吉林省高中会考 数学 模拟试题

合集下载

2021年吉林普通高中会考数学模拟试题及答案

2021年吉林普通高中会考数学模拟试题及答案

2021年吉林普通高中会考数学模拟试题及答案注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时.将试卷和答题卡一并交回。

2.本试题分两卷.第1卷为选择题.第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间为100分钟。

3.第1卷选择题的答案都必须涂在答题卡上。

每小题选出答案后.用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后.再选涂其他答案标号。

选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上.注意字迹清楚.卷面整洁。

参考公式:标准差:锥体体积公式: V= 31S底·h其中.s 为底面面积.h 为高,柱体体积公式V=s.h球的表面积、体积公式S= 24R π V=343R π其中.s 为底面面积.h 为高, V 为体积 .R 为球的半径第1卷 (选择题 共50分)一、选择题(本大题共15小题.每小题的四个选项中只有一项是正确的.第1-10小题每 小题3分.第11-15小题每小题4分.共50分)1.设集合M={-2.0.2}.N={0}.则( ). A .N 为空集 B. N ∈M C. N M D. MN2.已知向量(3,1)=a .(2,5)=-b .那么2+a b 等于( ) A (1,11)- B (4,7) C (1,6) D (5,4)-3.函数2log (1)y x =+的定义域是( )222121[()()()]n s x x x x x x n =-+-++-A (0,)+∞B (1,)-+∞C (1,)+∞D [1,)-+∞4.函数sin y x ω=的图象可以看做是把函数sin y x =的图象上所有点的纵坐标保持不变.横坐标缩短到原来的12倍而得到的.那么ω的值为( ) A 14 B 12C 4D 25.在函数3y x =.2xy =.2log y x =.y =.奇函数是( )A 3y x = B 2xy = C 2log y x =D y =6.一个几何体的三视图如图所示.该几何体的表面积是( ) A 3π B 8π C 12π D 14π7.11sin 6π的值为( )A 12-B 2-C 12D 28.不等式2320x x -+<的解集为( )A {}2x x > B {}1x x > C {}12x x << D {}12x x x <>或9.在等差数列{}n a 中.已知12a =.24a =.那么5a 等于( )A .6B .8C .10D .1610.函数45)(2+-=x x x f 的零点为()俯视图左(侧)视图主(正)视图22A .(1,4)B .(4,1)C .(0,1),(0,4)D .1,411.已知平面α∥平面β.直线m ⊂平面α.那么直线m 与平面β的关系是( ) A 直线m 在平面β内 B 直线m 与平面β相交但不垂直 C 直线m 与平面β垂直 D 直线m 与平面β平行12. 在ABC ∆中.如果3a =2b =.1c =.那么A 的值是( )A 2πB 3πC 4πD 6π13.直线y= -12x+34的斜率等于 ( ) A .-12 B .34 C .12 D .- 3414.某城市有大型、中型与小型超市共1500个.它们的个数之比为1:5:9.为调查超市每日的零售额情况.需要通过分层抽样抽取30个超市进行调查.那么抽取的小型超市个数为( )A 5B 9C 18D 2015, .设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩.则2z x y =+的最小值等于 ( )A. 2B. 3C.4D.52021年吉林省普通高中学业考试模拟试题(数学) 注意事项:1.第Ⅱ卷共4页.用蓝、黑色钢笔或圆珠笔直接答在试卷上。

吉林省会考数学模拟试题及答案word版

吉林省会考数学模拟试题及答案word版

吉林省会考数学模拟试题及答案word版一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1+1=2B. 1+1=3C. 1+1=4D. 1+1=5答案:A2. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A3. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 2答案:A4. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5和-5D. 以上都不是答案:C二、填空题(每题5分,共20分)1. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是_________。

答案:52. 一个数的立方是-8,那么这个数是_________。

答案:-23. 一个等差数列的前三项分别为2,5,8,那么第四项是_________。

答案:114. 函数f(x) = 2x + 3的值域是_________。

答案:所有实数三、解答题(每题10分,共40分)1. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。

答案:f(2) = 2^2 - 4*2 + 4 = 4 - 8 + 4 = 02. 求解方程x^2 - 5x + 6 = 0。

答案:x = 2 或 x = 33. 已知一个等比数列的前两项分别为3和6,公比为2,求第三项。

答案:第三项 = 6 * 2 = 124. 计算定积分∫(0到1) (3x^2 - 2x + 1) dx。

答案:∫(0到1) (3x^2 - 2x + 1) dx = [x^3 - x^2 + x] (从0到1) = (1 - 1 + 1) - (0 - 0 + 0) = 1。

高中会考试题数学及答案

高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。

答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。

答案:5√5 cm3. 函数y = √x的反函数是______。

答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。

2020年8月份吉林省普通高中学业考试仿真卷03(数学)(解析版)

2020年8月份吉林省普通高中学业考试仿真卷03(数学)(解析版)

2020年8月份吉林省普通高中学业考试仿真卷03数 学本卷满分120分,考试时间100分钟。

注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时,将试卷和答题卡一并交回。

2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间 为 100 分钟。

3.第 1 卷选择题的答案都必须涂在答题卡上。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上 . 注意字迹清楚 . 卷面整洁。

参考公式:标准差: (n s x x =++-锥体体积:13V Sh = 其中s 为底面面积,h 为高 , 柱体体积公式 V=s.h球的表面积、体积公式:24S R π=,343V R π=其中s 为底面面积,h 为高,V为体积,R 为球的半径。

