第二章岩石中的孔隙与水分

合集下载

岩土中的空隙和水讲义及思考题

岩土中的空隙和水讲义及思考题

岩土中的空隙和水3.1 岩土中的空隙空隙:void ,interspace ,space地壳岩石中的空隙为地下水的赋存提供了必要的空间条件。

按维尔纳茨基的形象说法“地壳表层就好象是饱含着水的海绵”。

岩石空隙是地下水存储空间和传输通道,空隙的特征(多少、大小、形状、方向性、连通程度及其空间变化等)决定着岩土储容、滞留、释出以及传输水的性能。

岩石空隙可分为三类:a. 未固结的松散岩石中的孔隙;b. 固结的坚硬岩石中的裂隙;c. 可溶岩石中的溶穴(隙)。

1.孔隙(pore )松散岩石是由大小不等的颗粒组成的,颗粒及颗粒集合体之间的空隙––––孔隙。

孔隙的多少,决定岩土储容水的能力,在一定条件下,还控制岩土滞留、释出和传输水的能力。

孔隙体积的多少可用孔隙度表示:孔隙度(porosity )(n )––––指某一体积岩土(包括孔隙在内)中孔隙体积所占的比例。

即:VV n n = 式中:V n ––––岩石中孔隙的体积;V ––––包括孔隙在内的岩石体积;n ––––孔隙度,用小数或百分数表示。

另外一个概念:孔隙比(void ratio )(ε)––––指某一体积岩土内孔隙的体积(V n )与固体颗粒体积(V s )之比。

即sn V V =ε 因为V=V n +V s ,所以n 与ε关系为:nn -=1ε。

应用时:a. 涉及变形时(工程地质)→ε(采用孔隙比较方便);b. 涉及水的储容与运动时(水文地质)→n (采用孔隙度方便)。

影响因素:a. 分选程度:分选程度好,n 大;分选程度差,n 小;b. 颗粒的排列情况:立方体排列时n =47.64%,四面体n =25.95% ;c. 颗粒的形状:形状愈不规则,棱角愈明显,n 愈大;d. 胶结充填情况:充填程度高,n 小。

孔隙度的测定方法:a. 饱和含水率:n =θs (θs 饱和含水率);b. 抽水试验;c. 形态学方法:成象、扫描→借助与计算机处理(研究领域的前沿课题)。

3岩石中的孔隙与水分

3岩石中的孔隙与水分

细 水及 矿物 中的 水
定条件下,由于上下弯液面毛细力的作用, 在细土层中会保留与地下水面不相连接的 毛细水,这种毛细水称为悬挂毛细水 ( 图 4—7)。 在包气带中颗粒接触点上还可以悬留孔 角毛细水(触点毛细水),即使是粗大的卵 砾石, 颗粒接触处孔隙大小也总可以达到 毛细管的程度而形成弯液面,将水滞留在 孔角上(图4-8)。
受固相表面的引力大于水分子自身重力
4.2. 1、 结合 水
的那部分水,此部分水束缚于固相表面, 不能在自身重力影响下运动。 由于固相表面对水分子的吸引力自内向 外逐渐减弱,结合水的物理性质也随之发 生变化。因此,将最接近固相表面的结合 水称为强结合水,其外层称为弱结合水。
距离固体表面更远的那部分水分子,重
岩石的多少、大小、连通程度及其分布
4.3 与水 的储 容及 运移 有关 的岩 石性 质
的均匀程度,都对其储容、滞留、释出以 及透过水的能力有影响。 3.3.1溶水度 概念:指岩石完全饱水时所能容纳的最 大的水体积与岩石总体积之比值。 容水度在数值上与孔隙度(裂隙率、岩 溶率)相当,但大于与粘土的孔隙度。



4.3.4 持水 度

地下水位下降一个单位深度时,单位水 平面积岩石柱体中反抗重力而保持于岩 石空隙中的水量,称为持水度(Sr) 给水度、持水度与孔隙度的关系: Μ +Sr=n 包气带充分重力释水而又未受到蒸发、 蒸腾消耗时 的含水量称作残留含水量 (W0)数值上相当于最大的持水度。


岩石的透水性是指岩石允许水透过的能 力。 表征岩石透水性的定量指标是渗透系数。
表3—1列出自然界中主要松散岩石孔隙的参考数值
岩 名


砾石

水文地质学 岩石中的孔隙与水分

水文地质学 岩石中的孔隙与水分



孔隙大小取决于颗粒大小(图4—3)。 颗粒排列方式也影响孔隙大小。仍以理 想等粒圆球状颗粒为例,设颗粒直径为 D,孔喉直径为d,则作立方体排列时, d=0.414D (图4—4),图4—5a); 作四面体排列时,d=0.155D (图4—5b)。 对于粘性土,决定孔隙大小的不仅是颗 粒大小及排列,结构孔隙及次生空隙的 影响是不可忽视的。
(4—2)
(4—3) 有效应力等于总应力减去孔隙水压力,这就是 著名的太沙基有效应力原理。

即原先由水承受的应力由于水头降低,
3.4.2 地下 水位 变动 引起 的岩 土压 密
浮托力减少而部分地转由砂层骨架 (颗粒本 身)承担:
(4—4) 砂层是通过颗粒的接触点承受应力的。 孔隙水压力降低,有效应力增加,颗粒发 生位移, 排列更为紧密,颗粒的接触面增 加,孔隙度降低,砂层受到压密。
空隙的多少、大小、形状、连通情况和 分布规律,对地下水的分布和运动具有 重要影响。 将岩石空隙作为地下水储存场所和运动 通道研究时,可分为三类,即:松散岩 石中的孔隙,坚硬岩石中的裂隙和可溶 岩石中的溶穴。


