平行线的判定和性质
平行线的判定与性质
第2节 平行线的判定与性质∙知识点聚焦1.三线八角(1)同位角:两条直线被第三条直线所截,截线的同旁,被截两直线的同一侧的角,我们把这 样的两个角称为同位角. 如图1∠和5∠,2∠和6∠3∠和7∠,4∠和8∠.(2)内错角:两条平行直线被第三条直线所截, 两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.如图3∠和5∠,4∠和6∠ (3)同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.如图4∠和5∠,3∠和6∠.2.平行线的判定方法(1)平行线的定义:在同一平面内不相交的两直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(3)同位角相等,两直线平行. (4)内错角相等,两直线平行. (5)同旁内角互补,两直线平行. (6)垂直于同一条直线的两直线平行. 3.平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等. (3)两直线平行,同旁内角互补.典型例题 41 2 3 5 876 DCBEAF∙例1.如图,已知直线a ,b 被直线c ,d 所截,直线a ,c ,d 相交于点O ,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来; (2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?分析:(1)直接利用两条直线被第三条直线所截成的角中,若两个角都在两直线的同侧,并且在第三条直线的同旁,则这样一对角叫做同位角,进而得出答案. 直接利用两条直线被第三条直线所截成的角中,若两个角都在两直线之间,并且在第三条直线的同旁,则这样一对角叫做同旁内角,进而得出答案.例2.如图,直线a ,b ,c 被直线l 所截,︒=∠︒=∠︒=∠723,1082,721,说明ba //的理由.分析:由条件可知31∠=∠,c a //;o 18032=∠+∠,c b //,从而有b a //.例3.(1)如图,CD 平分∠ACB,DE ∥BC,∠AED=80∘,求∠EDC 的度数.分析:由角平分线的定义,结合平行线的性质, 易求∠EDC 的度数.labc213(2)已知:如图,1∠=∠C ,2∠和D ∠互余,FD BE ⊥于点G .求证:CD AB //.分析:首先由FD BE ⊥,得1∠和D ∠互余, 再由已知,1∠=∠C ,2∠和D ∠互余, 所以得2∠=∠C ,从而证得CD AB //.例4.探究:(1)如图a ,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗? (2)反之,若E D B ∠=∠+∠,直线AB 与CD 有什么位置关系?请证明; (3)若将点E 移至图b 所示位置,此时B ∠、D ∠、E ∠之间有什么关系?请证明; (4)若将E 点移至图c 所示位置,情况又如何?(5)在图d 中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系? (6)在图e 中,若CD AB //,又得到什么结论?分析:对于“折线”,“拐角”型问题,解决这类问题的办法是:经过拐点作平行线来沟通已知角和未知角的关系.例5.已知,如图,CD AB //,AE 平分BAC ∠,CE 平分ACD ∠,求证:CE AE ⊥分析:根据两直线平行,同旁内角互补可得o ACD BAC 180=∠+∠,在根据角平分线可知EAC ∠=21BAC ∠,ACD ACE ∠=∠21,然后求出o ACD BAC ACE EAC 90)(21=∠+∠=∠+∠,得o ACE 90=∠.例6.如图,在ABC ∆中,AB CE ⊥于E ,AB DF ⊥于F ,ED AC //,CE 是ACB ∠的角平分线。
平行线的特征
平行线的特征平行线在几何学中具有重要的作用,它们是指在同一个平面上,永远不会相交的直线。
本文将探讨平行线的特征,以及与平行线相关的性质和定理。
一、平行线的定义平行线的定义是两条直线在同一个平面上,并且永远不会相交。
这意味着两条平行线之间的距离始终相等。
二、平行线的特征1. 方向相同:平行线在平面上具有相同的方向,它们始终在相同的方向上延伸。
2. 永不相交:平行线永远不会相交。
无论延长多远,它们仍然保持平行的形状。
3. 距离相等:平行线之间的任意两点到两条平行线的距离始终相等。
这是平行线的一个重要性质。
4. 平行四边形的对边平行性:在平行四边形中,对边是平行的。
这是平行线特征的一个重要应用。
三、平行线的判定1. 同位角判定:如果两条直线被一条截线所切,并且同位角相等,那么这两条直线平行。
2. 转换判定:如果一条线与两条平行线分别相交,形成相等的内错角或外错角,那么这条线与这两条平行线平行。
3. 斜率判定:如果两条直线的斜率相等,那么这两条直线平行。
斜率是直线在坐标系中的倾斜度量。
四、平行线的应用1. 平行线与横向交错线条:在道路规划和交通设计中,平行线经常用于构建车道和交通流线的布局。
2. 平行线与角度构造:在建筑设计中,平行线被广泛应用于角度构造。
通过平行线的布局,可以创建出各种角度和形状。
3. 平行线与等距关系:平行线之间的距离相等,这一性质在几何学和测量中具有重要的应用。
五、平行线的定理1. 交替内角定理:如果两条平行线被一条截线所切,那么两条平行线上的交替内角是相等的。
2. 内错角定理:如果两条平行线被一条截线所切,那么两条平行线上的内错角是补角。
3. 锐角和钝角定理:如果两条平行线被一条截线所切,那么两条平行线上的锐角和钝角的和是180度。
六、平行线的重要性平行线的研究对几何学和应用数学具有重要意义。
它们为解决实际问题提供了基础,而且在建筑、工程、地图制作等领域也有广泛的应用。
综上所述,平行线作为几何学中的一个重要概念,具有方向相同、永不相交和距离相等等特征。
平行线的判定定理和公理
平行线的判定定理和公理平行线的判定定理和公理平行线在几何学中非常重要,因为它对于正常的几何学、计算机图形学和其他相关领域都有重要的应用。
平行线的判定定理和公理是我们在几何学中学习平行线性质的基础知识。
本文将对平行线的判定定理和公理进行详细介绍,使读者对平行线的理解更加深入。
1.平行线的定义和性质在平面上给定一直线l和一点A,如果不过A的任意一条直线与l相交时,交点 angles 都等于90度,那么我们称直线l与A平行,并表示为l || A。
这是平行线的定义。
平行线的性质包括:(1) 平面上任意两条直线,要么相交成交角不为90度的两条直线,要么平行;(2) 如果一条直线与一组平行线相交,那么相交角相等;(3) 平面上有一条直线与平行于它的一组直线相交,那么两条直线被这组平行线所分成的对应角相等。
平行线的定义和性质是评估平行线的判定定理和公理的关键。
2. 平行线的判定定理平行线的判定定理有三种形式:点斜式判定、截距式判定和两线夹角判定。
点斜式判定:如果直线l与曲线y=mx+n平行,那么m 是l的斜率。
在平面上的一个点(x1, y1),如果有一直线斜率为m,那么直线的点斜式的方程是:y-y1=m(x-x1)如果直线l与曲线y=mx+n平行,那么它们垂直的方向相同,即斜率m相同。
这意味着直线的点斜式方程中的m 值必须等于y = mx+n的方程中m的值。