第 I 卷 (共 50 分)一、 选择题 (本大题共15小题,每小题的四个选项中只有一项是正确的。

第 1-10 小题每小题3 分,第11-15小题每小题4分,共50分)1.已知集合{0,1,2}A =,{,2}B a =,若B A ⊆,则a =( ) A .0 B .0或1 C .2 D .0或1或2【答案】B【解析】由B A ⊆,可知{0,2}B =或{1,2}B =,所以0a =或1.故选B 2.对任意的正实数a 及,m n Q ∈,下列运算正确的是( ) A .()nm m naa+=B .()nnm m aa =C .()nm m naa-=D .()nm mn aa =【答案】D【解析】根据指数的运算性质()nm mn a a =排除ABC.故选:D3.下列不等关系正确的是( ) A .若,a b c R >∈,则a c b c +>+ B .若,a b c R >∈,则ac bc > C .若,a b c d ><,则a c b d +<+ D .若,a b c d ><,则ac bd <【答案】A【解析】根据不等式的性质可知选项A 正确;当0c ≤时,选项B 不正确;当3a =,1b =,1c =,3d =时,选项C 不正确;当3a =,1b =,1c =,3d =时,选项D 不正确.故选:A.4.已知向量(3,1),(,2)a b x =-=-,且a b ⊥,则x 等于( )A .23B .23-C .6-D .6【答案】B【解析】因为a b ⊥,所以由向量垂直的性质得23(1)(2)320,.3x x x +-⨯-=+=∴=-故选B.5.经过点(02) P ,且斜率为2的直线方程为( ) A .220x y ++= B .220x y --= C .220x y -+= D .220x y +-=【答案】C【解析】由直线的点斜式方程,可得经过点(0,2)P 且斜率为2的直线方程为22(0)y x -=-,即220x y -+=,故选C.6.如图是一个几何体的三视图,则这个几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】C【解析】由主视图和侧视图都是三角形,俯视图为圆形,可得这个几何体为圆锥.故选:C.7.函数2cos ()y x x R =∈的最小值是( ) A .2- B .1- C .1 D .2【答案】A【解析】由题意,根据余弦函数的性质,可得1cos 1x -≤≤,当cos 1x =-时,函数2cos y x =取得最小值,最小值为2-.故选:A.8.从1,2,3,4这四个数中,任意取两个数,两个数都是偶数的概率是( )A .16B .14 C .13D .12【答案】A【解析】1,2,3,4这四个数中,任意取两个数基本事件:()()()()()()1,2,1,3,1,4,2,3,2,4,3,4共6种取法,其中两个数都是偶数为()2,4,所以两个数都是偶数的概率:16P =.故选:A 9.根据如图所示样本数据的频率分布直方图,估计样本中位数的值为( )A .95B .85C .75D .65【答案】B【解析】根据频率分布直方图可知,自左向右第一个小长方形的面积为0.1,第二个小长方形的面积为0.2,第三个小长方形的面积为0.4,所以中位数一定在区间[80,90]内,因为0.10.20.3,0.50.30.2+=-=,所以中位数为85.故选:B. 10.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .其中正确命题的序号是( ) A .①② B .②③C .①④D .③④【答案】C【解析】①由平行公理可以知道该命题是真命题;②不正确,,a c 的位置关系有三种,平行、相交或异面;③不正确,,a b 的位置关系有三种,平行、相交或异面;④由线面垂直的性可以知道该命题是真命题.故选:C11.如图,将一个圆八等分,在圆内任取一点P ,则点P 取自阴影部分的概率为( )A .58B .38C .14 D .18【答案】B【解析】设圆面积为1,则阴影部分的面积为38,所以在圆内任取一点P ,点P 取自阴影部分的概率为33818=,故选:B.12.已知函数3()-f x x =,则( )A .()f x 是偶函数,且在(-+)∞∞,上是增函数 B .()f x 是偶函数,且在(-+)∞∞,上是减函数 C .()f x 是奇函数,且在(-+)∞∞,上是增函数 D .()f x 是奇函数,且在(-+)∞∞,上是减函数 【答案】D【解析】()3f x x =-,则()()()33f x x x f x -=--==-,()f x ∴为奇函数又3x 在(),-∞+∞上单调递增,则()3f x x =-在(),-∞+∞上单调递减,本题正确选项:D .13.函数()ln 23f x x x =+-的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】B【解析】函数ln y x =是()0,∞+上的增函数,23y x =-是R 上的增函数, 故函数()ln 23f x x x =+-是()0,∞+上的增函数.(1)ln12310f =+-=-<,(2)ln 2223ln 210f =+⨯-=+>, 则()0,1x ∈时,()0f x <;()2,x ∈+∞时,()0f x >, 因为(1)(2)0f f ⋅<,所以函数()ln 23f x x x =+-在区间()1,2上存在零点.故选:B.14.执行如图所示的程序框图,如果输入的m 值为2,则输出的S 值为( ) A .0 B .3C .4D .6【答案】C【解析】221,4224m S =>∴=⨯-=.故选:C15.若实数,x y 满足不等式组41x y y x x +≤⎧⎪≥⎨⎪≥⎩,则2x y +的最大值是( ) A .3 B .5C .6D .7【答案】C 【解析】作出实数,x y 满足不等式组41x y y x x +≤⎧⎪≥⎨⎪≥⎩对应的平面区域如图:(阴影部分).由2z x y =+得2y x z =-+平移直线2y x z =-+,由图象可知当直线2y x z =-+经过点A 时,直线2y x z =-+的截距最大,此时z 最大.由4x y x y +=⎧⎨=⎩,解得()2,2A ,代入目标函数2z x y =+得2226z =⨯+=.即目标函数2z x y =+的最大值为6.故选:C.第Ⅱ卷 (共 70 分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)16.函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期是________.【答案】π【解析】函数的最小正周期为22T ππ==.答案:π 17.若一扇形的半径为2,面积为1,则该扇形的圆心角的弧度数是_________. 【答案】12【解析】设扇形的圆心角的弧度数为α,则由题意得扇形面积21212α⋅=,解得12α=.故答案为:12. 18.sin37cos 23cos37sin 23︒︒︒︒+的值为_______.【答案】2【解析】sin37cos 23cos37sin 23︒︒︒︒+sin(3723)sin 60=︒+︒=︒=.故答案为:. 19.已知等差数列{}n a 中,715a =,则357911a a a a a ++++=___________. 【答案】75【解析】357911a a a a a ++++7551575a ==⨯=三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20.在等比数列{}n a 中,253,81a a ==. (1)求n a ;(2)设3log n n b a =,求数列{}n b 的前n 项和n S . 【答案】(1)13n n a -=.(2)22n n nS -=.【解析】(1)设{}n a 的公比为q ,依题意得1413{81a q a q ==,解得11{3a q ==,因此,13n n a -=.(2)因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()22n n n b b n nS +-==. 21.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值; (2)求sinC 的值. 【答案】(1; (2. 【解析】(1)由余弦定理得22232cos 42525175b ac ac B =+-=+-⨯⨯=,所以b =.(2)因为3cos 5B =,所以4sin 5B =.由正弦定理sin sin b c B C=,得54sin 5C =,所以sin 17C =. 22. 如图,棱长为1的正方体1111ABCD A B C D -中, (1)求证:AC ⊥平面11B D DB ; (2)求三棱锥11B CD B -的体积.【答案】(1)见证明; (2)16.【解析】(1)证明:1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1DD AC ∴⊥,正方形ABCD 中,AC BD ∴⊥,又1DD ⊂平面11B D DB ,11BD B D DB ⊂,1DD BD D =,AC ∴⊥平面11B D DB .(2)11B D =,11BB =,∴11111111222B BD SB D BB ==⨯=.设AB ,CD 交点为O ,则12OC AC ==. AC ⊥平面11B D DB ,∴三棱锥11B CD B -的体积11111336B BD V SOC ==⨯=.23. 已知函数2()22f x x ax =++,[5x ∈-,5]. (Ⅰ)当1a =-时,求函数()f x 的最大值和最小值;(Ⅱ)求实数a 的取值范围,使()y f x =在区间[5-,5]上是单调函数. 【答案】(1)1,37; (2)(-∞,5][5-,)+∞.【解析】(Ⅰ)1a =-,22()22(1)1f x x x x =-+=-+;[5x ∈-,5];1x ∴=时,()f x 取最小值1; 5x =-时,()f x 取最大值37;(Ⅱ)()f x 的对称轴为x a =-;()f x 在[5-,5]上是单调函数;5a ∴--,或5a -;∴实数a 的取值范围为(-∞,5][5-,)+∞.24. 已知圆224230x y x y +-+-=和圆外一点(4,8)M -. (1)求圆心坐标和半径长;(2)过点M 作直线与圆交于A ,B 两点,若||4AB =,求直线AB 的方程.【答案】(1)圆心为(2,1)P -,半径r = (2)4528440x y ++=或4x =.【解析】(1)圆224230x y x y +-+-=化为标准方程为:22(2)(1)8x y -++=,圆心为(2,1)P -,半径r =.(2)①若割线斜率存在,设:8(4)AB y k x +=-,即480kx y k ---=. 设AB 的中点为N ,则||PN ==,由222||||2AB PN r +=,得4528k =-,此时AB 的直线方程为4528440x y ++=.②若割线斜率不存在,:4AB x =,代入圆方程得2230y y +-=,解得11y =,23y =-,符合题意. 综上,直线AB 的方程为4528440x y ++=或4x =.。

2020年8月份吉林省普通高中学业水平考试数学模拟题附参考答案(1)

2020年8月份吉林省普通高中学业水平考试数学模拟题附参考答案(1)

2020年8月份吉林省普通高中学业考试仿真卷01数 学本卷满分120分,考试时间100分钟。

注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时,将试卷和答题卡一并交回。

2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间 为 100 分钟。

3.第 1 卷选择题的答案都必须涂在答题卡上。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上 . 注意字迹清楚 . 卷面整洁。

参考公式:标准差: (n s x x =++- 锥体体积:13V Sh =其中s 为底面面积,h 为高 , 柱体体积公式 V=s.h 球的表面积、体积公式:24S R π=,343V R π=其中s 为底面面积,h 为高,V 为体积,R 为球的半径。