4.1.1 孔隙
松散岩石是由大小不等的颗粒组成的。 颗粒或颗粒集合体之间的空隙,称为孔 隙。 岩石中孔隙体积的多少是影响其储容地 下水能力大小的重要因素。孔隙体积的 多少可用孔隙度表示。孔隙度是指某一 体积岩石 ( 包括孔隙在内 ) 中孔隙体积所 占的比例。若以n表示岩石的孔隙度,V 表示包括孔隙在内的岩石体积,Vn表示 岩石中孔隙的体积,则:

Pz Pz P (u u)
⑴重量含水量:松散岩石孔隙中所含的水量(Gw)
与干燥岩石重(Gs)的比值。
Gw Wg 100% Gs

第二章 岩石中的空隙与水分

第二章 岩石中的空隙与水分

高度?
c)孔角毛细水(触点毛细水)(corner water,contiguity water?) 孔角毛细水与悬挂毛细水的不同——? 悬挂毛细水似串珠状且连续分布的,孔角毛细水是孤立的
支 持 毛 细 水 与 悬 挂 毛 细 水
2.3 岩石的水理性质
岩石(包括骨架与空隙在内的总称),岩石空隙的大小, 多少,连通程度及分布的均匀程度都对地下水的储容、滞留、 释出及透水能力有影响。 水理性质:就水文地质学,主要涉及是与水分储容、释出与 运移有关的性质 一、容水度和孔隙度(porosity) 二、含水量(water content)__w 三、给水度(specific yield)——μ (water drained from soil under gravity flow) 四、持水度(specific retention)__Sr 五、储水性(释水性) 六、透水性
溶穴:溶蚀的裂隙,有溶孔、溶隙、溶洞等
岩溶岩体:要描述裂隙特征及岩溶发育特征(裂隙+ 溶洞) 1)岩溶发育方向 2)溶蚀率--钻孔岩溶发育程度 3)溶洞(方向、规模等)
岩溶发育的垂直分带
3 4
石林
天坑
2.1.4空隙特征的对比
含水介质—由各类空隙所构成的岩石称为含水介质,也称为介 质场。含水介质的空间分布与连通特征(孔隙含水介质、裂 隙含水介质、溶质含水介质)是不同的,三种主要类型的含 水介质比较: 连通性—孔隙介质最好,其它较差 空间分布—孔隙介质分布最均匀,裂隙不均匀,溶穴极不均 匀;孔隙大小均匀,裂隙大小悬殊,溶穴极悬殊 空隙比—孔隙介质最大,裂隙最小 空隙渗透性—孔隙介质-各向同性;裂隙与溶穴-各向异性; 造成空隙介质上述差异的主要原因:沉积物形成和空隙形成 的环境

us水文地质学岩石中的空隙与水分

us水文地质学岩石中的空隙与水分

体积含水量:含水体积(Vw)与包括孔隙在内的岩石体积
(V)的比值
ቤተ መጻሕፍቲ ባይዱ
Wv Vw 100% V
若水的比重为1,岩石的干容重(单位体积干土的重)为
重量含水量与体积含水量的关系 Wg Wv a
第二章 岩石中的空隙与水分
2.3.2 含水量
→比重:也称相对密度,固体和液体的比重是该物质的 密度与在标准大气压,3.98℃时纯H2O的密度(999.972 kg/m3)的比值。气体的比重是指该气体的密度与标准状况 下空气密度的比值。液体或固体的比重说明了它们在另一 种流体中是下沉还是漂浮。
→次生孔隙:在碳酸盐岩层中,除粒间孔隙或晶粒间孔隙 所构成的原生孔隙外,还有由孔洞、裂隙、白云岩化所构 成的次生孔隙。
第二章 岩石中的空隙与水分
2.1.1 孔隙
孔隙度的影响因素:
孔隙度的大小主要取决于分选程度及颗粒排列情况,
另外颗粒形状及胶结充填情况也影响孔隙度。对于粘性土, 结构及次生孔隙常是影响孔隙度的重要因素。
岩溶率
录像
图片
第二章 岩石中的空隙与水分
总结与比较 孔隙、裂隙、溶穴不是独立存在。自然界岩石中空隙
的发育状况远较上面所说的复杂。
✓松散岩石固然以孔隙为主,但某些粘土干缩后 可产生裂隙,而这些裂隙的水文地质意义,甚至 远远超过其原有的孔隙。
第二章 岩石中的空隙与水分
✓固结程度不高的沉积岩,往往既有孔隙,又有裂隙。
第二章 岩石中的空隙与水分
2.3.5 透水性——岩石允许水透过的能力
以松散岩石为例,分析一个理想孔隙通道中水的运动情况
第二章 岩石中的空隙与水分
2.3.5 透水性——岩石允许水透过的能力
圆管状孔隙通道的纵断面,孔隙的边缘上分布着在寻 常条件下不运动的结合水,其余部分是重力水。由于附着 于隙壁的结合水层对于重力水,以及重力水质点之间存在 着摩擦阻力,最近边缘的重力水流速趋于零,中心部分流 速最大。