因此,点斜式判定定理可以表示为:若直线l与曲线y=mx+n平行,则l的斜率m=n。
截距式判定:如果直线l与直线y=mx+b平行,那么b 是l的截距。
对于一个斜率为m的直线和一个截距为b的直线,它们可以表示为:y=mx+b当这两个直线平行时,它们将有相同的斜率,因此它们的截距也必须相等。
换句话说,如果直线l与直线y=mx+b平行,则l的截距b=mx0+ b,其中(x0, y0)是直线l 的一个点。
两线夹角判定:如果两条直线l1,l2与第三条直线l3垂直,那么l1,l2互相平行。
平行线性质知识点
平行线性质知识点在几何学中,平行线是一种特殊的线段关系,它们永远不会相交。
平行线性质是几何学的基本概念之一,对于解决与平行线相关的问题非常重要。
本文将介绍平行线的定义、判定方法以及与平行线性质相关的定理和公式。
一、平行线的定义平行线是指在同一个平面上,永远不相交的直线。
平行线的符号为"||",可以通过符号表示两条直线平行。
二、平行线判定方法1. 垂直线判定法:如果两个直线之间的夹角为90°(或两直线的斜率乘积为-1),则这两条直线是平行的。
2. 普通角等于180°判定法:如果两个直线被一条第三条直线所切割,且这两个普通角之和等于180°,则这两条直线是平行的。
3. 铅垂判定法:如果两条直线上的两个铅垂线都平行,则这两条直线是平行的。
三、平行线性质定理1. 垂直平行线定理:如果一条直线与一对平行线相交,那么这条直线与另一条平行线也是垂直的。
2. 平行线的性质:两条平行线分别与第三条直线相交,那么对应角相等,内错角和外错角互补。
3. 平行线的平行线还是平行线定理:如果两条直线分别与一条平行线平行,那么这两条直线也是平行的。
4. 三角形内部的平行线定理:如果一条直线平行于一个三角形的一条边,且与另外两条边分别相交,那么这条直线把这两条边所对应的三角形划分成三个相似的三角形。
5. 平行线的黄金分割定理:如果一条直线经过另两条平行线,那么这两条直线将原直线划分成一段与整段的比例等于整段与原直线的比例。
四、平行线的应用1. 平行线在三角形的运用:通过平行线定理,可以推导出三角形内部、外部的诸多性质,例如内错角和外错角的性质、内、外接线之间的关系等。
2. 平行线在原等腰三角形中的应用:通过平行线的判定法,可以判断出等腰三角形的性质,例如底边与顶角之间的关系。
3. 平行线在平行四边形中的应用:通过平行线的特性,可以推导出平行四边形的各个边之间的关系,例如对边相等、对角线平分的性质等。
平行线的判定和性质
平行线的判定和性质
1、平行线的判定方法:
同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;
另:平行于同一条直线的两条直线相互平行;垂直于同一条直线的两条直线互相平行。
2、平行线的性质:
两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
3、注意区别平行线的性质和判定方法:
(1)叙述方式不同:尽管叙述平行线的性质与判定方法的文字相同,个数相同,但条件和结论的顺序是不同的;
(2)意义不同:平行线的判定方法是根据三种角(同位角、内错角、同旁内角)的数量关系,来识别两直线是否平行;而平行线的性质,是已知两直线平行,得到三种角的数量关系。
(3)作用不同:一个是作为平行线的识别,一个是平行线的特征。
本文由101教育整理发布。
平行线的性质知识点
平行线的性质知识点平行线是几何学中常见的概念,其性质和特点对于理解和解决几何问题非常重要。
本文将介绍平行线的定义、性质以及与平行线相关的定理。
一、平行线的定义平行线是指在同一个平面内永远不会相交的直线。
简单来说,如果两条直线在同一个平面内,并且它们永远不会相交,那么它们就是平行线。
二、平行线的判定方法1. 同位角判定法:当一条直线与另外两条直线相交时,如果同位角对应相等(即两条直线被切分的同位角互相相等),则这两条直线是平行线。
2. 内错角判定法:当一条直线与另一条直线相交时,如果内错角互相补角相等(即两条直线被切分的内错角互为补角),则这两条直线是平行线。
3. 平行线判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行线。
三、平行线的性质1. 平行线具有等倾斜角性质:对于两条平行线上的任意一对相对应的同位角,它们的角度相等。
2. 平行线具有同旁内错角性质:对于两条平行线上的任意一对相对应的内错角,它们是互补角。
3. 平行线具有同旁外错角性质:对于两条平行线上的任意一对相对应的外错角,它们是对应角或互补角。
4. 平行线具有同旁错角成比例性质:对于两条平行线上的任意一对相对应的错角,它们成比例关系。
5. 平行线之间的距离始终相等:如果从两条平行线上任意取一对相对应的点,连接这两条点所在直线上的线段,得到的线段与两条平行线之间的距离是相等的。
四、平行线的相关定理1. 平行线定理:如果一条直线与两条平行线相交,那么这条直线的同位角对应相等。
2. 平行线外角定理:如果一条直线与两条平行线相交,那么这条直线的外错角互补。
3. 平行线内角定理:如果一条直线与两条平行线相交,那么这条直线的内错角互补。
4. 平行线内外角定理:如果一条直线与两条平行线相交,那么这条直线的内错角与外错角是对应角或互补角。
总结:平行线是几何学中的重要概念,具有许多重要性质和特点。
通过掌握平行线的定义、判定方法、性质以及相关定理,可以在解决几何问题时更加灵活运用平行线的知识,加深对几何学的理解和掌握。
数学平行线的判定
数学平行线的判定
数学平行线的判定是指在平面几何中,如何判断两条直线是否平行。
通常有以下几种方法:
1.同位角法:若两条直线被一条横线所截,且同侧内角和为180度,则这两条直线平行。
2.对顶角法:若两条直线被一条横线所截,且对应角相等,则这两条直线平行。
3.平行线性质法:若两条直线与第三条直线分别相交,使得同侧内角和小于180度,则这两条直线平行。
4.斜率法:若两条直线的斜率相等,则这两条直线平行。
以上是数学平行线的判定方法,可以根据实际情况选择不同的方法来判断。
掌握这些方法可以有效地解决一些平面几何问题。
- 1 -。
平行线的判定及性质
授课主题平行线教学目的1.理解平行线的概念,掌握平行公理及其推论;2.掌握平行线的判定方法及性质,并能进行简单的推理3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容【知识梳理】要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、平行线例1.下列说法正确的是()A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内,不相交的两条直线叫做平行线.【答案】D例2.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。
平行线的判定与性质
平行线的判定与性质一、平行线的判定与性质的关系平行线的识别与性质,有不少同学由于刚刚接触,往往对其识别与性质容易混淆。
下面,咱们就从它们的意义和作用上进行辨析。
1、从意义上看平行线的识别就是要“判定”两条直线平行或不平行,也就是说从已知角相等(或角互补)的关系出发,推出两直线平行这一结论;而平行线的性质是在两直线平行的已知条件下得出角相等或互补的结论。