第 I 卷 (共 50 分)一、 选择题 (本大题共15小题,每小题的四个选项中只有一项是正确的。

第 1-10 小题每小题3 分,第11-15小题每小题4分,共50分)1.集合A ={1,3},B ={2,3,4}则A∩B =( )A .{1}B .{2}C .{3}D .{1,2,3,4}2.函数f (x )=2x –1的零点为( )A .2B .12C .12-D .–2 3.函数1()2f x x =-的定义域是( ) A .{|2}x x <B .{|2}x x >C .RD .{|2}x x ≠4.cos30的值是( )A.22 B .32 C .22- D .32- 5.已知向量(1,1),(2,2)a b ==,则a b +=( )A .(0,0)B .(3,3)C .(4,4)D .(5,5)6.为了得到函数cos()4y x π=+的图象只需将cos y x =的图象向左平移( )A .12个单位长度B .2π个单位长度C .14个单位长度D .4π个单位长度 7.已知一个几何体的三视图如图所示,则该几何体是( )A .圆柱B .三棱柱C .球D .四棱柱8.设1,(1)()2,(1)x f x x x ⎧≥⎪=⎨⎪<⎩,则(1)f 的值为( )A .0B .1C .2D .-19.下列函数为偶函数的是( )A .()3f x x =+B .22f x xC .()3f x x =D .()1f x x= 10.在等差数列{}n a 中,12a =,公差1d =,则3a =( )A .6B .5C .4D .311.已知两条相交直线a ,b ,a ∥平面,则b 与的位置关系是( )A .b 平面B .b 与平面相交C .b ∥平面D .b 在平面外12.已知直线2x =与直线21y x =-交于点P ,则点P 的坐标为( )A .(1,5)B .(2,3)C .(3,1)D .(0,0)13.掷一枚质地均匀的骰子,向上的点数小于3的概率是( )A .16B .13C .12D .2314.某班有男生20人,女生25人,用分层抽样的方法从该班抽取9人参加志愿者活动,则应抽取的女生人数为( )A .2B .3C .4D .515.已知0a >,0b >,1a b +=,则11a b +的最小值为( ) A .-2 B .2 C .4 D .-4第Ⅱ卷 (共 70 分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)16.在某五场篮球比赛中,甲乙两名运动员得分的茎叶图如下,则在这五场比赛中,平均得分比较好的运动员是_________.17.求值:013312log log 12(0.7)0.252-+-+=____. 18.取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为______.19.给出右边的程序框图,程序输出的结果是 .三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20.已知正方体1111ABCD A B C D -,(1)证明:1//D A 平面1C BD ;(2)求异面直线1D A 与BD 所成的角.21.已知a ,b ,c 分别为锐角三角形ABC 三个内角A ,B ,C 32sin c a C =. (1)求A ;(2)若2a =,ABC 3,求b ,c .22.设等差数列{}n a 的前n 项和为n S ,,已知35a =,39S =.(1)求首项1a 和公差d 的值;(2)若100n S =,求n 的值.23.设圆的方程为22450x y x +--=(1)求该圆的圆心坐标及半径.(2)若此圆的一条弦AB 的中点为(3,1)P ,求直线AB 的方程.24.已知函数2()22f x x ax =++,[5,5]x ∈-.(1)当1a =-时,求()f x 的最大值和最小值;(2)求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数.参考答案第 I 卷 (共 50 分)一、 选择题1.C 2.B 3.D 4.B 5.B 6.D 7.A 8.A 9.B10.C 11. D 12.B 13.B 14.D 15.C第Ⅱ卷 (共 70 分)二、填空题16.乙 17.4 18.2π 19.10三、解答题20.(1)证:在正方体1111ABCD A B C D -中,11//AB C D ,且11AB C D =,∴四边形11ABC D 为平行四边形,∴11//D A C B ,又∵1D A ⊄平面1C BD ,1C B ⊂平面1C BD ;∴1//D A 平面1C BD ;(2)解:∵11//D A C B ,∴1C BD ∠即为异面直线1D A 与BD 所成的角,设正方体1111ABCD A B C D -的边长为a ,则易得11C B BD C D ===,∴1C BD ∆为等边三角形,∴13C BD π∠=,故异面直线1D A 与BD 所成的角为3π.21.(12sin a C =,2sin sin C A C =,因为sin 0C ≠,所以sin 2A =. 因为A 为锐角,所以3A π=.(2)由2222cos a b c bc A =+-,得:224b c bc +-=.又ABC ∆1sin 2bc A = 所以4bc =.则228b c +=.解得2b c ==.22.(1)由题意得:()()1313335922a a a S ++===,解得:11a =, 则公差3151222a a d --===。

高中数学会考模拟试题(附答案)

高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

高中会考数学试题及答案

高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/32. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个3. 已知等差数列的前三项和为6,第二项为2,求该数列的首项a1和公差d:A. a1 = 1, d = 1B. a1 = 0, d = 2C. a1 = 2, d = 0D. a1 = 3, d = -14. 集合A={1, 2, 3},集合B={2, 3, 4},求A∩B:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 已知三角形ABC的三边长分别为a=3, b=4, c=5,求其面积:B. 9C. 10D. 126. 根据题目所给的函数y=x^3-2x^2+x-2,求导数y':A. 3x^2-4x+1B. x^3-2x^2+1C. 3x^2-4x+2D. x^3-2x7. 已知sinθ=0.6,求cosθ的值(结果保留根号):A. √(1-0.36)B. -√(1-0.36)C. √(1-0.6^2)D. -√(1-0.6^2)8. 将下列二次方程x^2-4x+4=0进行因式分解:A. (x-2)(x-2)B. (x+2)(x-2)C. (x-1)(x-3)D. (x+1)(x+3)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 根据题目所给的等比数列求和公式S_n = a1(1-q^n)/(1-q),当n=5,a1=2,q=2时,求S_5:B. 63C. 64D. 65二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + bx + c,若f(1) = 2,则b + c =_______。

吉林省2020年高中会考[数学]考试真题与答案解析

吉林省2020年高中会考[数学]考试真题与答案解析

吉林省2020年高中会考[数学]考试真题与答案解析一、选择题1.已知集合,,且,则()A.B.C.D.2.已知实数,,则的大小关系为()A.B.C.D.3.圆(x+2)2+(y+3)2=2的圆心和半径分别是()A.(﹣2,3),1B.(2,﹣3),3C.(﹣2,﹣3),D.(2,﹣3),4.不等式x2+2x<对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是()A.(﹣2,0)B.(﹣∞,﹣2)∪(0,+∞)C.(﹣4,2)D.(﹣∞,﹣4)∪(2,+∞)5.椭圆+=1的焦点坐标是()A.(0,±)B.(±,0)C.(0,±)D.(±,0)6.已知=(2,﹣1,3),=(﹣1,4,﹣2),=(7,5,λ),若、、三向量共面,则实数λ等于()A.B.C.D.7.已知sin(+α)=,则cos2α等于()A.B.C.-D.-8.已知变量、满足,则的取值范围是()A.B.C.D.9.如图,平面平面,过平面,外一点引直线分别交平面,平面于、两点,,,引直线分别交平面,平面于、两点,已知,则的长等于()A.9B.10C.8D.710.关于函数f(x)=tan|x|+|tanx|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递减;③f(x)是周期函数;④f(x)图象关于对称其中所有正确结论的编号是()A.①③B.②③C.①②D.③④11.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行12.已知某几何体的三视图,如图所示,则该几何体的体积为()A.B.C.D.13.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的()A.充要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件14.数列的通项为,若要使此数列的前项和最大,则的值为()A.12B.12或13C.13D.1415.已知四棱锥的底面是正方形,侧棱长均相等,E是线段上的点(不含端点),设直线与所成的角为,直线与平面所成的角为,二面角的平面角为,则()A.B.C.D.16.已知ABP的顶点A,B分别为双曲线的左右焦点,顶点P在双曲线C上,则的值等于()A.B.C.D.17.已知函数,数列满足,,若要使数列成等差数列,则的取值集合为()A.B.C.D.18.一个圆锥和一个半球有公共底面,如果圆锥的体积与半球的体积恰好相等,则圆锥轴截面顶角的余弦值是()A.B.C.D.二、填空题19.设等比数列{an}的前n项和为Sn,若S10:S5=1:2,则S15:S5=________.20.若向量满足:,则||=________.21.在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是________22.已知函数,若对任意,不等式恒成立,则实数a的取值范围是________.三、解答题23.已知函数,在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.(Ⅰ)求ω的值及函数f(x)的值域;(Ⅱ)若x∈[0,1],求函数f(x)的值域;(Ⅲ)若,且,求f(x0+1)的值.24.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.25.已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)求函数在区间上的最大值及最小值.答案解析一、选择题1-1、C2-1、D3-1、C4-1、C5-1、A6-1、D7-1、C8-1、B9-1、A10-1、C11-1、D12-1、B13-1、D14-1、B15-1、B16-1、B17-1、B18-1、D二、填空题19-1、3:4﹣2,6+2)22-1、a≥3或a≤1三、解答题23-124-1、24-2、25-1、。

2022吉林省学业水平(会考)数学模拟试题(二)

2022吉林省学业水平(会考)数学模拟试题(二)