岩石中的孔隙与水分

岩石中的孔隙与水分

第二章岩石中的空隙与水分一、名词解释1.岩石的透水性:岩石允许水透过的能力。

2.孔隙:松散岩石中,颗粒或颗粒集合体之间的空隙。

3.孔隙度:松散岩石中,某一体积岩石中孔隙所占的体积。

4.裂隙:各种应力作用下,岩石破裂变形产生的空隙。

5.裂隙率:裂隙体积与包括裂隙在内的岩石体积的比值。

6.岩溶率:溶穴的体积与包括溶穴在内的岩石体积的比值。

7.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。

8.给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积。

9.重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。

10.毛细水:受毛细力作用保持在岩石空隙中的水。

11.支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。

12.悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。

13.容水度:岩石完全饱水时所能容纳的最大的水体积与岩石总体积的比值。

14.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。

15.持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。

二、填空1.岩石空隙是地下水储存场所和运动通道。

空隙的多少、大小、形状、连通情况和分布规律,对地下水的分步和运动具有重要影响。

2.岩石空隙可分为松散岩石中的孔隙、坚硬岩石中的裂隙、和可溶岩石中的溶穴。

3.孔隙度的大小主要取决于分选程度及颗粒排列情况,另外颗粒形状及胶结充填情况也影响孔隙度。

4.松散岩层中,决定透水性好坏的主要因素是孔隙大小;只有在孔隙大小达到一定程度,孔隙度才对岩石的透水性起作用。

5.地下水按岩层的空隙类型可分为:孔隙水、裂隙水、和岩溶水。

6.岩性对给水度的影响主要表现为空隙的大小与多少。

7.通常以容水度、含水量、给水度、持水度和透水性来表征与水分的储容和运移有关的岩石性质。

水文地质学基础课件——第二章 岩石中的孔隙与水

水文地质学基础课件——第二章 岩石中的孔隙与水
11
第1节 岩石中的空隙—孔隙
影响孔隙大小的因素:
孔隙大小与岩石颗粒的分选程度的关系: ? 问:下列2种试样哪种孔隙大?
a—砂砾混合样
b—砾
a试样的孔隙为细颗粒形成的小孔石隙。
分选愈差,细粒占的比例愈大,孔隙愈小! 胶结程度越好,充填物越多,孔隙愈小!
12
第1节 岩石中的空隙—孔隙
影响孔隙大小的因素:
孔隙度是描述松散岩石中孔隙多少的指标 定义:某一体积岩石(包括颗粒骨架与空隙在内)中孔隙体积所 占的比例。通常用 n 表示
n Vn 100 % VT
?问:孔隙度的大小与什么有关?——与颗粒大小有关? a. 与排列有关——紧密与疏松 理想最疏松孔隙为47.64%,最紧密排列孔隙为25.95%。 b. 与分选有关——下面试样哪个孔隙度大?哪个小? 试样:①砾石 ②砂石 ③混合样
17
第1节 岩石中的空隙—孔隙
颗粒排列方式对孔隙度的影响 理想最疏松排列(立方体):孔隙度为 47.64%; 理想最紧密排列(四面体):孔隙度为 25.95%。 排列愈紧密孔隙度愈小。
18
第1节 岩石中的空隙—孔隙
粘性土的孔隙与孔隙度
粘土颗粒(指直径<0.005mm的颗粒); 粘性土颗粒细小,比表面积大,连结力强;颗粒表面带 电,
达到70%
16
第1节 岩石中的空隙—孔隙
这里与粒径的关系是:粒径愈小,孔隙度愈大!
与以上分析有矛盾!为什么? 砂样与砾石样混合时,砾石样中孔隙体积变小,因此 孔隙度变小。 当粗细颗粒完全混合时,混合样的孔隙度:
n混=n粗×n细 因此影响孔隙度大小的主要因素是试样的分选程度, 分选愈差,孔隙度愈小! 为何粘性土的孔隙度超过最疏松排列的47.64%可达 70%?

第2讲岩石中的孔隙与水分

第2讲岩石中的孔隙与水分

有电荷,水分子又是偶极体,由于静电吸引, 固相表面具有吸附水分子的能力(图2-6)。
根据库仑定律,电场强度与距离平方成反比。
故离固相表面很近的水分子受到静电引力很大; 随着距离增大,吸引力减弱,而水分子受自身 重力的影响就愈显著。

结合水的概念:
受固相表面的引力大于水分子自身重
力的那部分水,称为结合水。
小。
细小颗粒充填于粗大颗粒之间的孔隙中,自然
会大大降低孔隙度。
当某种岩石由两种大小不等的颗粒组成,且粗
大颗粒之间的孔隙完全为细小颗粒所填充时,则孔 隙度等于由粗粒和细粒单独组成时孔隙度的乘积。
形状对孔隙度的影响:
形状愈不规则,棱角愈明显,排列 就愈松散,n愈大
自然界中的岩石的颗粒形状多是不规则
地表以下剖面上各种状态的水在岩层中的分布图
岩土的水理性质

概念:
指岩土控制水活动的性质
容水性

岩土主要水理性质:
含水性
持水性 给水性 透水性
1.容水性(容水度)

定义:
指岩石完全饱水时所能容纳的最大的水体 积与岩石总体积的比值。可用小数或百分数表 示。 一般来说容水度在数值上与孔隙度(裂隙 率、岩溶率)相当。但是对于具有膨胀性的粘 土,充水后体积扩大,容水度可大于孔隙度。
三、与水的储容及运移有关的岩石性质

影响水的储容及运移的因素:
岩石空隙大小、多少、连通程度及
其分布均匀度。

控制水活动的因素:
岩石的容水性、含水性、给水性、
持水性、透水性
•水在岩土中的赋存形式
1一湿度不足带分布有气态水、吸着水; 2一温度饱和带分布有气态水、吸着水、薄膜水; 3一上升毛细水带; 4一无压重力水带; 5一粘土层; 6一承压重力水带

2.水文地质学基础-岩石中的空隙与水解析

2.水文地质学基础-岩石中的空隙与水解析

2.2 岩石中水的存在形式
结合水和重力水
结合水与重力水
(a)椭圆形小粒代表水分子,结合水部分的水分子带正电荷一端朝 向颗粒;(b)箭头代表水分子所受合力方向
2.2 岩石中水的存在形式
2.2.2 重力水 重力水是指距离固体表面更远、重力对其影响大于固体表面对
其吸引力、能在重力影响下自由运动的那部分水。 井、泉所采取的均为重力水,为水文地质学的主要研究对象。
持水度(Sr)(specific retention)是指地下水位下降一个 单位深度、单位水平面积岩石柱体中反抗重力而保持于岩石空隙 中的水的体积。常用小数表示,无量纲。存在关系式:m + Sr = n。
有溶隙和溶穴的可溶岩
2.1 岩石中的空隙
2.1.2 孔隙
(1)孔隙是指松散岩石中颗粒或其集合体之间的空隙。 特点:①呈小孔状,②分布均匀且密集,③连通性好。 (2)孔隙度是指某一体积岩石(包括颗粒骨架和孔隙在内)中 孔隙体积所占的比例。 孔隙度是描述松散岩石中孔隙多少的指标