2、从作用上看平行线的识别是判断两条直线平行的依据,而平行线的性质是作为判断“两个同位角相等、内错角相等、同旁内角互补”等的依据。
二者所用文字完全相同,差别就是在于前后两句话的顺序的颠倒,而这个颠倒正是它们之间的本质区别。
所以,我们在学习中要注意两者的因果关系。
二、解决平行线问题的方法在解决有关平行线的问题中,我们可从下面几个方面入手.1.寻找基本图形在一个图形中有两组以上的平行线,先根据每一组平行线探索其中的结论,然后再找出所得结论之间存在的关系.2.构造基本图形当已知的图形中没有同位角、内错角或同旁内角时,可以通过适当的辅助线构造基本图形,利用平行线的特征解题.3. 综合运用平行线的特征与平行的条件图3平行线的特征与平行的条件的综合运用,是解决与平行线有关的问题的常用方法.先由“形”得到“数”,即应用特征得到角相等(或互补),再利用角之间的关系进行计算,得到新的关系.然后再由“数”到“形”得到一组新的平行.三、借助辅助线解决问题1.在解题过程中,有些题目由已知条件不能直接推出结论,需要添加适当的线,帮助解决问题,像这样的线叫辅助线。
添加的辅助线一般都用虚线表示,并且要说明作法。
添加辅助线是解题的一种手段,一般只有当题目中因已知不易或不能直接推出结论时,才要添加辅助线. 本章的辅助线通常是作平行线,目的是构造两条直线被第三条直线所截的基本图形,以便利用平行线的判定和性质.2.学习了平行线的特征,我们可以根据特征来解决一些与角度的计算以及探索角度关系的问题,但有一类问题不能根据已知条件直接求出角的度数或找到角的关系.需要先适当地引平行线,然后综合借助平行线的特征求解。
初中数学平行线的性质及判定知识点
初中数学平行线的性质及判定知识点学校数学平行线的性质及判定学问点1平行线的性质及判定平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
通过上面对数学中平行线的性质及判定学问点的内容讲解学习,信任同学们已经能很好的把握了吧,盼望同学们会从中学习的更好。
学校数学平行线的性质及判定学问点2相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要留意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要留意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:推断对错:由于∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
( )相等的两个角互为对顶角。
( )2、垂直是两直线相交的特别状况。
留意:两直线垂直,是相互垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条相互垂直的直线的交点叫垂足。
垂直时,肯定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的全部线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
平行线的判定、性质公理及定理
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
考点一平行线的判定:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3. 两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.注意:证明两直线平行,关键是找到与特征结论相关的角.例1.如下图,当∠1=∠3时,直线a、b平行吗?当∠2+∠3=180°时,直线a、b平行吗?为什么?你有几种方法。
例2.请将下面的空补充完整1.如右图,若∠1=∠2,则_______∥_______()若∠3=∠4,则_________∥_________()若∠5=∠B,则_________∥_________()若∠D+∠DAB=180°,则______∥_______()2.如右图,∠1+∠2=180°(已知)∠3+∠2=180°()∴∠1=_________∴AB∥CD()课堂练习:1.如图6-21,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.2.已知,如下图(1),(2),直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1) (2) 3.如图,如果AB∥CD,求角α、β、γ与180º之间的关系式.4.如图,已知CD 是∠ACB 的平分线,∠ACB = 500,∠B = 700,DE ∥BC,求:∠EDC 和 ∠BDC 的度数。
达标训练: 一.选择题1.下列命题中,不正确的是( )A .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C .两条直线被第三条直线所截,那么这两条直线平行D .如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如右图,直线a 、b 被直线c 所截,现给出下列四个条件: ( ) (1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°, 其中能判定a ∥b 的条件是( ) A .(1)(3) B .(2)(4) C .(1)(3)(4) D .(1)(2)(3)(4) 3.如右图,如果∠1=∠2,那么下面结论正确的是( ) A .AD ∥BC B .AB ∥CD C .∠3=∠4 D .∠A =∠C4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来 的方向相同,这两次拐弯的角度可能是( ) A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° 二.填空题αγβED C BAAB D E12FOCABDE5.如右图,∠1=∠2=∠3,则直线l 1、l 2、l 3的关系是________.6.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________ . 7.同垂直于一条直线的两条直线________. 8.根据图形及上下文的含义推理并填空. (1)∵∠A =_______(已知)∴AC ∥ED ( ) (2)∵∠2=_______(已知)∴AC ∥ED ( ) (3)∵∠A +_______=180°(已知) ∴AB ∥FD ( ) 三.解答题9.已知:如图7,∠1=∠2,且BD 平分∠ABC . 求证.AB ∥CD .10、.如图,∠A BC =∠BCD, ∠1=∠2,求证:BE ∥CF.11.如图,是大众汽车的标志图案,其中蕴涵着许多几何知识. 根据下面的条件完成证明.已知:如图,BC//AD ,BE//AF . (1) 求证:B A ∠=∠;(2) 若︒=∠135DOB ,求A ∠的度数.12.已知:如图,∠3与∠1互余,∠3与∠2互余.求证:AB ∥CD.考点二:1.平行线的性质.公理:两直线平行,同位角相等. 定理:两直线平行,内错角相等.CFDEBAOHG321ED C BA定理:两直线平行,同旁内角互补.例1.如图,BE∥DF,∠B =∠D,求证.AD∥BC.课堂作业:1.如上图,AB∥CD,AD∥BC则下列结论成立的是( )A.∠A+∠C=180°B.∠A+∠B=180°C.∠B+∠D=180°D.∠B=∠D2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是( )A.相等B.互补C.相等或互补D.相等且互补3.如右图,已知∠1=∠2,∠BAD=57°,则∠B=________.4.已知:如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.5.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写你的猜想,并说明理由6、如图所示:已知:AB∥DE。
