理其中的数据。
传统数据库用于事务处理,也称为操作型处理,是指对数据库联机进行日常操作,即对一个或一组记录的查询和修改,主要面向企业特定的应用服务。
用户关心的是响应时间、数据的安全性和完整性。
数据仓库用于决策支持,也称分析型处理,它是解决决策支持系统的基础。
数据仓库的数据概念模型是数据的多维视图,它直接影响到前端工具、数据库的设计和联机分析处理(On Line Analytical Processing, OLAP)的查询引擎。
在多维数据模型中,一部分数据是数字测量值,而这些数字测量值是依赖于一组维的,这些维提供了测量值的上下文关系。
因此,多维数据视图就是这样一些由层次的维构成的多维空间中,存放着数字测量值。
多维概念模型的另一个特点是对一个或多个维所做的集合运算。
这些运算可以包括对于同样维所限定的测量值的比较。
一般来说,时间维是一个有特殊意义的维,对决策中的趋势分析很重要。
针对多维模型产生了OLAP分析方法,包括以下三种:(1)旋转:即将表格的横、纵坐标交换(x、y)→(y、x).(2)上钻和下钻:对所关心的数据根据维的层次提升或降低观察的层次。
(3)切片和切块:主要根据维的限定做投影、选择等数据库操作获得数据。
2数据仓库的数据组织一个典型的数据仓库的数据组织结构如图2.10所示:数据仓库中的数据分为四个级别:早期细节级、当前细节级、轻度综合级、高度综合级。
源数据经过综合后,首先进入当前细节级,并根据具体需要进行进一步的综合,从而进入轻度综合级乃至高度综合级,老化的数据将进入早期细节级由此可见,数据仓库中存在着不同的综合级别,一般称之为"粒度"。
粒度越大,表示细节程度越低,综合程度越高。
高度综合级轻度综合级当前细节级早期细节级图1 DW数据组织结构数据仓库中还有一种重要的数据--元数据(metadata)。
元数据是"关于数据的数据",在数据库中,元数据是对数据库中各个对象的描述;在关系数据库中,这种描述就是对表、列、数据库、视图和其他对象的定义。
从广义上讲,数据仓库元数据代表定义数据仓库对象的任何东西,无论是一个表、一个列、一个查询、一个商业规则,还是数据仓库部的数据转移。
元数据是数据仓库中所有管理、操作数据的数据,是数据仓库的核心。
数据仓库反映的是企业数据库的业务模型,其核心是管理元数据。
数据仓库元数据被分成三类:(1)管理元数据。
它包括所有建立和使用数据仓库的信息,源数据库的描述,后端和前端工具选择,定义数据仓库的模式,综合数据、维和层次信息,预定义的查询和报表,数据集市的位置和容,数据存储的物理组织、分段,数据抽取、清洗、转换的规则,数据刷新的策略,数据存取的权限、用户等限定。
(2)业务元数据。
这一部分有业务流程和定义,数据所有关系和存取控制策略。
(3)操作元数据。
它是数据仓库在运行时的管理信息,记录数据在进行层次分析时的层次位置、现在数据仓库中的数据信息、监测信息(包括使用统计、错误报告等)。
数据仓库的数据组织方式共有三种:虚拟存储方式、基于关系表的存储和多维数据库存储方式。
虚拟存储方式是虚拟数据仓库的数据组织形式。
没有专门的数据仓库来存储数据,数据仓库中的数据仍然在源数据库中,只是通过语义层工具根据用户的多维需求,完成多维分析的功能。
这种方式组织比较简单,花费少,用户使用灵活。
但同时这种方式也存在一个致命的缺点:当源数据库的数据组织比较规,没有数据不完备、冗余,又比较接近于多维数据模型时,虚拟数据仓库的多维语义层就容易定义。
而一般数据库的组织关系都比较复杂,数据库中的数据又有许多冗余和冲突的地方。
在实际组织中,这种方式很难建立起为决策服务的有效数据支持。
关系型数据仓库的组织是将数据仓库的数据存储在关系型数据库的表结构中,在元数据的管理下,完成数据仓库的功能。
这种组织方式在建库时,有两个主要过程完成数据的抽取。
首先要提供一种图形化的点击操作界面,让分析员对源数据库的容进行选择,定义多维数据模型。
然后再编制程序把数据库中的数据抽取数据仓库的数据库中。