2022吉林省学业水平(会考)数学模拟试题(二)第Ⅰ卷(选择题共50分)一、单选题:本大题共15小题共50分,1至10小题,每小题3分,共30分,11至15小题,每小题4分,共20分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}2.已知,a b 为实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :R 1sin x x e x ∀∈≥+,.则命题p ⌝为( )A .R 1sin x x e x ∀∈+,<B .R 1sin x x e x ∀∈≤+,C .R 1sin x x e x ∃∈≤+,D .R 1sin x x e x ∃∈<+,4.已知,,a b c 满足c b a <<,且0ac <,那么下列选项中一定成立的是( )A .ab ac >B .0()c b a -<C .22cb ab <D .0()ac a c ->5.已知x ,()0,y ∈+∞,1x y +=,则xy 的最大值为( )A .1B .12C .13D .146.不等式()43x x -<的解集为( )A .{|1x x <或}3x >B .{0x x <或}4x >C .{}13x x <<D .{}04x x <<7.函数()1f x x =+的定义域是( ) A .{|}0x x > B .{}0|x x ≥ C .{}0|x x ≠ D .R8.已知函数()f x 为奇函数,且当0x >时, ()21f x x x=+,则()1f -= ( ) A .-2 B .0 C .1D .2 9.函数()ln 26f x x x =+-的零点一定位于区间( )A .()1,2B .()2,3C .()3,4D .()4,510.指数函数x y a =的图像经过点(3,27),则a 的值是( )A .3B .9C .13D .1911.已知锐角α满足3sin 5α=,则tan α=( ) A .43- B .43 C .34- D .3412.已知向量()2,1a =,()11b =-,,若(),2a b x +=,则x =( )A .0B .1C .2D .313.设m 、n 为两条不同直线,α、β为两个不同平面,则下列命题正确的是( )A .若//m α,//n β,//m n ,则//αβB .若//αβ,m α⊂,n β⊂,则//m nC .若m α⊥,n β⊥,m n ⊥,则αβ⊥D .若//m α,//n β,αβ⊥,则m n ⊥14.某射手在一次训练中五次射击的成绩分别为9.4,9.4,9.4,9.6,9.7,则该射手五次射击的成绩的方差是 A .0.127B .0.016C .0.08D .0.216 15.设向量0,2a ,()2,2b =,则( )A .a b =B .()//a b b -C .a 与b 的夹角为3π D .()a b a -⊥第Ⅱ卷(非选择题共50分)二、填空题:本大题共4小题,每小题4分,共16分.16.已知i i 12ia +=-(i 为虚数单位,a R ∈),则a =________. 17.《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为________.18.已知函数()()22log f x x a =+,若()31f =,则a =________.19.已知 3.20.2a -=, 2.2log 0.3b =,0.2log 0.3c =,则,,a b c 三个数按照从小到大的顺序是______.三、解答题(本大题共4小题,第20、21小题每小题8分,第22、23小题每小题9分,共34分,解答应写出文字说明、证明过程或演算步骤)20.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且a c >,sin =2B c. (1)求角C 的大小;(2)若2a =,1b =,求c 和△ABC 的面积.21.乒乓球比赛规则规定,一局比赛,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立. 甲、乙的一局比赛中,甲先发球.(1)求开球第3次发球时,甲比分领先的概率;(2)求开球第4次发球时,甲、乙的比分为1比2的概率.22.如图所示,在棱长为2的正方体1111ACBD AC B D -中,M 是线段AB 上的动点.(1)证明://AB 平面11A B C ;(2)若M 是AB 的中点,证明:平面1MCC ⊥平面11ABB A ;23.设二次函数()f x 满足()13f =-,且关于x 的不等式()0f x <的解集为(0, 4).(1)求函数()f x 的解析式;(2)若关于x 的方程()10mf x x -+=在区间()0, 2上有解,求实数m 的取值范围.1.【答案】C 【解析】[1,3](2,4)[1,4)A B ==故选:C2.【答案】C 【解析】由题意得,因为,a b 是实数,所以“0a >且0b >”可推出“0a b +>且0ab >”,“0a b +>且0ab >”推出“0a >且0b >”,所以“0a >且0b >”是“0a b +>且0ab >”的充要条件,故选C .3.【答案】D 【解析】因为全称命题的否定是特称命题,所以:命题p :∀x ∈R ,e x ≥1+sin x 的否定是:∃x 0∈R ,001sin x ex <+.故选:D .4.【答案】A 【解析】由c <b <a 且ac <0,知c <0且a >0.由b >c ,得ab >ac 一定成立,即A 正确;因为0,0c b a <-<,故()0c b a ->,故B 错误;若0b =时,显然不满足22cb ab <,故C 错误; 因为0,0ac a c -,故()0ac a c -<,故D 错误.故选:A .5.【答案】D 【解析】因为x ,()0,y ∈+∞,1x y +=,所以有2111()24x y xy =+≥⇒≤=,当且仅当12x y ==时取等号.故选:D. 6.【答案】A 【解析】由题:等式()43x x -<化简为:2430x x -+>∴()()130x x --> 解得:1x <或3x >.故选:A7.【答案】A 【解析】要使f(x)有意义,则满足00x x ≥⎧⎨≠⎩,得到x>0. 故选A. 8.【答案】A 【解析】因为()f x 是奇函数,所以(1)(1)(11)2f f -=-=-+=-,故选A. 9.【答案】B 【解析】函数f (x )=lnx 2x 6+-在其定义域上连续,f (2)=ln 2+2•2﹣6=ln2﹣2<0,f (3)=ln3+2•3﹣6=ln3>0;故函数()f x lnx 2x 6=+-的零点在区间(2,3)上,故选B .10.【答案】A 【解析】把点()3,27代入指数函数的解析式,则有327a =,故3a =,选A.11.【答案】D 【解析】.锐角α满足3sin 5α=,.4cos 5α===, ∴sin 3tan cos 4ααα==.故选:D . 12.【答案】B 【解析】已知向量()2,1a =,()11b =-,,则()()1,2,2a b x +==,因此,1x =. 故选:B.13.【答案】C 【解析】对A ,若//m α,//n β,//m n ,α和β可以平行或相交,故A 错误, 对B ,若//αβ,m α⊂,n β⊂,m 和n 可以平行或异面,故B 错误,对C ,若m α⊥,n β⊥,m n ⊥,则αβ⊥正确,对D ,若//m α,//n β,αβ⊥,则m 和n 可以平行、相交以及异面,故D 错误.故选:C.14.【答案】B 【解析】x =1515×(9.4+9.4+9.4+9.6+9.7)=9.5,所以s 2=15×[(9.4-9.5)2+(9.4-9.5)2+(9.4-9.5)2+(9.6-9.5)2 +(9.7-9.5)2] =0.016,故选B.15.【答案】D 【解析】因为0,2a ,()2,2b =,所以2a =,22b =,所以a b ≠,故A 错误; 因为0,2a ,()2,2b =,所以()2,0a b -=-,所以()a b -与b 不平行,故B 错误;又4cos ,242a b a b a b ⋅===⋅,所以a 与b 的夹角为4π,故C 错误;又()000a a b ⋅-=-=,故选:D 正确. 16.【答案】2【解析】由题得(12)2a i i i i +=-=+,所以2a =.17.【答案】12【解析】4本名著记为A,B,C,D (红楼梦),选两本共有Ω:{AB,AC,AD,BC,BD,CD}6种,选取的两本中含有《红楼梦》的共有3种,所以任取2种进行阅读,则取到《红楼梦》的概率为:3162P ==.故答案为:12. 18.【答案】-7【解析】根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 19.【答案】b c a <<【解析】 3.200.20.21a -=>=, 2.2 2.2log 0.3log 10b =<=,0.20.20.20log 1log 0.3log 0.21c =<=<=,故b c a <<.故答案为:b c a <<.20.【解析】(1)因为sin =2B c 2sinCsinB 0-=.…………………………2分因为0πB <<,所以sinB 0≠,所以sinC =.…………………………………………………3分 因为0πC <<,且a c >,所以π3C =. …………………………………………………………4分 (2)因为2a =,1b =,所以余弦定理2222cosC c a b ab =+-,得21412212c =+-⨯⨯⨯,即23c =.解得c =分ΔABC 11S =sinC 2122ab =⨯⨯=…………………………………………………………8分 21.(1)0.6×0.6=0.36;(2)0.6×0.4×0.6+0.4×0.6×0.6+0.4×0.4×0.4=0.352.22.【答案】(1)证明见解析;(2)证明见解析;(3)43.【解析】(1)证明:因为在正方体1111ACBD AC B D -中,11//AB A B .11A B ⊂平面11A B C .AB ⊄平面11A B C .//AB ∴平面11A B C(2)证明:在正方体1111ACBD AC B D -中,BC AC =,M 是AB 中点.CM AB ∴⊥. 1AA ⊥平面ABC .CM ⊂平面ABC .则1CM AA ⊥.AB ⊂平面11ABB A .1AA ⊂平面11ABB A ,且1AB AA A ⋂=.CM ∴⊥平面11ABB A . CM ⊂平面1MCC ..平面1MCC ⊥平面11ABB A23.【答案】(1)2()4f x x x =- (2)1(,)4m ∈-+∞ 【解析】(1)由题可设()(0)(4)(0)f x a x x a =--≠,又(1)331f a a =-=-⇒=, 2()4f x x x ∴=-(2)由221()10(4)14x mf x x m x x x m x x--+=⇔-=-⇔=-在(0,2)x ∈上有解, ① 当1x =时,0m =,符合题意;② 当(0,1)(1,2)x ∈时,令1t x =-,则(1,0)(0,1)t ∈-,213232t m t t t t==----,设3() 2 ( (1,0)(0,1) )h t t t t =--∈-;()h t 在(1,0)-,(0,1)上单调递增,∴()h t 值域为(,4)(0,)-∞+∞. ∴1()y h t =值域为1(,0)(0,)4-+∞ 综上,当1(,)4m ∈-+∞时原方程有解.。