平行线的性质
2.3平行线的性质平行线的判定与性质1.判定方法:(1) 同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)在同一平面内,垂直于同一直线的两直线平行.2.性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.3.相同点:平行线的判定和性质研究的都是两直线被第三条直线所截的图形,可以说这个图形是它们共同的、必备的前提条件。
4.区别:平行线的性质和平行线的判定中的条件和结论恰好相反:平行线的“判定”,是为了判断两条直线是否平行,就要先研究同位角、内错角、同旁内角的数量关系,当知道了“同位角相等”或“内错角相等”或“同旁内角互补”时,就可以判定这两条直线平行。
它们是由“数”到“形”的判断。
平行线的“性质”,是已经知道两条直线平行时,就可以推出同位角相等,内错角相等,同旁内角互补的数量关系,即“平行线”这种图形具有的性质。
它们是由“形”到“数”的说理。
平行公理I平行公理:过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b∴a∥b。
1. 阅读填空:(1)如图,请你完成小颖和小明的说理过程:小颖:因为AD与BC是平行的,所以∠1=_____,理由是_____.小明:∠3=∠4→_____∥_____→∠A+_____=180°其中第一步的理由是_____第二步的理由是_____.2. 下列说法中,正确的是( )A.经过一点,有且只有一条直线与已知直线平行B.两条直线被第三条直线所截,内错角相等C.垂直于同一条直线的两条直线互相垂直D.两条直线被第三条直线所截,内错角相等,则两直线平行3. 下列说法中,正确的是( )A.连接两点的线段就叫做两点的距离B.AB=BC,则点B是线段AC的中点C.过直线外一点有且只有一条直线与这条直线平行D.过直线外一点有无数条直线与这条直线垂直4. 如果直线a∥b,则下列说法错误的是( )A.a与b之间距离处处相等B.若a∥c,则b∥cC.若a⊥c,则b⊥cD.a,b被第三条直线所截的同旁内角相等5. 已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF 的度数.6. 如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是( )A.20°B.50°C.70°D.110°7. 如图,直线a∥直线b,∠1=∠2,∠3=150°,∠4的大小( )A.60°B.40°C.50°D.30°8. 已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知)∴∠D+∠EFD=180°∴_____∥_____又∵∠1=∠2(已知)∴_____∥_____∴_____∥_____∴∠3=∠B_____.9. 如图.已知AB∥CD,MG平分∠AMN,NH平分∠DNM,求证:MG∥NH.10. 如图,BC∥AD,∠1=∠E,若∠A=100°,求∠C的度数.11. 如图,B、C、D三点共线,CE∥AB,∠1=51°,∠2=46°,则∠A=_____°.12. 如图,直线AB∥DE,BC⊥CD,若∠1=25°,则∠2的度数是_____.13. 如果直线a∥b,直线b∥c,则直线a与c的关系是_____.14. 如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.15. 如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.16. 如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.17. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( )A.17°B.34°C.56°D.68°18. 如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )A.40°B.60°C.80°D.120°19. 如图,点C在∠AOB的边OA上一点,请你使用直尺和圆规,过点C作直线OB的平行线.(保留作图痕迹,不要求写画法).20. 如图,已知AD⊥BC,EF⊥BC,∠1=∠C.(1)证明:AD∥EF;(2)猜想:∠2与∠3有怎样的关系,并说明理由.21. 如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为( )A.30°B.32.5°C.35°D.37.5°22. 如图,已知a∥b,AC⊥AB,AC交直线b于点C,∠1=65°,那么∠2是_____°.23. 如图,点D、E、F分别在△ABC的三边上,已知∠1=50°,DE∥AC,DF∥AB,则∠2=_____°.24. 如图,AB∥CD,则∠1,∠2,∠3之间的关系是( )A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠2-∠3=180°D.∠1-∠2+∠3=180°25. 如图,已知AB∥CD,EF∥CD,∠B=70°,∠E=135°,∠1等于_____.26. 如图,AB∥CD,则∠α、∠β、∠γ之间的等量关系为_____.27.如图,已知AB∥DM,BC∥EF,探求∠B与∠D数量关系,∠AEF与∠D数量关系,并说明理由.28.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是( )A.先右转60°,再左转120°B.先左转120°,再右转120°C.先左转60°,再左转120°D.先右转60°,再右转60°29. 如图,AB∥CD,AD∥BC,若∠CBE=68°,则∠C=_____,∠D=_____.30. 平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部.试说明∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明你的结论成立的理由;(3)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)31. 如图所示,把长方形ABCD的纸片,沿EF线折叠后,ED与BC的交点为G,点D、C 分别落在D′、C′的位置上,若∠1=70°,求∠2、∠EFG的度数.32. 将一条两边沿互相平行的纸带按如图折叠,当∠1:∠2=2:3,则∠2的度数为( )A.22.5°B.45°C.67.5°D.30°33.