VT=Vn+Vs,其中n为孔隙度,Vn为孔隙体积,Vs 为岩石固体颗 粒体积,VT为岩石总体积。
气态水
Vaporous water
结构水,以H+和OH-离子的形式存在于矿物结晶格架某一位置上的水。
结晶水是矿物结晶构造中的水,以H2O分子形式存在于矿物结晶格架固 定位置上的水。
沸石水(zeolite water):方沸石(Na2Al2Si4O12•nH2O)。
2.2 岩石中水的存在形式
气态水、固态水 岩石空隙中的这部分水含量小。其
2.3岩石的水理性质
2.3岩石的水理性质
给水度是饱和介质在 重力排水作用下可以给 出的水体积与多孔介质 体积之比。

岩石中的孔隙与水分

岩石中的孔隙与水分
岩石孔隙中水的存在状态、运动规律和相互作用机制是地质学和地球物理学中的重 要问题。
研究内容与方法
研究内容
研究岩石孔隙类型、特征及分布规律,分析岩石孔隙中水的存在状态和运动规律,探讨岩石孔隙与地下水相互作 用机制。
研究方法
采用野外地质调查、室内实验测试、数值模拟等多种方法相结合进行研究。其中,野外地质调查包括岩石和土壤 样品的采集、观测和记录;室内实验测试包括岩石孔隙结构和物理性质的测定、水文地质参数的测量等;数值模 拟则利用专业软件对岩石孔隙与水分的相互作用进行模拟和分析。
孔隙定义与分类
孔隙定义 孔隙分类
孔隙形成与演化
孔隙形成
孔隙演化
孔隙对岩石物理性质的影响
01
热导率
02
电导率
03
强度脆性
04
渗透性
水的分子结构与性质
水分子的化学式 水的物理性质
岩石中水的存在形式与分 类
01
02
吸附水
薄膜水
03 毛细管水
水在岩石中的流动与传
水在多孔介质中的流动
水在裂隙中的流动
02
孔隙充填与岩石弹性 性质的关系
03
孔隙率对岩石导热性 的影响
油气勘探与开 发
水资源管理与利用
岩石孔隙研究在水资源管理与利用方面具有实际应用价值。地下水是水 资源的重要组成部分,地下水储藏和运动主要受到岩石孔隙特征的控制。
通过研究岩石孔隙特征,可以了解地下水的形成、储存和运动规律,为 水资源合理规划、管理和保护提供科学依据。
在水资源利用方面,针对不同地区和特性的岩石孔隙,采取相应的水资 源开发、利用和保护措施,可以提高水资源的利用效率和可持续性。
岩土工程设计与施工
研究结论

第二章 岩石中的空隙与水分

第二章 岩石中的空隙与水分

松散岩石储容水分的能力,与孔隙度关系很大,而地下水 的运动条件则首先取决于孔隙的大小,影响孔隙大小的主要因 素是颗粒大小,颗粒排列方式,对于粘性土,结构孔隙及次生 孔隙的影响不可忽视。 孔隙大小特征的描述: 孔喉:孔隙通道最细小的部分。 孔腹:孔隙通道最宽大的部分。 ①颗粒的大小—颗粒大则孔隙大,反之则孔隙小。 注意:对于分选不好,颗粒大小悬殊的松散岩石来说,孔 隙大小并不取决于颗粒的平均直径,而是取决于细小颗粒的直 径。 ②颗粒的排列方式—以理想等粒圆球状颗粒为例,颗粒直 径为D,孔喉直径为d,立方体排列时,d=0.424D,作四面体 排列时,d=0.155D。 ③考虑粘性土的结构孔隙及次生孔隙。
Vn n 100% V
Vn ——岩石的孔隙体积,V——包括孔隙在内 其中: 的整个岩石总体积。
孔隙度的大小主要取决于颗粒排列情况及分选程 度,另外颗粒形状及胶结充填情况也影响孔隙度。 ①颗粒的排列—以理想等粒圆球状颗粒为例, 理论上几何计算立方体排列最疏松,孔隙度为 47.64%,四面体排列为最紧密,孔隙度为25.95%。 注意:三种颗粒直径不同的等粒岩石,排列方式 相同时,孔隙度完全相同。 ②颗粒的分选—在颗粒大小不等时,分选差则 孔隙度小, 分选好则孔隙度大。 ③颗粒的形状及胶结—磨圆愈好,孔隙度愈小, 胶结可以降低孔隙度。 ④考虑粘性土的结构孔隙及次生孔隙。
Company Logo
2.3
与水的储容及运移有关的岩石性质
三、给水度(specific yield)—— (e d) 1、定义: 当地下水位下降一个单位深度时,从地下水位延伸到 地表面的单位水平面积岩石柱体,在重力作用下释放出 来的水体积,称为给水度 。 V 1 0 0 % 给水度概念图 V总 当地下水位下降一个单位,土层孔隙中是否所有的水都流 出来? 在土层中会保留什么形式的水?