数学会考高中试题及答案

数学会考高中试题及答案

数学会考高中试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 4x + 3 \),下列说法正确的是:A. 函数的图像是开口向上的抛物线B. 函数的图像是开口向下的抛物线C. 函数的图像与x轴有两个交点D. 函数的图像与x轴没有交点答案:A2. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 已知等差数列的前三项依次为1,3,5,则该数列的第五项为:A. 7B. 9C. 11D. 13答案:B4. 函数\( y = \log_2(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案:A5. 集合\( A = \{1, 2, 3\} \)和集合\( B = \{2, 3, 4\} \)的交集为:A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 4\} \)D. \( \{3, 4\} \)答案:B6. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A7. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:D8. 函数\( f(x) = x^3 - 3x^2 + 3x - 1 \)的单调递增区间为:A. \( (-\infty, 1) \)B. \( (1, +\infty) \)C. \( (-\infty, 2) \)D. \( (2, +\infty) \)答案:B9. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (2, 1) \)的夹角为:A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)答案:A10. 已知等比数列的前三项依次为2,4,8,则该数列的公比为:A. 2B. 4C. 1D. 0.5答案:A二、填空题(每题4分,共20分)1. 已知\( \tan \theta = 3 \),\( \theta \)是第一象限角,则\( \sin \theta \)的值为______。

高中毕业会考数学模拟卷

高中毕业会考数学模拟卷

高中毕业会考数学模拟卷本试卷分为第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,第Ⅱ卷为填空题和解答题。

第Ⅰ卷 选择题(共50分)一、选择题(本大题共18小题,满分50分。

第1~4小题,每小题2分;第5~18小题,每小题3分。

每小题给出的四个选项中,只有一项是符合题目要求的,不选、多选或错选均得0分)1.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则C U (A ∩B )=( )A .{2,3}B .{1,4,5}C .{4,5}D .{1,5}2.不等式0323〉+-x x 的解集是( ) A.{x|-3<x <32} B.{x|-32<x <3} C.{x|x <-32或x>3} D.{x|x <-3或x>32} 3.已知命题p:3是偶数;命题q:2是6的约数,则下列命题中真命题是( )A.p ∨(﹁q )B.p ∧qC.(﹁p)∨(﹁q)D.(﹁p)∧(﹁q)4.在等比数列{a n }中,a 8=8,则a 3·a 13=( )A .128B .64C .32D .165.直线ax+5y-9=0与直线2x-3y-15=0互相垂直,则a=( ) A. 215 B. 310 C. 320 D.2 6.函数y=tan (42π+x )的最小正周期是( ) A. 2π B.π C.2π D.4π 7.若函数f(x)=2x-1+3的反函数的图象经过P 点,则P 点的一个坐标是( )A.(1,2)B.(3,1)C.(4,2)D.(4,1)8.双曲线12514422=-y x 的离心率是( ) A.1213 B.513 C.125 D. 512 9.在△ABC 中,b 2+c 2-a 2=bc,则∠A=( ) A. 32π B.3π C.2π D. 4π或43π 10.圆心为(3,-5),且与直线3x-4y+1=0相切的圆的方程为( )A.(x-3)2+(y-5)2=34B.(x-3)2+(y+5)2=25C.(x-3)2+(y+5)2=36D.(x+3)2+(y-5)2=3011.△ABC 中,三个内角分别为A,B,C,则“B=3π” 是“A,B,C 成等差数列” 的( )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要12.若a <b <0,则下列不等式关系中,不能成立的是 ( ) A.b a 11〉 B.b a -〉- C.|a|>b D. bb a 11〉- 13.顶点在原点,焦点在y 轴上且过点(-2,3)的抛物线的标准方程是( )A.x 2=y 43B.x 2=-y 43C.x 2=-y 34D. x 2=y 34 14.已知a 、b 、c 为不同的直线,α、β、γ为不同的平面,则下列命题中正确的是( )A .若a ∥α,b ∥α,则a ∥b B.若a ⊥c,b ⊥c,则a ∥bC .若a ⊥α,b ⊥α,则a ∥b D.若α⊥β,β⊥γ,则α∥β15.五名同学排成一排照相,若甲乙两人必须站在一起,则不同的排法种数为( )A.48B.24C.72D.12016.正四棱锥的侧棱与底面边长都是1,则侧棱与底面所成的角为( )A.45OB.60OC.75OD.30O17.甲、乙两人射击,击中目标的概率分别为21,41,现两人同时射击一个目标,目标被击中的概率是 ( ) A.43 B. 81 C. 83 D.85 18.拟定从甲地到乙地通话m 分钟的电话费由f(m)= 1.06(0.50×[m]+1)给出,其中m >0, [m]是小于或等于m 的最大整数.如[4]=4,[2.7]=2,[3.8]=3,则从甲地到乙地通话时间为5.5分钟的话费为 ( )A.3.97B.3.71C.4.24D.4.77高中毕业会考数学模拟卷命题校对:宋建华第Ⅰ卷选择题(共50分)一、选择题(本大题共18小题,满分50分。

2020年8月份吉林省普通高中学业考试仿真卷03(数学)(解析版)

2020年8月份吉林省普通高中学业考试仿真卷03(数学)(解析版)

C.若 a b, c d ,则 a c b d
D.若 a b, c d ,则 ac bd
【答案】A
【解析】根据不等式的性质可知选项 A 正确;当 c 0 时,选项 B 不正确; 当 a 3 , b 1, c 1, d 3时,选项 C 不正确;当 a 3 , b 1, c 1, d 3时,选项 D 不
2020 年 8 月份吉林省普通高中学业考试仿真卷 03
数学
注意事项:
本卷满分 120 分,考试时间 100 分钟。
1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位
置上。考试结束时,将试卷和答题卡一并交回。
2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。试卷满分为 120 分。答题时间
A.①②
B.②③
C.①④
D.③④
【答案】C
【解析】①由平行公理可以知道该命题是真命题;②不正确, a, c 的位置关系有三种,平行、相交
或异面;③不正确, a, b 的位置关系有三种,平行、相交或异面;④由线面垂直的性可以知道该命
题是真命题.故选:C 11.如图,将一个圆八等分,在圆内任取一点 P,则点 P 取自阴影部分的概率为( )
得最小值,最小值为 2 .故选:A.
8.从 1,2,3,4 这四个数中,任意取两个数,两个数都是偶数的概率是( )
1
A.
6
1
B.
4
1
C.
3
1
D.
2
【答案】A
【解析】1,2,3,4 这四个数中,任意取两个数基本事件:1, 2,1,3,1, 4,2,3,2, 4,3, 4 共
6 种取法,其中两个数都是偶数为 2, 4 ,所以两个数都是偶数的概率: P 1 .故选:A