如果∠α与∠β的两边分别平行,∠α比∠β的4倍少30°,则∠α的度数是( )A.10°B.138°C.10°或138°D.以上都不对34. 如图,已知AB∥CD,直线EF分别交直线AB,CD于点E、F,FG平分∠CFE交AB 于点G,若∠BEF=70°,求∠AGF的度数.35. 已知:如图,在△ABC中,DE∥AC,DF∥AB,∠B=60°,∠C=70°.则∠EDF=_____.36. 如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是( )A.84°B.106°C.96°D.104°37. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠CBE的度数是( )A.17°B.34°C.56°D.68°38. 如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.39. 如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=_____°.40. 如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于_____.。
平行线的判定及性质
平行线的判定及性质 Prepared on 22 November 2020平行线的判定及性质(一)【知识要点】一.余角和补角:1、如果两个角的和是直角,称这两个角互余. ∵αβ+= 90o ∴αβ与互为余2、如果两个角的和是平角,称这两个角互补. ∵αβ+= 180o ∴αβ与互为补角 二.余角和补角的性质: 同角或等角的余角相等 同角或等角的补角相等. 三.对顶角的性质: 对角相等.四.“三线八角” :1、同位角 2、内错角 3、同旁内角 五.平行线的判定: 1、同位角相等, 两直线平行.2、内错角相等, 两直线平行.3、同旁内角互补, 两直线平行.4、同平行于一条条直线平行.5、同垂直一条直线的两条直线平行. 六.平行线的性质:1. 两直线平行,同位角相等;2. 两直线平行, 内错角相等;3. 两直线平行, 同旁内角互补.【典型例题】一、余角和补角例1. 如图所示,互余角有_________________________________; 互补角有_________________________________;变式训练:1. 一个角的余角比它的的13还少20o ,则这个角为_____________。
2. 如图所示,已知∠AOB 与∠COB 为补角,OD是∠AOB 的角平分线,OE 在∠BOC 内,∠BO=12∠EOC, ∠DOE=72o, 求∠EOC 的度数。
二、“三线八角”例2 (1) 如图,哪些是同位角内错角同旁内角(2) 如图,下列说法错误的是( )A. ∠1和∠3是同位角B. ∠1∠5是同角C. ∠1和∠2是内角D. ∠5和∠6是内错角(3)如图,⊿ABC 中,DE 分别交B 、A 于D 和E,则图中共有ED CB A O AB C DE F1 2 3 4 567 8 2 3 4 5 6 11 23同位角 对,内错角 对,同旁内角 。
三、平行线的判定例3如右图 ① ∵ ∠1=∠2∴ _____∥_____, ( ) ② ∵ ∠2=_____∴ ____∥____, (同位角相等,两直线平行) ③ ∵∠3+∠4=180o∴ ____∥_____, ( ) ∴ AC ∥FG , ( )变式训练:1.如图, ∵ ∠1=∠B∴ ∥_____, ( ) ∵ ∠1/∠2∴ _____∥_____, ( ) ∵ ∠B +_____=180o ,∴ AB ∥EF ( )例4. 如图,已知AE 、CE 分别平分∠BAC 和∠ACD, ∠1和∠2互余,求AB ∥CD ,变式训练:如图,已知直线a 、b 、e ,且∠1=∠2,∠3+∠4=180o, 则a ∥c 平行吗五、平行线的性质例5 如图所示,AB ∥EF ,若∠ABE=32°,∠ECD=160°,求 ∠BEC 的度数。
平行线的判定和性质
∵ ∠APE +∠CPE=∠APC
∴ ∠PAB +∠APC+∠PCD=360° (等量代换)
素养提升
如图所示,AB∥CD,P 为任意一点,在以下四种情况中,就每种情况 分别探究∠APC与∠PAB 和∠PCD 的关系,写出关系式并证明
解: ∠APC=∠PAB +∠PCD
A
B
证明: 作PE∥AB
E
P
∵PE∥AB
∴∠BAE+∠ABF+∠CBF+∠BCD=360°
F
B
∵ ∠ABF+∠CBF=∠ABC
∴∠BAE+∠ABC+∠BCD=360°
A
E
∵AB⊥AE
∴∠BAE=90° (垂直定义)
∴ ∠ABC+∠BCD=270°
例3、如图,AD∥CE,∠ABC=100°,求∠2-∠1的度数
解: 作BF∥AD
A
D
1
∵BF∥AD
方法2 从∠2顶点向右做直线c∥a
∵ c∥a ∴ ∠1+∠4=180° (两直线平行,同旁内角互补) ∵ c∥a,a∥b ∴ c∥b(平行公理的推论) ∴ ∠3+∠5=180° (两直线平行,同旁内角互补)
4251 3
a c
b
∴ ∠1+∠4+∠5+∠3=360° ∵ ∠4+∠5=∠2 ∴∠1+∠2+∠3=360° ∴∠3=360° - ∠1 - ∠2 =140°
C
D
学 如逆水行舟不进则退 心 似平原走马易放难收
------《增广贤文》
E2
F
3
D
C
素养提升
平行线的判定和性质
直线平行条件知识精点通过本节学习,要了解两条直线被第三条直线所截形成同位角、内错角、同旁内角定义,掌握平行线识别方法,理解由角关系得到两条直线平行关系.本节主要概念:1.同位角、内错角、同旁内角概念——两条直线被第三条直线所截,构成八个角,俗称“三线八角”.其中分别在两条直线同一侧,并且在第三条直线同旁一对角叫同位角;在两条直线之间.但分别在第三条直线两旁一对角叫内错角.在两条直线之间,并且在第三条直线同旁一对角,叫同旁内角.2.平行线判定方法:方法1:同位角相等,两直线平行; 方法2:内错角相等,两直线平行. 方法3:同旁内角互补,两直线平行.重、难、疑点:重点:同位角、内错角、同旁内角定义及平行线判定方法. 难点:1.同位角、内错角、同旁内角正确识别; 2.平行线判定方法运用.疑点:1.在不同图形中,识别同位角、内错角、同旁内角容易出现混淆; 2.平行线判定及性质在运用过程中易出现错误.典例精讲例1 根据右图,回答下列问题:(1)由∠C=∠1,可以判断哪两条直线平行?说明理由? (2)由∠1=∠2,可以判断哪两条直线平行?说明理由?(3)由∠D+∠C=180°,可以判断哪两条直线平行?说明理由?举一反三 (贵阳市中考题)如图,已知同一平面内直线1l 、2l 、3l ,如果3221,l l l l ⊥⊥,那么1l 及3l 位置关系是 ( ) A .平行 B .相交 C .垂直 D .以上全不对例2 如图,写出所有能够推得直线AB ∥CD 条件.举一反三 如图,直线c 及a 、b 相交,形成∠1、∠2、…、∠8,请你填上适合一个条件:____________,使得a ∥b .例3 (黄冈市中考题)如图,已知∠1=∠2,问:再添加什么条件可使AB ∥CD ?举一反三 如图,已知∠C=100°,若增加一个条件,使得AB ∥CD ,试写出所有符合要求条件.例4 如图,已知点O在直线AB上,OF平分∠BOC,OE平分∠AOC,CF⊥OF于点F,求证:FC∥OE.