岩石中的空隙与水分

岩石中的空隙与水分

第二章岩石中的空隙与水分§2.1 岩石中的空隙岩石的空隙是地下水储存和运移的先决条件,空隙的多少、大小、形状、联通状况和分布规律,决定着地下水的埋藏、分布和运动。

将岩石空隙作为地下水储存场所和运动通道研究时,可分为三类,即:松散岩石中的孔隙,坚硬岩石中的裂隙和可溶岩石中的溶穴。

§2.1.1 孔隙孔隙(pore)--unconsolidated soil1、孔隙:在松散堆积物中或胶结不好的沉积岩中以及部分喷出岩中,组成岩石的颗粒或粒集合体之间能存在的多孔状的空隙。

2、孔隙性:岩土孔隙的大小、分布规律、数量、形状、性质、联通情况等的总称。

3、孔隙度:岩石孔隙体积与岩石总体积之比。

n=Vn/V4、影响孔隙度大小的因素:1)分选程度2)颗粒排列状况:排列方式相同但颗粒直径不同的等粒岩石,其孔隙度完全相同。

3)颗粒形状4)胶结充填情况例外:粘性土的孔隙度§2.1.2 裂隙固结的坚硬岩石,包括:沉积岩、岩浆岩、变质岩,一般不存在或只是保留一部分颗粒之间的孔隙,而主要发育各种应力作用下岩石破裂变形产生的裂隙。

(fissure)-- hard rock按照成因分类:成岩裂隙构造裂隙风化裂隙裂隙率:裂隙体积与岩石总体积之比。

Kr=Vr/V野外研究裂隙时,还应注意测定裂隙的方向、宽度、延伸长度、充填情况。

§2.1.3 溶穴1、溶穴:起因于水的溶蚀,在可溶岩(白云岩、岩盐、石膏、石灰岩等)中形成的空洞(溶隙)。

(cavity)-- soluble rock2、岩溶率:Kk=Vk/V特点:岩溶率的变化范围很大,且在相邻很近地点处岩溶率完全不同,同一地点的不同深度处岩溶率也有很大变化。

四、岩石中的空隙小结1、岩石中的空隙是研究地下水的基础2、分布特点:孔隙主要分布于松散堆积物中,分布广泛,联通均匀裂隙分布于坚硬岩石中,分布不均溶穴分布可溶性岩石中,分布不均3、孔隙度,运用范围广;裂隙率、岩溶率受到地区限制,运用不广,代表性不强。

水文地质学 第二章 岩石中的空隙与水分2.

水文地质学 第二章 岩石中的空隙与水分2.
对遇水膨胀的粘土来说,恰好相反,容水度会大于 原有的孔隙度。
二、含 水 性
1.含水性:岩石含有水分的性能。 2.含水量:说明松散岩石实际保留水分的状况。
①重量含水量:松散岩石孔隙中所含水的重量与
干燥岩石重量的比值。即:
Wg

Gw Gs
100 %
Gw=Vw·1②体积含水量:含水的体积与包括孔隙在内的岩
一、有效应力原理: 有效应力 Pz =总应力 P - 孔隙水压力u
假定所讨论的是松散沉积物质构成的饱水砂层,
P =Gs+Gw
A
B
PZ 有效应力
u =γwh
P=u+Pz
P=u+Pz 即Pz=P-u
二、地下水位变动引起的岩土压密
1.假设:总应力P不变 2.地下水位下降:孔隙水压力降低△u
有效应力增加△Pz, 即:Pz+△Pz=P-(u-△u)
Gs=V石·γα 体积的比值。即:
Wv

Vw V
100%
当水的比重为1,岩石的干容重为 时,有:
Wv Wg
有关含水量的几个概念
饱和含水量(Ws):孔隙充分饱水时的含水量。 饱和差:饱和含水量-实际含水量 饱和度:实际含水量/饱和含水量
三、给 水 性
1.给水性:当地下水位下降时,其下降范 围内饱水岩石及相应的支持毛细水带中的水, 在重力作用下,从原先赋存的空隙中释出,这 一现象称为岩石的给水性。
1. 持水度 :地下水位下降一个单位深度,单位水平 面积岩石柱体中反抗重力而保持于岩石空隙中的水量。
可分为毛细持水度和结合持水度,通常应用结合持水 度,又称最大分子持水度。
2. 残留含水量(Wo ):包气带充分重力释水而又未 受到蒸发、蒸腾消耗时的含水量。数值上相当于最大的持 水度。

2 第二章 岩石中的空隙

2 第二章  岩石中的空隙

4.特征
大小:具有级次性,如,大构造断裂带,次级造断裂带, 大小:具有级次性, 大构造断裂带,次级造断裂带, 再次一级造断裂带,小到用显微镜进行微观裂隙观测。 再次一级造断裂带,小到用显微镜进行微观裂隙观测。 连通性:总体上不好,局部可能很好,形成裂隙系统。 连通性:总体上不好,局部可能很好,形成裂隙系统。 找水,局部裂隙,最好找在最大断裂带上,主干断裂, 找水,局部裂隙,最好找在最大断裂带上,主干断裂, 裂隙含水系统。 裂隙含水系统。 多少:裂隙率。包括线裂隙率、面裂隙率和体裂隙率。 多少:裂隙率。包括线裂隙率、面裂隙率和体裂隙率。 在野外研究裂隙时,测定裂隙的方向、宽度、延伸长度、 在野外研究裂隙时,测定裂隙的方向、宽度、延伸长度、 充填等。 充填等。
第二章 岩石中的空隙与水分
本章内容: 本章内容: 岩石中的空隙 岩石中水的存在形式 岩石的水理性质 有效应力原理与松散岩土压密
第一节 岩石中的空隙
一 引言 1. 岩石空隙在地球上的分布:地壳表层十余公里, 岩石空隙在地球上的分布:地壳表层十余公里, 尤其近一、两公里以内。 尤其近一、两公里以内。 2. 岩石空隙的水文地质意义:是地下水的赋存场 岩石空隙的水文地质意义: 所和运移通道。 所和运移通道。 3. 岩石空隙的描述:形状、大小、多少、分布规 岩石空隙的描述:形状、大小、多少、 律和连通性。 律和连通性。 4. 岩石空隙的水文地质分类:松散岩石中的孔隙、 岩石空隙的水文地质分类:松散岩石中的孔隙、 坚硬岩石中的裂隙、可溶岩石中的溶穴。 坚硬岩石中的裂隙、可溶岩石中的溶穴。
(4)孔隙度的影响因素 )
颗粒排列方式:等粒状:最疏松排列 立方体 立方体--颗粒排列方式:等粒状:最疏松排列----立方体 n=47.64%; 最紧密排列 四面体:n=25.95%。(未涉 最紧密排列---四面体: 四面体 。 未涉 及粒径大小,粒径大小不同,但等粒状、 及粒径大小,粒径大小不同,但等粒状、排列方式相 同时,孔隙度是相同的) 同时,孔隙度是相同的) 颗粒分选程度:分选性越好,孔隙度越大;分选程度 颗粒分选程度:分选性越好,孔隙度越大; 不好,大颗粒孔隙被小颗粒充填,降低孔隙。(分选 不好,大颗粒孔隙被小颗粒充填,降低孔隙。(分选 。( 程度是指颗粒粒度的均匀程度, 程度是指颗粒粒度的均匀程度,土力学中也称不均匀 系数。) 系数。) 颗粒形状:越不规则,越疏松,孔隙度就越大。 颗粒形状:越不规则,越疏松,孔隙度就越大。 胶结充填:孔隙被胶结充填,孔隙度减小。 胶结充填:孔隙被胶结充填,孔隙度减小。 对于粘性土,还与结构孔隙、次生孔隙有关。 对于粘性土,还与结构孔隙、次生孔隙有关。