2021年吉林普通高中会考数学真题及答案

2021年吉林普通高中会考数学真题及答案

2021年吉林普通高中会考数学真题及答案一、单选题1.已知集合{}1,0,1,2A =-,{}2,1,2B =-,则A B =( )A .{}1B .{}2C .{}1,2D .2,0,1,2【答案】C2.函数5()log (1)f x x =-的定义域是( ) A .(,1)(1,)-∞⋃+∞ B .[0,1) C .[1,)+∞D .(1,)+∞【答案】D 3.函数()1,13,1x x f x x x +≤⎧=⎨-+>⎩则()()4f f =( )A .0B .-2C .2D .6【答案】A4.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ). A .13B .14C .15D .16【答案】D 5.sincos44ππ的值为( )A .12B .2C .4D 【答案】A6.已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ) A .47y x =-- B .47y x =-C .47y x =+D .47y x =-+【答案】D7.已知向量(1,2)a =,(,1)b x =-若a b ⊥,则实数x 的值为( ) A .-2 B .2C .-1D .1【答案】B8.已知函数()f x 的图象是连续不断的,且有如下对应值表:x123 4 5 ()f x4-2-147在下列区间中,函数()f x 必有零点的区间为( ). A .(1,2) B .(2,3) C .(3,4) D .(4,5)【答案】B9.已知直线:1l y x =+和圆22:1C x y +=,则直线l 和圆C 的位置关系为( ) A .相交 B .相切C .相离D .不能确定【答案】A10.下列函数中,在区间(0,)+∞上为增函数的是( ). A .1()3xy = B .3log y x =C .1y x=D .cos y x =【答案】B11.下列命题正确的是( )A .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B .平行于同一个平面的两条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行 【答案】D12.已知一组数据如图所示,则这组数据的中位数是( )A .27.5B .28.5C .27D .28【答案】A13.若(2,0)x ∈-,则(2)x x +的最小值是( ) A .2- B .32-C .1-D .12-【答案】C14.偶函数()f x 在区间[]2,1--上单调递减,则函数()f x 在区间[]1,2上( ) A .单调递增,且有最小值(1)f B .单调递增,且有最大值(1)f C .单调递减,且有最小值(2)f D .单调递减,且有最大值(2)f【答案】A15.已知函数sin()4πy x =-的图象为C ,为了得到函数1sin()34πy x =-的图象,只要把C 上所有的点( )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的1/3,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的1/3,横坐标不变 【答案】A二、填空题16.函数13cos 26y x π⎛⎫=- ⎪⎝⎭的最小正周期为________.【答案】4π17.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是____________【答案】4018.已知扇形的圆心角为6π,弧长为23π,则该扇形的面积为 _________ 【答案】4π3三、双空题19..已知等差数列{}n a 中,11a =,35a =,则公差d =________,5a =________. 【答案】2,9四、解答题20.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且222b c a bc +=+. (1)求角A 的大小; (2)若3a =,1b =,求角B 的大小.【答案】(1)3A π=;(2)6B π=.21.如图,在正方体1111ABCD A B C D -中,E 、F 分别为1DD 、1CC 的中点.(1)求证:1AC BD ⊥; (2)求证://AE 平面1BFD .【答案】(1)证明见解析;(2)证明见解析.22.已知数列{}n a 满足13()n n a a n N *+=∈,且26a =.(1)求1a 及n a .(2)设2n n b a =-,求数列{}n b 的前n 项和n S .【答案】(1)2,123n n a -=⨯;(2)321nn S n =--.23.已知圆22:8120C x y y +-+=,直线:20l ax y a ++=. (1)当a 为何值时,直线与圆C 相切.(2)当直线与圆C 相交于A 、B 两点,且AB =时,求直线的方程. 【答案】(1)34a =-;(2)20x y -+=或7140x y -+=. 24.已知函数()()2*2N f x ax x c a c =++∈、满足:① ()15f =;② ()6211f <<.(1)求a ,c 的值;(2)若对任意的实数13,22x ⎡⎤∈⎢⎥⎣⎦,都有()21f x mx -≤成立,求实数m 的取值范围.【答案】(1)1a =,2c =;(2)94m ≥.。

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析

会考数学模拟试题与答案解析高中会考数学模拟试题与答案解析一、选择题1. 若函数 f(x) = 2x^2 - 5x + 3,求 f(2) 的值。

解析:将 x=2 代入函数 f(x),得 f(2) = 2(2)^2 - 5(2) + 3 = 8 - 10 + 3 = 1。

2. 设直线 y = mx + c 与曲线 y = 2x^2 - x + 1 相切,则常数 m 的值为多少?解析:相切的直线与曲线有且仅有一个交点。

首先,求出曲线的导函数 f'(x) = 4x - 1。

然后,令导函数与直线的斜率相等,即 4x - 1 = m。

由于相切,令导函数与直线在交点处的函数值相等,即 2x^2 - x + 1 = mx + c。

联立两个方程,求解得 m = 2,c = 2。

二、填空题1. 直线 x - 3y - 3 = 0 与直线 5x + ky - 7 = 0 平行,则 k 的值为______。

解析:两条直线平行,斜率相等。

将两条直线的方程转化为一般式,得到 y = (1/3)x - 1 和 y = -(5/k)x + 7/k。

比较斜率,得 (1/3) = -(5/k),解得 k = -15。

2. 已知集合 A={1, 3, 5, 7},集合 B={2, 4, 6, 8},则 A ∪ B = ______。

解析:集合的并集是指将两个集合中的元素合并,形成一个新的集合,不包括重复的元素。

将集合 A 和集合 B 合并,得到集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}。

三、解答题1. 解方程 3x + 2 = 4x - 1,并判断方程的解是否正确。

解析:将方程化简,得到 x = 3。

验证解是否正确,将 x = 3 代入方程,两边相等,方程的解是正确的。

2. 函数 y = 2x^2 + bx + 3 与 x 轴交于两个点 A(-1, 0) 和 B(2, 0),求常数 b 的值。

解析:由题意得到两个方程,-1:0 = 2(-1)^2 + b(-1) + 3 和 2:0 =2(2)^2 + b(2) + 3。

高中数学会考模拟试题一

高中数学会考模拟试题一

5.直线Q 与两条直线y = 1, (1,—1),那么直线Q 的斜率是 23 A. - B. - C. 32) 23 - D.—— 32兀6.为了得到函数y = 3sin2x , x e R 的图象,只需将函数y = 3sm (2x - -3), x e R 的9.如果a = (—2,3), b = (x , — 6),而且a 1 b ,那么x 的值是( )C. 9D. —9 a 2 二 3,a 7 =13,则 $ 1。

等于()高中数学会考模拟试题(一)一. 选择题:(每小题2分,共40分) 1.已知I 为全集,P 、Q 为非空集合,且P 5 Q ^ I ,则下列结论不正确的是( )A. P u Q = IB. 2.若 sin(180o+a ) = 3 P u Q =Q C. P c Q =。

D .P c Q =。

贝 U cos(2700+a )=( ) 1 A. 3 1 B. - 3 2%: 2 2<2C. ——D.——— 33 x 2 3,椭圆天十乙J 标是( ) y 2y = 1上一点P 到两焦点的距离之积为m 。

则当m 取最大值时,点P 的坐A. (5,0)和(—5,0) 卢3V 巨、工,5 3工;3、B. (2,)和(2,一下)C. (0,3)和(0, — 3) z 5;3 3、 / D .(—,2) 和 ( 4,函数y = 2sin x - cos x +1 - 2sin 2 x 的最小正周期是5 <3 3二,2)() 兀A.一 2B.九C. 2兀D. 4兀 x - y — 7 = 0分别交于P 、 Q 两点。

线段PQ 的中点坐标为图象上所有的点( )兀A.向左平行移动y 个单位长度兀C.向左平行移动下个单位长度 611 A.30。

B.45。

8.如果a > b则在①11C.1兀B.向右平行移动y 个单位长度兀D.向右平行移动下个单位长度61160o D. 90o② a 3 > b 3,③ lg(a 2 +1) > lg(b 2 +1),④ 2 a > 2 b中,正确的只有 ( B. ) ①和③ C. ③和④ D. ②和④ A. 4 B. —410.在等差数列{a j 中,A. 19B. 50C. 100D. 12011 . a > 1,且 \ > :是 log |x |> log bl 成立的()I xy 丰 0 a aB. 必要而不充分条件 D. 既不充分也不必要条件12 .设函数 f (xg (x ) = lg1-x ,则()21 + xA. 3或 9 B. 6 或 9 C, 3 或 6 D. 6 14 .函数y = - ;x 2-1 (x < -1)的反函数是()…、x +1..................... ,、15 .若 f (x ) = ,g (x ) = f -1(—x ),贝U g (x )( )x -1A.在R 上是增函数 B,在(-8 , -1)上是增函数 C.在(1, +8)上是减函数 D.在(-8,-1)上是减函数16 .不等式log 1 (x + 2) > 10g l x 2的解集是()22A. { x I x < -1 或 x > 2 }B. { x I -1 < x < 2 }C. { x I -2 < x < -1}D. { x I -2 < x < -1 或 x > 2 }17 . 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( )A. 12B. 24C. 36D. 2818 .若a 、b 是异面直线,则一定存在两个平行平面a 、p ,使( )A. a u a , b u pB. a ±a , b ± pC. a //a , b ± PD. a u a , b ± P—b-19.将函数 y = f (x )按 a = (-2,3)平移后,得到 y = 4x2-2x +4,则 f (x )=()A . 4x 2+2x +4 + 3B . 4 x 2 -6x +12 + 3C . 4x 2-6x +12 - 3D . 4 x 2-6x +920.已知函数f (x ) , x e R ,且f (2 - x ) = f (2 + x ),当x > 2时,f (x )是增函数,设 a = f(1.2。

2020年8月份吉林省普通高中学业水平考试数学模拟题附参考答案(2)

2020年8月份吉林省普通高中学业水平考试数学模拟题附参考答案(2)

2020年8月份吉林省普通高中学业考试仿真卷02数 学本卷满分120分,考试时间100分钟。

注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时,将试卷和答题卡一并交回。

2.本试题分两卷,第 1 卷为选择题,第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间 为 100 分钟。