举一反三如图,已知CD⊥DA,DA⊥AB,∠1=∠2,求证:DF∥AE.例5 一个裁缝师傅随意地剪了一块六边形布料,如图所示,经测量他发现∠ABC、∠BCD、∠CDE三角之和等于360°,他然后就说布料两个边AB和ED是平行.你知道为什么吗?举一反三如图,已知∠B+∠E+∠D=360°,求证:AB∥CD.知识网络学法点津1.识别同位角、内错角、同旁内角是本节重点之一,掌握这项技能,首先要牢记“三线八角”基本特征,抓住同位角、内错角、同旁内角特征,找出哪条直线是截线,哪两条直线是被截直线,再得出正确判断.同时,要善于用比较法来理解三种角特征,培养自己在较复杂图形中识别三种角能力.2.在学习平行线三种判定方法时,要结合实际条件,观察图形,通过同学间合作、交流,将方法1、2、3融合贯通,培养自己会根据实际情况灵活选用判定方法能力.强化练习1.具有下列关系两角中,一定有公共顶点是().A.互为余角B.同位角C.邻补角D.内错角2.已知a,b,c是同一平面内三条直线,下列说法不正确是().A.若a⊥b,b⊥c,则a⊥cB.若a⊥b,b∥c,则a⊥cC.若a∥b,b∥c,则a∥cD.若a⊥b,b⊥c,则a∥c3.如图5-2-11,由A测B方向是().A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°4.一辆汽车在公路上行驶,两次拐弯后,仍按原来方向行驶,那么两次拐弯角度可能是().A.先右转50°,再右转40°B.先左转50°,再左转40°C.先右转50°,再左转130°D.先右转50°,再左转50°5.如图5-2-12,直线l截直线a,b,得到8个角,其中(1)对顶角有__________对,它们是___________;(2)邻补角有______________对,它们是_____________;(3)同位角有______________对,它们是_____________;(4)内错角有______________对,它们是______________;(5)同旁内角有______________对,它们是_____________.6.在同一平面内,及已知直线a平行直线有___________条,而经过直线a外一点P,及已知直线a平行直线有且只有_____________条.7.如图5-2-13所示,长方体ABCD—A′B′C′D′中及棱AB平行棱有____________条,它们是___________.8.如图5-2-14,若∠1=∠2,则_________∥____________;若∠3=∠4,则________∥_________;若∠5=∠6,则__________∥____________;若∠7=∠8,则___________∥_____________;若∠BAD+∠ABC=180°,则___________∥__________;若∠ABC+∠BCD=180°,则_________∥___________.9.如图5-2-15,因为∠1=∠3,∠2=∠3(已知),所以∠1=∠2(),所以AB∥__________().10.如图5-2-16,(1)如果∠B=∠1,那么根据______________,可得AD∥BC;(2)如果∠D=∠1,那么根据____________,可得AB∥CD.11.图5-2-17所示6个角中,有多少对同位角?写出每对这样角.有多少对内错角?写出每对这样角.有多少对同旁内角?写出每对这样角.12.如图5-2-18,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°.AC及BD平行吗?AE及BF平行吗?为什么?13.读下列语句,并在图5-2-19上画出图形. (1)过△ABC 顶点C ,画MN ∥AB ;(2)过△ABC 边AB 中点D ,画平行于AC 直线,交BC 于点E .14.如图5-2-20,(1)要判定AB ∥CD ,只需知道什么条件? (2)要判定AD ∥BC ,只需知道什么条件? (3)要判定AE ∥CF ,只需知道什么条件?15.如图5-2-21,已知∠1=∠2,∠3=∠4,说明AB ∥EF .16.图5-2-22所示为一条街道两个拐角∠ABC 和∠BCD ,若已知∠ABC=150°,要使街道AB 及CD 平行,∠BCD 应为多少度?为什么?17.如图5-2-23,已知∠BED=∠B+∠D .试问:AB 及CD 平行吗?若平行,请说明理由.探索直线平行性质一、学习目标1.掌握平行线三个性质,并能解决一些问题. 2.理解平行线判定及性质区别及应用二、学习重点会用“两直线平行,同位角相等”、“ 两直线平行,内错角相等”和“两直线平行,同旁内角互补”来解决问题.三、学习难点探索平行线性质和平行线性质运用四、学习过程交流合作、探索发现合作交流一:如图,猜一猜∠1和∠2相等吗?为什么?图中还有其它同位角吗?它们大小有什么关系?是不是任意一条直线去截平行线a 、b 所得同位角都相等呢? [结论] 两条平行线被第三条直线所截,___________________. 简单说成:_____________________.11 3 2abc 1234d符号语言:_________________________. 合作交流二:如图:已知a//b,那么∠2及∠ 3相等吗?为什么?[结论]两条平行线被第三条直线所截,____________________. 简单说成:________________________. 符号语言:_______________________________. 合作交流三:如图,已知a//b , 那么 ∠2及∠4有什么关系呢?[结论]两条平行线被第三条直线所截,______________________. 简单说成:_________________________________. 符号语言:______________________________. 五、例题讲解例1.如图1,已知直线a ∥b,∠1 = 500,求∠2度数. 变式1.已知条件不变,求∠3,∠4度数?变式2.如图2,已知∠3 =∠4, ∠1=47°, 求∠2度数?例2如图3,AD ∥BC ,∠A =∠C.试说明AB ∥CD.例3.如图4,在四边形ABCD 中,已知AB ∥CD ,∠B = 600。
平行线的判定、性质公理及定理
你有几种方法。
1.如图 6-21,已知Z B =142平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
考点一平行线的判定:1两直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 2. 两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3. 两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 注意:证明两直线平行,关键是找到与特征结论相关的角 例1.如下图,当/1= /时,直线a 、b 平行吗?当/ 2+ / 3=180 °时,直线a b 平行吗?为什么?例2 •请将下面的空补充完整1. ___________________________ 如右图,若/ 1= / 2,则 ____________________________________ // _______若/ 3= Z 4,则 _______________ // ___________ ( 若/ 5= /B ,贝U __________ / _____________ ( 若 / D + Z DAB =180 ° , 贝U __( )2.如右图,Z 1+ Z 2=180。