第2章 岩石中的孔隙与水分(2)

第2章 岩石中的孔隙与水分(2)
结合水——(absorbed water, bound water) 重力水——(gravitational water;bulk water) 毛细水——(capillary water)
2.2.1
定义
结合水
结合水(absorbed water, bound water)
附着于固体表面,在自身重力下不能运动的水 即结合水具有一定的抗剪强度 表面引力—服从库仑定律,随固体表面的距离加大而减弱 性质 结合水具有固态和液态水的双重性质;即自身重力作用 下不能运动,在外力作用下能够移动(运动)及变形。 意义 只要有固相表面就存在结合水,存在范围广,其量很小 (结合水膜很薄),当孔隙直径小于2倍结合水膜厚度时,孔 隙中只含有不能自由运动的结合水(又称无效空间)。
脱离水面,岩石细小孔隙中保留的水分,称为悬挂毛细水 上粗下细或上细下粗砂砾试样的例子。
c) 孔角毛细水(触点毛细水)
( corner water, contiguity water?)
小结 悬挂毛细水似串珠状且连续分布的,孔角毛细水是孤立的
支持毛细水与悬挂毛细水
地 下 水 位 下 降
2.3 岩石的水理性质
二、含水量(water content)__

三、持水度(specific retention)__Sr

岩石的持水量(持水体积)与岩石总体积之比
2.3 岩石的水理性质
四、给水度(specific yield)——
(water drained from soil under gravity flow)
岩石(包括骨架与空隙在内的总称)
水理性质:就水文地质学主要涉及是与水分储容、释出与 运移有关的性质 包括: 一、容水度和孔隙度(porosity)(反映岩石最大含水能力) 孔隙度——n; 容水度——nr

岩土中的空隙和水讲义及思考题

岩土中的空隙和水讲义及思考题

岩⼟中的空隙和⽔讲义及思考题岩⼟中的空隙和⽔3.1 岩⼟中的空隙空隙:void ,interspace ,space地壳岩⽯中的空隙为地下⽔的赋存提供了必要的空间条件。

按维尔纳茨基的形象说法“地壳表层就好象是饱含着⽔的海绵”。

岩⽯空隙是地下⽔存储空间和传输通道,空隙的特征(多少、⼤⼩、形状、⽅向性、连通程度及其空间变化等)决定着岩⼟储容、滞留、释出以及传输⽔的性能。

岩⽯空隙可分为三类:a. 未固结的松散岩⽯中的孔隙;b. 固结的坚硬岩⽯中的裂隙;c. 可溶岩⽯中的溶⽳(隙)。

1.孔隙(pore )松散岩⽯是由⼤⼩不等的颗粒组成的,颗粒及颗粒集合体之间的空隙––––孔隙。

孔隙的多少,决定岩⼟储容⽔的能⼒,在⼀定条件下,还控制岩⼟滞留、释出和传输⽔的能⼒。

孔隙体积的多少可⽤孔隙度表⽰:孔隙度(porosity )(n )––––指某⼀体积岩⼟(包括孔隙在内)中孔隙体积所占的⽐例。

即:VV n n = 式中:V n ––––岩⽯中孔隙的体积;V ––––包括孔隙在内的岩⽯体积;n ––––孔隙度,⽤⼩数或百分数表⽰。

另外⼀个概念:孔隙⽐(void ratio )(ε)––––指某⼀体积岩⼟内孔隙的体积(V n )与固体颗粒体积(V s )之⽐。

即sn V V =ε因为V=V n +V s ,所以n 与ε关系为:nn -=1ε。

应⽤时:a. 涉及变形时(⼯程地质)→ε(采⽤孔隙⽐较⽅便);b. 涉及⽔的储容与运动时(⽔⽂地质)→n (采⽤孔隙度⽅便)。

影响因素:a. 分选程度:分选程度好,n ⼤;分选程度差,n ⼩;b. 颗粒的排列情况:⽴⽅体排列时n =47.64%,四⾯体n =25.95% ;c. 颗粒的形状:形状愈不规则,棱⾓愈明显,n 愈⼤;d. 胶结充填情况:充填程度⾼,n ⼩。