3.第 1 卷选择题的答案都必须涂在答题卡上。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上 . 注意字迹清楚 . 卷面整洁。

参考公式:标准差: (n s x x =++- 锥体体积:13V Sh =其中s 为底面面积,h 为高 , 柱体体积公式 V=s.h 球的表面积、体积公式:24S R π=,343V R π=其中s 为底面面积,h 为高,V 为体积,R 为球的半径。

第 I 卷 (共 50 分)一、 选择题 (本大题共15小题,每小题的四个选项中只有一项是正确的。

第 1-10 小题每小题3 分,第11-15小题每小题4分,共50分)1.已知集合{}6,8,9A =,则( )A .6A ∈B .7A ∈C .8A ∉D .9A ∉2.函数()f x =的定义域是( ) A .{|3}x x ≥- B .{|0}x x C .{}|3x x ≥ D .{|4}x x ≥3.如图是某圆柱的直观图,则其正视图是( )A .三角形B .梯形C .矩形D .圆4.不等式2230x x --<的解集是( )A .()3,1--B .()3,1-C .()1,3-D .()1,35.如果两条直线a 与b 没有公共点,那么a 与b ( )A .共面B .平行C .异面D .平行或异面 6.两数21+与21-的等比中项是( )A .1B .-1C .±1D .127.图象过点()0,1的函数是( )A .2x y =B .2log y x =C .12y x =D .2y x8.某中学为了了解500名学生的身高,从中抽取了30名学生的身高进行统计分析,在这个问题中,500名学生身高的全体是( )A .总体B .个体C .从总体中抽取的一个样本D .样本的容量 9.已知35sin θ=,45cos θ=,则θtan =( ) A .12 B .43 C .34 D .11210.函数2()log (1)f x x =-的零点为( )A .4B .3C .2D .111.如图,长方体1111ABCD A B C D -中,11,2AB AD BD ===,则1AA = ( )A .1B .2C .2D .312.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A .15B .25C .825D .92513.已知()y f x =是定义在R 上的奇函数,()21f -=,则()2f =( )A .2B .1C .0D .1-14.过点()1,0且与直线220x y --=垂直的直线方程为( )A .210x y --=B .210x y -+=C .220x y +-=D .210x y +-=15.若变量x ,y 满足约束条件120220y x y x y ≥⎧⎪+-≥⎨⎪--≤⎩,则目标函数2z x y =+的最小值为( )A .4B .72C .3D .83第Ⅱ卷 (共 70 分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)16.直线25y x =-的斜率等于__________.17.已知向量(2,3)(4,1)m n ==,,则m n ⋅=__________.18.甲、乙两人进行射击10次,它们的平均成绩均为7环,10次射击成绩的方差分别是:S 2甲=3,S 2乙=1.2. 成绩较为稳定的是______.(填“甲”或“乙”)19.某程序框图如图所示,若输入的x 的值为2,则输出的y 值为_________ .三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20.在ABC ∆中,若边3c =,1b =,角120C =︒.(1)求角B 的大小;(2)求ABC ∆的面积S .21.已知等差数列{}n a 的前n 项和为n S ,132,12.a S ==(1)求数列{}n a 的通项公式;(2)求n S .22.如图,在正方体1111ABCD A B C D -中,E 是1DD 的中点.(1)求证:1//BD 平面EAC ;(2)求证:AC ⊥平面1BDD .23.已知圆C :22(1)(1)4x y -++=,若直线34(0)x y b b +=>与圆C 相切.求: (1)圆C 的半径;(2)实数b 的值;24.已知函数()2f x x bx c =++. (1)若函数()f x 是偶函数,且()10f =,求()f x 的解析式;(2)在(1)的条件下,求函数()f x 在[]1,3-上的最大、最小值;(3)要使函数()f x 在[]1,3-上是单调函数,求b 的范围.参考答案I 卷 (共 50 分)一、 选择题1.A 2.A 3.C 4.C 5.D 6.C 7.A 8.A 9.C 10.C 11.B 12.B 13.D 14.C 15.C第Ⅱ卷 (共 70 分)二、填空题16.2. 17.11 18.乙 19三、解答题20.(1)由正弦定理sin sin b c B C =,得1sin B =1sin 2B =; 因为在ABC ∆中,b c <且120C =︒,所以30B =︒.(2)因为A ,B ,C 为ABC ∆的三个内角,所以180A B C ++=︒,则30A =︒,所以1sin 24S bc A ==. 21.(1)因为数列{}n a 是等差数列,故设其公差为d ,则32312S a ==,解得24a =, 故212d a a =-=,则2n a n =.(2)由(1)中所求12,2a d ==,根据等差数列的前n 项和公式:()112n n n d S na -=+,可得2n S n n =+. 22.(1)设AC BD O =,连接EO .底面ABCD 为正方形,O ∴为DB 的中点.E 为1DD 的中点,1//EO BD ∴,EO ⊂平面EAC ,1BD ⊄平面EAC ,1//BD ∴平面EAC ;(2)1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1DD AC ∴⊥.底面ABCD 为正方形,AC BD ∴⊥.又1D DD BD =,BD ⊂平面1BDD ,1DD ⊂平面1BDD ,AC ∴⊥平面1BDD .23.(1)由222(1)(1)42x y -++==知圆半径为2.(22=,解得9b =(11b =-舍去).24.(1)函数()f x 是偶函数,所以()()f x f x -=恒成立,22,20,x bx c x bx c bx x R -+=++=∈恒成立,0b =,2(),(1)10,1f x x c f c c ∴=+=+=∴=-,2()1f x x ∴=-(2)由(1)2()1f x x =-,当0x =时,取得最小值为1-,当3x =时,取得最大值为8; (3)()2f x x bx c =++对称轴为2b x =-,要使函数()f x 在[]1,3-上是单调函数, 需12b -≤-或32b -≥,解得2b ≥或6b ≤-.所以b 的范围是2b ≥或6b ≤-。

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案第一部分:选择题1. 下列哪个不是一次函数?A. f(x) = 2x + 3B. f(x) = 5x^2 - 3C. f(x) = 4x - 1D. f(x) = x/2 + 12. 已知直角三角形ABC,∠A = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。

A. 10 cmB. 11 cmC. 13 cmD. 15 cm3. 解方程2x + 5 = 17的解为:A. x = 6B. x = 7C. x = 8D. x = 94. 已知函数f(x) = 3x - 2,求f(a + b)的值。

A. 4a + b - 2B. 2a + 3b - 2C. 3a + 3b - 2D. 3a + 3b + 25. 若三角形的三边分别为a, b, c,且满足c^2 = a^2 + b^2,这个三角形是:A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形第二部分:填空题6. 一个几何中心名为 ____________。

7. 一条直线和一个平面相交,交点个数为 ____________。

8. 未知数的指数为负数,表示 ____________。

9. 若两个角的和等于180°,则这两个角称为 ____________。

10. 在一个等边三角形中,每个内角大小为 ____________。

第三部分:解答题11. 用二分法求方程x^2 - 4x + 3 = 0在区间[1, 3]上的一个根的精确值。

12. 已知函数f(x) = 3x^2 - 12x + 9,求f(x)的最小值。

13. 若平面内通过点A(-2, 3)和点B(4, 1)的直线与x轴交于点C,求直线AC的斜率和方程。

答案:1. B2. C3. A4. B5. C6. 几何中心7. 一个8. 负数9. 互补角10. 60°11. 使用二分法可得根的精确值为2。

12. f(x)的最小值为 0。

2020年8月份吉林省普通高中学业水平考试数学模拟题附答案(2)

2020年8月份吉林省普通高中学业水平考试数学模拟题附答案(2)

A. y 2x
B. y log2 x
1
C. y x2
D. y = x2
8.某中学为了了解 500 名学生的身高,从中抽取了 30 名学生的身高进行统计分析,在这个问题中,
500 名学生身高的全体是( )
A.总体
B.个体
C.从总体中抽取的一个样本 D.样本的容量
9.已知 sin 3 , cos 4 ,则 tan = (
1.已知集合 A 6,8,9 ,则( )
A. 6 A
B. 7 A
C. 8 A
D. 9 A
2.函数 f ( x) x 3 的定义域是( )
A.{x | x 3}
B.{x | x 0}
C.x | x 3
D.{x | x 4}
3.如图是某圆柱的直观图,则其正视图是( ) A.三角形 B.梯形 C.矩形 D.圆
y 1
15.若变量
x,y
满足约束条件
x
y
2
0
,则目标函数 z x 2 y 的最小值为(