多维数据库的组织是直接面向OLAP分析操作的数据组织形式。
这种数据库产品也比较多,实现方法不尽相同。
其数据组织采用多维数据结构文件存储数据,相应有维索引及相应的元数据管理文件与数据相对应。
1)、维表多维概念模型可以被多维数据库直接实现,然而,对于采用关系型OLAP 方式,则只能将多维概念模型和多维操作映射到关系和SQL查询上。
大多数数据仓库都采用星型模型来表示多维概念模型。
数据库中包括一事实表(Fact Table),另外对于每一维都有一维表(Dimensional Table)。
事实表中的每条元组都包括保证多维关系的指向各个维表的外键和一些相应的测量数据。
维表中记录的是有关这一维的属性。
星型模型使OLAP的复杂查询可以直接通过各维的层次,执行比较、上钻、下钻等操作。
在数据仓库中除了维表和事实表的数据之外,数据仓库中应当包含一些预处理过的综合数据。
预综合数据的组织可以有两种形式:增加概括表方式和使用多重编码的方式。
这种数据组织方式存在数据冗余、多维操作速度慢的缺点。
但这种数据组织方式是主流方案,大多数现存数据仓库集成方案都采用这种形式。
2)、多维数据库数据组织各公司多维数据库产品的数据组织不完全相同,Arob公司的EESbase 多维数据库是一种具有代表性的产品。
例如下面的这种组织方式,可以说明多维数据库的数据组织:用于分析的数据从关系数据库或关系数据仓库中抽取出来,被存放到多维数据库的超立方结构中—多维体。
这各种多维体是以多维数组方式记录各数值测量值的具体值。
相应各维有一定的记录维及维层次的元数据结构。
这种数据组织方式消除了大量数据库表中的空穴造成的空间浪费,又没有了在每个元组中在存储的外键信息,而由统一的维与数组的对应系数来限定数据,大大减少了存储空间。
当使用多维数据库作为数据仓库的基本数据存储形式时,最主要的缺点是使以维为基本框架的存储空间大大减少,针对多维数据组织的操作算法,大大提高了多维分析操作的效率。
但多维数据库产品还没有统一的标准,应用还较少。
3)、两种数据组织的等价性关系数据库和多维数据库两种数据组织方法可以构成等价的多维数据模型。
多种数据组织方法的等价性的数学依据是:多维空间中各点在离散坐标中一一对应于多维数组。
数据的存储同样是有层次性的。
对一个系统的多维视图定义是存储方式的概念形式,是最高层次的模型。
采用什么样的存储方式(即前面提到了关系数据库、多维数据库两种形式)是物理数据组织的最高层,它们都能实现对多维数据模型的存储。
关系型数据库的组织形式和方式不尽相同。
数据的具体物理存储(如数据文件的结构、索引、编码等技术的采用)是物理存储的最底层技术和方法。
对于数据文件的不同组织方法形成关系型数据库或多维数据库,这两种数据库又都能完成数据仓库的数据组织,即实现多维数据的存储。
4)、虚拟数据仓库虚拟数据仓库(Virtual Data Warehouse),即构造一个透明的访问机制(Demand Driven),使用户以习惯的方式及时、直接地访问大型企业数据库。
虚拟数据仓库策略允许用户使用一些工具通过网络获取数据。
因此这种方法最终会使提取和维护大量数据的开销最小。
这种方法为用户提供了最多的非预先准备好的查询可能。
虚拟数据仓库是在应用层上进行研究的,其组织形式是用原有的关系表模拟多维数据。
用户通过可视化的维定义工具,定义数据仓库中的各维,但在物理存储上并不实际进行数据仓库的组织,而只是在用户进行数据查询使用时,临时从网络和数据库中获取数据源定义的各维数据。
由于采用虚拟的方式,无需建立大量的数据存储,虚拟的数据访问方式着眼于最终用户对数据的直接访问,其特点在于用户可以直接访问数据而无需做大量的分析和结构映射。
3数据仓库系统结构数据仓库是在原有关系数据库基础上发展形成的,但不同于数据库系统的组织结构形式,它从原有的业务数据库中获得的基本数据和综合数据被分成一些不同的层次。
一般数据仓库的结构组成包括当前基本数据、历史基本数据、轻度综合数据、高度综合数据、元数据。