孔隙度的测定⽅法:a. 饱和含⽔率:n =θs (θs 饱和含⽔率);b. 抽⽔试验;c. 形态学⽅法:成象、扫描→借助与计算机处理(研究领域的前沿课题)。

水文地质学第二章

水文地质学第二章

昆明理工大学国土资源工程学院 地球科学系
• 有效应力原理与松散岩土压密 • 有效应力原理 • 地下水位变动引起的岩土压密
昆明理工大学国土资源工程学院 地球科学系
• 2.1 岩石中的空隙 • 地壳表层十余公里范围内,都或多或少存在着空 隙,特别是深部一、两公里以内,空隙分布较为 普遍。这就为地下水的赋存提供了必要的空间条 件。按维尔纳茨基(B.II.BepHaдckй)的形象说 法,“地壳表层就好像是饱含着水的海绵”。 • 岩石空隙是地下水储存场所和运动通道。空隙的 多少、大小、形状、连通情况和分布规律,对地 下水的分布和运动具有重要影响。 • 将岩石中空隙作为地下水储存场所和运动通道研 究时,可分为三类,即:松散岩石中的孔隙,坚 硬岩石中的裂隙和可溶岩石中的溶穴。
昆明理工大学国土资源工程学院 地球科学系
昆明理工大学国土资源工程学院 地球科学系
溶穴的规模十分悬殊,大的溶洞可宽达数十 米,高数十乃至百余米,长达几至几十公 里,而小的溶孔直径仅几毫米。溶岩发育 带岩溶率可达百分之几十,球科学系
空隙特征的对比
裂隙岩体:从水的赋存与运移角度来看,裂隙的描述包括 1) 裂隙的连通性(组数、产状、长度和密度) 2) 张开性(裂隙宽度) 3) 裂隙率等 昆明理工大学国土资源工程学院
地球科学系
• 固结的坚硬岩石,包括沉积岩、岩浆岩和变质岩,一般不 存在或只保留一部分颗粒之间的孔隙,而主要发育各种应 力作用下岩石破裂变形产生的裂隙。 • 按裂隙的成因可分成岩裂隙、构造裂隙和风化裂隙。 • 成岩裂隙是岩石在成岩过程中由于冷凝收缩(岩浆岩)或 固结干缩(沉积岩)而产生的。岩浆岩中成岩裂隙比较发 育,尤以玄武岩中柱状节理最有意义。 • 构造裂隙是岩石在构造变动中受力而产生的。这种裂隙具 有方向性,大小悬殊(由隐蔽的节理到大断层),分布不 均一。 • 风化裂隙是风化营力作用下,岩石破坏产生的裂隙,主要 分布在地表附近。有关各种成因裂隙的形成分布规律详见 第十一章。

第二章岩石中的孔隙和水分

第二章岩石中的孔隙和水分
颗粒容易形成架空状结构,造成颗粒;颗粒间发生胶 结或孔隙被充填,直接减少孔隙数量,使孔隙度减小。 d.自然界中松散岩石的孔隙度大小,可以参见表2-1。
表2—1 松散岩石孔隙度参考数值〔据弗里泽等,1987〕
2024/8/2
13
第二章 岩石中的孔隙与水分
思考表2-1给出的孔隙度数值与上述分析影响孔隙度大 小的因素是否不一致? 请总结有哪些不同?为什么会不同。 不同: (1)在表2-1中,自然界中松散岩石的孔隙度与粒径大 小有关,粒径小孔隙度大。 (2)孔隙度超过最疏松排列的47.64%?粘性土孔隙度 高达70%-80%。
2024/8/2
10
第二章 岩石中的孔隙与水分
(2)砂砾石的孔隙度(porosity)及其影响因素 孔隙度是描述松散岩石中孔隙多少的指标,常用n表示。 孔隙度是指某一体积岩土(包括孔隙在内)中孔隙体 积所占的比例。 n Vn (100%) V
式中: 为孔隙度, 为孔隙体积, 为岩石总体积。 孔隙度是一个比值,常用可用小数或百分数表示。 请思考并回答:砂砾类土的孔隙度大小与什么有关?
2024/8/2
7
第二章 岩石中的孔隙与水分
简单归纳,影响砂砾石土孔隙大 小的主要因素有:
①颗粒大小:与构成砂砾石土 的颗粒粒径成正比(图2-1理解)
②颗粒排列:立方体(疏松)、
四面体(紧密)
由图2-2可以总结出,颗粒 呈立方体排列为最疏松的排列 方式,颗粒呈四面体排列为最 紧密的排列方式。因此,颗粒 排列的紧密程度,影响孔隙大 小。
第二章 岩石中的孔隙和水分
• 内容:掌握岩土中空隙的三种类型:孔隙、裂隙和溶 穴;重点掌握孔隙的大小、多少(空隙率)的表征及 其影响因素;了解不同空隙的特征与他们之间的差异。 掌握空隙中水的存在形式,了解结合水、重力水、毛 细水的特点;掌握岩土孔隙度、给水度、持水度的概 念和他们的关系,以及影响因素;了解容水度、含水 量、透水性的概念。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章岩石中的空隙与水分
一、名词解释
1.岩石的透水性:岩石允许水透过的能力。