2x y 2 0
A.4
7
B.
2
C.3
D.
8 3
第Ⅱ卷 (共 70 分)
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线上)
16.直线 y 2x 5 的斜率等于__________.
(1)圆 C 的半径; (2)实数 b 的值;
24.已知函数 f x x2 bx c . (1)若函数 f x 是偶函数,且 f 1 0 ,求 f x 的解析式; (2)在(1)的条件下,求函数 f x 在 1,3 上的最大、最小值; (3)要使函数 f x 在1,3 上是单调函数,求 b 的范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年吉林省普通高中学业考试模拟试题(数学)注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时,将试卷和答题卡一并交回。

2.本试题分两卷,第1卷为选择题,第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间为100分钟。

3.第1卷选择题的答案都必须涂在答题卡上。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上,注意字迹清楚,卷面整洁。

参考公式:标准差:锥体体积公式: V= 31S底·h其中.s 为底面面积,h 为高,s =柱体体积公式V=球的表面积、体积公式S= 24R π V=343R π 其中.s 为底面面积,h 为高, V 为体积 ,R 为球的半径第1卷 (选择题 共50分)一、选择题(本大题共15小题,每小题的四个选项中只有一项是正确的,第1-10小题每 小题3分,第11-15小题每小题4分,共50分)1.设集合M={-2,0,2},N={0},则( ). A .N 为空集 B. N∈M C. N M D. M N2.已知向量(3,1)=a ,(2,5)=-b ,那么2+a b 等于( )A (1,11)-B (4,7)C (1,6)D (5,4)-3.函数2log (1)y x =+的定义域是( )A (0,)+∞B (1,)-+∞C (1,)+∞D [1,)-+∞4.函数sin y x ω=的图象可以看做是把函数sin y x =的图象上所有点的纵坐标保持不变,横坐标缩短到原来的12倍而得到的,那么ω的值为( )A 14B 12C 4D 25.在函数3y x =,2x y =,2log y x =,y =中,奇函数是( ) A 3y x = B 2x y = C 2log y x =D y =6.一个几何体的三视图如图所示,该几何体的表面积是( ) A 3π B 8π C 12π D 14π俯视图左(侧)视图主(正)视图227.11sin6π的值为( ) A 12- B 22-C 12D 228.不等式2320x x -+<的解集为( )A {}2x x >B {}1x x >C {}12x x <<D {}12x x x <>或9.在等差数列{}n a 中,已知12a =,24a =,那么5a 等于( )A .6B .8C .10D .1610.函数45)(2+-=x x x f 的零点为( )A .(1,4)B .(4,1)C .(0,1),(0,4)D .1,411.已知平面α∥平面β,直线m ⊂平面α,那么直线m 与平面β的关系是( )A 直线m 在平面β内B 直线m 与平面β相交但不垂直C 直线m 与平面β垂直D 直线m 与平面β平行12. 在ABC ∆中,如果a =2b =,1c =,那么A 的值是( )A2π B 3π C 4π D 6π13.直线y= -12x+34的斜率等于 ( )A .-12B .34C .12D .- 3414.某城市有大型、中型与小型超市共1500个,它们的个数之比为1:5:9.为调查超市每日的零售额情况,需要通过分层抽样抽取30个超市进行调查,那么抽取的小型超市个数为( )A 5B 9C 18D 2015, .设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于 ( )A. 2B. 32016年吉林省普通高中学业考试模拟试题(数学)注意事项:1.第Ⅱ卷共4页,用蓝、黑色钢笔或圆珠笔直接答在试卷上。

用铅笔答卷无效。

2.答题前将密封线内的项目填写清楚,并在第6页右下方“考生座位序号”栏内第Ⅱ卷(书面表达题共70分)┏━━━━━━┳━━━┳━━━━┳━━━━━━┓┃题号┃二┃三┃总分┃┣━━━━━━╋━━━╋━━━━╋━━━━━━┫┃得分┃┃┃┃┗━━━━━━┻━━━┻━━━━┻━━━━━━┛┏━━━┳━━━━┓┃得分┃评卷人┃┣━━━╋━━━━┫ ┃ ┃ ┃ ┗━━━┻━━━━┛二、填空题(本大题共4小题,每小题5分,共20分,把答案填 在题中横线上)16.已知向量(2,3)=a ,(1,)m =b ,且⊥a b ,那么实数m 的值为 .17.右图是甲、乙两名同学在五场篮球比赛中得分情况的茎叶图.那么甲、乙两人得分的 标准差s 甲 s 乙(填,,><=).18从数字1,2,3,4,5中随机抽取两个数字(不允许重复)12 3 402 1 08 90123乙甲nn=1是a结束开始19.某程序框图如右图所示,该程序运行后输出的a 的最大值为 .┏━━━┳━━━━┓┃得分 ┃评卷人 ┃ ┣━━━╋━━━━┫ ┃ ┃ ┃ ┗━━━┻━━━━┛三、解答题(本大题共5小题,每小题10分,共50分,解答应写 出文字说明、证明过程或演算步骤)20. .等比数列{n a }的前n 项和为n s ,已知1S ,3S ,2S 成等差数列 (Ⅰ)求{n a }的公比q ;(Ⅱ)求1a -3a =3,求n s21. 在正四棱柱1111D C B A ABCD -中,AB =1,21=AA .(Ⅰ)证明:BD AC ⊥1 (Ⅱ)求三棱锥1C -ABC 的体积;22.已知函数(x)f 22cos 2sin 4cosx x x =+-。

(Ⅰ)求()3f π=的值;(Ⅱ)求(x)f 的最大值和最小值23. .已知圆x 2+y 2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称,(I )求k 、b 的值;(II )若这时两圆的交点为A 、B ,求∠AOB 的度数.24. 已知二次函数f (x )=ax 2+bx+1为偶函数,且f (﹣1)=﹣1. (I )求函数f (x )的解析式;(II )若函数g (x )=f (x )+(2﹣k )x 在区间(﹣2,2)上单调递增,求实数k 的取值范围.2016年吉林省普通高中学业考试模拟试题(数学)数学试题参考答案及评分标准说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据给出的评分标准制定相应的评分细则.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.每个步骤只给整数分数,第1卷(选择题共50分)一、选择题(第1-10小题每小题3分,第11-15小题每小题4分,共50分)123456789101112131415C B BD A B A C C D D B A C B第Ⅱ卷(书面表达题 共70分)二、填空题(每小题5分,共20分)16 -3217 ﹥ 18 5319 45三、解答题(每小题10分,共50分)20解:(Ⅰ)依题意有 )(2)(2111111q a q a a q a a a ++=++由于 01≠a ,故 022=+q q 又0≠q ,从而21-=q (Ⅱ)由已知可得321211=--)(a a 故41=a从而))(()())((n n n 211382112114--=----=S21. 解:(Ⅰ)连接AC ,在正四棱柱1111D C B A ABCD -中CC 1 ⊥BD又AC ⊥BD ,所以 BD ⊥平面AC C 1, BD AC ⊥1(Ⅱ)V 1c -ABC =31 S ABC . CC 1= 31×21×1 × 1 × 2 =3122. 解:(Ⅰ)22()2cos sin 333f πππ=+=31144-+=-(Ⅱ)22()2(2cos 1)(1cos )f x x x =-+- 23cos 1,x x R =-∈因为[]cos 1,1x ∈-,所以,当cos 1x =±时()f x 取最大值2;当cos 0x =时,()f x 取最小值-1。

23. 解 (1)圆x 2+y 2+8x-4y=0可写成(x+4)2+(y-2)2=20.∵圆x 2+y 2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称, ∴y=kx+b 为以两圆圆心为端点的线段的垂直平分线. ∴0402---×k=-1,k=2. 又 点(0,0)与(-4,2)的中点为(-2,1),∴1=2×(-2)+b ,b=5.∴k=2,b=5.(2)圆心(-4,2)到2x-y+5=0的距离为d=5552)4(2=+--⨯.而圆的半径为25,∴∠AOB=120°.24.解:(I)∵二次函数f(x)=ax2+bx+1为偶函数,故函数f(x)的图象关于y轴对称即x=﹣=0,即b=0又∵f(﹣1)=a+1=﹣1,即a=﹣2.故f(x)=﹣2x2+1(II)由(I)得g(x)=f(x)+(2﹣k)x=﹣2x2+(2﹣k)x+1故函数g(x)的图象是开口朝下,且以x=为对称轴的抛物线故函数g(x)在(﹣∞,]上单调递增,又∵函数g(x)在区间(﹣2,2)上单调递增,∴≥2解得k≤﹣6故实数k的取值范围为(﹣∞,﹣6]。

相关文档
最新文档