(已知)Z 3+ Z 2=180 °()/•Z 1= _________••• AB // CD ()课堂练习:,启FE =38 ° , ZEFD =40 ° , ZD=1402.已知,如下图(1), (2),直线AB // ED . 求证:ZABC +Z CDE =Z BCD .求证:AB // C D .3.如图,如果AB// CD,求角(1) ( 2)4.如图,已知CD是/ ACB的平分线,/求:/ EDC和 / BDC的度数。
ACB = 50 / B = 7C°, DE // BC,达标训练:一•选择题1 .下列命题中,不正确的是(A .两条直线被第三条直线所截,B .两条直线被第三条直线所截,C.两条直线被第三条直线所截,)如果同位角相等,那么这两条直线平行如果同旁内角互补,那么这两条直线平行那么这两条直线平行D .如果两条直线都和第三条直线平行,那么这两条直线也互相平行2. 如右图,直线a、b被直线c所截,现给出下列四个条件:(1) Z 1= Z 2,其中能判定a//A. (1)(3)3. 如右图,如果ZA . AD // BC C.Z 3= Z4(2) / 3= / 6, (3) / 4+ / 7=180b的条件是()B.⑵⑷C. (1)(3)(4) D .1= / 2,那么下面结论正确的是(B. AB / CDD. Z A=Z C(,(4) Z 5+ Z(1)⑵⑶⑷))8=1804 .一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来) 的方向相同,这两次拐弯的角度可能是(A.第一次向右拐40 °,第二次向左拐40 °B.第- 次向右拐50 °,第二次向左拐130C.第- 次向右拐50 °,第二次向右拐130D.第一次向左拐50 °,第二次向左拐130填空题o o o求证.AB / CD .5.如右图,/ 1= / 2= / 3,则直线、12、l a 的关系是 ______________6•如果两条直线被第三条直线所截,一组同旁内角的度数之比为3 : 2,差为36。
平行线的性质
平行线的性质平行线是在同一个平面上,永远不会相交的直线。
在几何学中,平行线有一些独特的性质和规律。
本文将介绍平行线的性质,包括平行线的定义、判定方法以及与平行线相关的定理。
1. 平行线的定义平行线的定义是指在同一个平面上,两条直线不相交,且它们的距离始终相等。
如果两条线段的任意两点之间的距离相等,则可以称这两条线段是平行的。
符号“||”可以用来表示平行线。
2. 平行线的判定方法有多种方法可以判定两条直线是否平行。
2.1. 通过斜率判定两条直线的斜率相等时,可以判定它们是平行线。
假设直线l1的斜率为k1,直线l2的斜率为k2。
如果k1 = k2,则l1与l2是平行线。
2.2. 通过角度判定两条直线如果被一条横截线所截,且所截得的内角互补,则这两条直线是平行线。
例如,直线l1与l2被横截线m所截,其中直角1和直角2是互补的,则l1与l2是平行线。
2.3. 通过平行线定理判定平行线定理是指如果一条直线与两条平行线相交,那么它与另一条平行线也相交,并且两条交分线分割的邻补角相等。
通过这一定理,可以判断一条直线与已知平行线是否平行。
3. 3.1. 平行线的距离性质平行线之间的距离在任意两点之间始终相等。
这意味着,如果从一条平行线上的一点到另一条平行线的垂直距离是d,那么这两条平行线上任意两点之间的距离也都是d。
这一性质对于解决平面几何中的问题非常有用。
3.2. 平行线的夹角性质当一条直线与两条平行线相交时,所得到的对应角、内角、外角等具有一定的关系性质。
3.2.1. 对应角性质对应角是指两条平行线被一条横截线所截得到的相应角。
如果两条平行线被同一横截线截得的对应角相等,则这两条平行线是相等的。
即如果∠A = ∠C,那么∠B = ∠D,其中直线l1与l2被横截线m截得的直角1和直角2是对应角。
3.2.2. 内角与外角性质当一条直线与两条平行线相交时,所得到的内角与外角具有一定的关系。
内角互补,即当一条直线与两条平行线相交时,所得到的内角的补角相等。
初步认识平行线的性质和判定方法
初步认识平行线的性质和判定方法平行线是初中数学中一个非常重要的概念,它在几何学中占据着重要的地位。
初步认识平行线的性质和判定方法,能够帮助我们更好地理解和运用这一概念。
本文将从平行线的定义、性质以及判定方法三个方面进行论述。
一、平行线的定义在几何学中,我们称两条直线为平行线,意味着它们在同一平面上,并且永远不会相交。
这是平行线最基本的定义。
需要注意的是,两条平行线之间的距离始终相等,在图形排列中有很重要的应用。
二、平行线的性质1. 平行线具有等角折射性质:当两条平行线被一条横线(称为割线)切割时,所产生的对应角相等。
这是平行线最重要的性质之一,也是判定平行线的基础。
2. 平行线具有交错性质:当一条直线与两条平行线相交时,所产生的内错角互为补角,外错角互为补角。
这一性质在证明平行线相关定理时经常使用。
3. 平行线具有等比例性质:当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例保持不变。
这个性质在割线定理中有广泛的应用。
三、平行线的判定方法根据平行线的性质,我们可以利用不同的条件来判定两条直线是否平行。
1. 定理一:同位角相等法则同位角是指两条平行线被一条割线切割所形成的对应角。
如果两个对应角相等,那么这两条直线就是平行线。
这个方法在证明平行线定理时经常使用。
2. 定理二:内错角补角法则当两条平行线被一条割线切割时,所形成的内错角互为补角。
如果两个内错角互为补角,那么这两条直线是平行线。
3. 定理三:等角斜线法则当两条平行线被一条斜线切割时,所产生的截线与平行线之间的长度比例相等。
根据这一比例关系,我们可以判定两条直线是否平行。
通过以上三个判定方法,我们可以初步认识平行线的性质和判定方法。
在实际应用中,我们可以结合具体的问题和知识点,灵活运用这些方法,解决与平行线相关的几何问题。
综上所述,平行线是几何学中的重要概念,具有丰富的性质和判定方法。
通过对平行线的初步认识,我们可以更好地理解、运用和证明涉及平行线的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
87
654
3
21
A
B
C
D
E
易达彼思教育学科教师辅导讲义
学员姓名: 年 级:七年级 课时数: 辅导科目:数学 授课时间: 学科教师:
学科组长签名 及日期
教务长签名及日期
课 题 平行线及其判定及性质
教学目标
1.理解平行线的意义,了解同一平面内两条直线的两种位置关系;
2.掌握平行公理及其推论,会按要求画平行线;
3.掌握平行线的判定方法,并会运用这些方法进行简单的推理证明;
教学内容
知识回顾
写出下图中所有的同位角、内错角、同旁内角
同位角:
内错角:
同旁内角:
新课知识
一、平行线的判定
知识点1:平行线的判定1
用该符号语言表示:如图,
∵∠1=∠2, ∴AB ∥CD (同位角相等,两直线平行)
两直线平行的判定方法1:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单地说: 同位角相等 ,两直线平行.