2.孔隙:松散岩石中,颗粒或颗粒集合体之间的空隙。

3.孔隙度:松散岩石中,某一体积岩石中孔隙所占的体积。

4.裂隙:各种应力作用下,岩石破裂变形产生的空隙。

5.裂隙率:裂隙体积与包括裂隙在内的岩石体积的比值。

6.岩溶率:溶穴的体积与包括溶穴在内的岩石体积的比值。

7.溶穴:可溶的沉积岩在地下水溶蚀下产生的空洞。

8.给水度:地下水位下降一个单位深度,从地下水位延伸到地表面的单位水平面积岩石柱体,在重力作用下释出的水的体积。

9.重力水:重力对它的影响大于固体表面对它的吸引力,因而能在自身重力作影响下运动的那部分水。

10.毛细水:受毛细力作用保持在岩石空隙中的水。

11.支持毛细水:由于毛细力的作用,水从地下水面沿孔隙上升形成一个毛细水带,此带中的毛细水下部有地下水面支持。

12.悬挂毛细水:由于上下弯液面毛细力的作用,在细土层会保留与地下水面不相联接的毛细水。

13.容水度:岩石完全饱水时所能容纳的最大的水体积与岩石总体积的比值。

14.孔角毛细水:在包气带中颗粒接点上由毛细力作用而保持的水。

15.持水度:地下水位下降一个单位深度,单位水平面积岩石柱体中反抗重力而保持于岩石空隙中的水量。

二、填空
1.岩石空隙是地下水储存场所和运动通道。

空隙的多少、大小、形状、连通情况和分布规律,对地下水的分步和运动具有重要影响。

2.岩石空隙可分为松散岩石中的孔隙、坚硬岩石中的裂隙、和可溶岩石中的溶穴。

3.孔隙度的大小主要取决于分选程度及颗粒排列情况,另外颗粒形状及胶结充填情况也影响孔隙度。

4.松散岩层中,决定透水性好坏的主要因素是孔隙大小;只有在孔隙大小达到一定程度,
孔隙度才对岩石的透水性起作用。

5.地下水按岩层的空隙类型可分为:孔隙水、裂隙水、和岩溶水。

6.岩性对给水度的影响主要表现为空隙的大小与多少。

7.通常以容水度、含水量、给水度、持水度和透水性来表征与水分的储容和运移有关的岩石性质。

三、判断题
1.在其它条件相同而只是岩性不同的两个潜水含水层中.在补给期时,给水度大,水位上升大,给水度小,水位上升小。

(×)
2.在一定条件下,含水层的给水度可以是时间的函数,也可以是一个常数。

(√)3.松散岩石中颗粒的形状对孔隙度没有影响。

(×)
4.两种颗粒直径不同的等粒圆球状岩石,排列方式相同时,孔隙度完全相同。

(√)5.松散岩石中颗粒的分选程度对孔隙度的大小有影响。

(√)
6.松散岩石中颗粒的排列情况对孔隙度的大小没影响。

(×)
7.饱含水的砂层因孔隙水压力下降而压密,待孔隙压力恢复后,砂层仍不能恢复原状。

(×)
8.松散岩石中颗粒的排列方式对孔隙大小没影响。

(×)
9.裂隙率是裂隙体积与不包括裂隙在内的岩石体积的比值。

(×)
10.在松散岩石中,不论孔隙大小如何,孔隙度对岩石的透水性不起作用。

(×)11.在饱水带中也存在孔角毛细水。

(×)
12.在松散的砂层中,一般来说容水度在数值上与孔隙度相当。

(√)
13.在连通性较好的含水层中,岩石的空隙越大,给水度越大。

(√)
14.
15.对于颗粒较小的松散岩石,地下水位下降速率较大时,给水度的值也大。

(×)16.颗粒较小的松散岩石中,重力释水并非瞬时完成,往往滞后于水位下降,所以给水度与时间有关。

(√)
17.松散岩石中孔隙度等于给水度与持水度之和。

(√)
18.松散岩石中,孔隙直径愈小,连通性愈差,透水性就愈差。

(√)
四、简答题
1.简述影响孔隙大小的因素,并说明如何影响?
影响孔隙大小的因素有:颗粒大小、分选程度、和颗粒排列方式。

当分选性较好时,颗粒愈大、孔隙也愈大。

当分选性较差时,由于粗大颗粒形成的孔隙被小颗粒所充填,孔隙大小取决于实际构成孔隙的细小颗粒的直经。

排列方式的影响:立方体排列比四面体排列孔隙大。

2.简述影响孔隙度大小的主要因素,并说明如何影响?
影响孔隙度大小的因素有:颗粒排列情况、分选程度、颗粒形状及胶结程度。

排列方式愈规则、分选性愈好、颗粒形状愈不规则、胶结充填愈差时,孔隙度愈大;反之,排列方式愈不规则、分选性愈差、颗粒形状愈规则、胶结充填愈好时,孔隙度愈小。

3.地壳岩石中水的存在形式有哪些?
地壳岩石中水的存在形式:
(1) 岩石“骨架”中的水(沸石水、结晶水、结构水)。

(2) 岩石空隙中的水(结合水、液态水、固态水、气态水)。

4.影响给水度的因素有哪些,如何影响?
影响给水度的因素有岩性、初始地下水位埋深、地下水位降速。

岩性主要表现为决定空隙的大小和多少,空隙越大越多,给水度越大;反之,越小。

初始地下水位埋藏深度小于最大毛细上升高度时,地下水下降后给水度偏小。

地下水位下降速率大时,释水不充分,给水度偏小。

5.影响岩石透水性的因素有哪些,如何影响?
影响因素有:岩性、颗粒的分选性、孔隙度。

岩性越粗、分选性越好、孔隙度越大、透水能力越强;反之,岩性越细、分选性越差、孔隙度越小,透水能力越弱。

五、论述题
1.岩石空隙分为哪几类,各有什么特点?
岩石空隙分为:孔隙、裂隙和溶穴。

孔隙分布于颗粒之间,连通好,分布均匀,在不同方向上孔隙通道的大小和多少都很接近;裂隙具有一定的方向性,连通性较孔隙为差,分布不均匀;溶穴孔隙大小悬殊而且分布极不均匀。

2.为什么说空隙大小和数量不同的岩石,其容纳、保持、释出及透水的能力不同?
岩石容纳、保持、释出及透水的能力与空隙的大小和多少有关。

而空隙的大小和多少决
定着地壳岩石中各种形式水所占的比例。

空隙越大,结合水所占的比例越小,则容纳、释出及透水能力越强,持水能力越弱;反之,空隙度越小,结合水所占的比例越大,则容纳、释出及透水能力越弱,持水能力越强。

所以说空隙大小和数量不同的岩石其容纳、保持、释出及透水的能力不同。

3.地下水位的埋藏深度和下降速率,对松散岩石的给水度产生什么影响?
初始地下水位埋藏深度小于最大毛细上升高度时,地下水位下降,重力水的一部分将转化为支持毛细水而保持于地下水面以上,给水度偏小;在细小颗粒层状相间分布的松散岩石,地下水位下降时,易形成悬挂毛细水不能释放出来,另外,重力释水并非瞬时完成,而往往迟后于水位下降,给水度一般偏小。

相关文档
最新文档