例1.如图,直线a,b都与直线c相交,若∠1=120°,,2=60°,则a∥b.在下列括号中填写推理理由.
∵∠1=120°().
∴∠3=60°().
又∵∠2=60°().
∴∠2=∠3().
∴a∥b
知识点2:平行线的判定2
思考:下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.
解:∵∠1=∠7 ( )
∠1=∠3( )
∴∠7=∠3( )
∴ AB∥CD( )
用该符号语言表示:如图,
∵∠2=∠3(已知),∴AB∥CD(内错角相等,两直线平行)
两直线平行的判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单地说: 内错角相等 ,两直线平行.
知识点3:平行线的判定3
下图中,如果∠4+∠7=180°,能得出AB∥CD?
解: ∵∠4+∠7=180 °()
∠4+∠3=180°()
∴∠7=∠3()
∴ AB∥CD()
用该符号语言表示:如图,
∵∠2+∠4=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)
两直线平行的判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单地说: 同旁内角互补 ,两直线平行.
例4. 如图所示,回答下列问题,并说明理由.
(1)由∠C=∠2,可判定哪两条直线平行?
(2)由∠2=∠3,可判定哪两条直线平行?
(3)由∠C+∠D=180°,可判定哪两条直线平行?
注:(1)要掌握直线平行的判定方法,首先要掌握同位角、内错角、同旁内角的定义;
(2)判定方法是从角的关系得到两直线平行的。
知识点4:平行线的判定方法的推论
(一)两条平行线间的距离
1、定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。
如图所示,a//b,A是直线上任意一点,,垂足为B,则线段AB的长即是两平行线、间的距离。
若在直线上任找一点,过作,垂足为D,则线段CD的长也是两平行线、间的距离。
由此可见:
2、平行线间的距离处处相等。
例4.如图,AB⊥EF于点B,CD⊥EF于点D,∠1=∠2.
(1)请说明AB∥CD的理由
(2)试问BM与DN是否平行?为什么?
二、平行线的性质
知识点1:平行线的性质1
两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
如图所示,AB∥CD,有∠1=∠2.
格式:∵AB∥CD(已知).∴∠1=∠2(两直线平行,同位角相等)
例1.如图,已知a∥b,∠1=65°,则∠2的度数为()
A.65°
B.125°
C.115°
D.25°
知识点2:平行线的性质2
两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
格式:如图所示,AB∥CD,有∠2=∠3(两直线平行,内错角相等).
说明:∵AB∥CD(已知).∴∠1=∠2(两直线平行,同位角相等)
∵∠1=∠3,∴∠2=∠3
例2.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,
∠BDE=60°,则∠CDB的度数等于()
A.70°
B.100°
C.110°
D.120°
知识点3:平行线的性质3
两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
格式:如图所示,∵AB∥CD(已知).
∴∠1+∠2=180°(两直线平行,同旁内角互补)
例3.如图,若AB∥DE,BC∥FE,则∠E+∠B= .
注:同位角相等、同旁内角互补;内错角相等,都是平行线特有的性质,且不可忽略前提条件“两直线平行”,不要看到同位角或内错角,就认为是相等的。
三、平行线的性质和判定方法的综合应用
平行线的判定和性质的区别和联系:
平行线的性质描述的是“数量关系”,它的前提是两直线平行,然后得出角相等或互补的关系,是由“位置关系”到“数量关系”;
而平行线的判定,是以角的相等或互补为前提,推导出平行,是从“数量关系”到“位置关系”
判定
即:两角的数量关系两直线的位置关系
性质
由此可见,判定与性质之间的关系是一种互逆关系。
例4.潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后射出,由题意知∠2=∠1,∠4=∠3,则进入的光线AB与射出的光线CD平行吗?为什么?
随堂巩固
平行线的判定
一、填空题:
1.如图③∵∠1=∠2,∴_______∥________()
∵∠2=∠3,∴_______∥________()
2.如图④∵∠1=∠2,∴_______∥________()
∵∠3=∠4,∴_______∥________()
二、选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF
2.如图⑧,判定AB∥CE的理由是()
A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE
3.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,
③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
A.①③B.②④C.①③④D.①②③④
三、完成推理,填写推理依据:
1.如图⑩∵∠B=∠_______,∴AB∥CD()
∵∠BGC=∠_______,∴CD∥EF()
∵AB∥CD ,CD∥EF,∴AB∥____()
2.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°∴_________()
四、证明题
1.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,
请说明理由。
2.如图,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。
求证:AB∥CD,MP∥NQ.
3.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,
求证:CD∥BE。
4.如图,已知:∠A=∠1,∠C=∠2。
求证:求证:AB∥CD。
平行线的性质
F
2
A B C D
Q
E
1
P
M
N
O
F E D C B
A
D
C
B A
1
E
2
1
D
C
B
1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个
B.4个
C.3个
D.2个
(2) (3)
(1) 2.如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20° 3.如图3,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .
4.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( ) A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
5、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.
6.如图6,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.
求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.
图6
1 2 3
A
B。