河北省衡水市武邑县2019_2020学年九年级数学上学期月考试题

合集下载

2019-2020年九年级数学上学期第一次月考试题冀教版

2019-2020年九年级数学上学期第一次月考试题冀教版

D. 有两个不相等的实数根
10. 若 n( n 0) 是关于 x 的方程 x2 mx 2n 0 的根,则 m n的值为(

A.
B.
C.
D.
二、填空题(每小题 3 分,共 30 分)
1. 在航天知识竞赛中,包括甲同学在内的
6?名同学的平均分为 74 分,其中甲同学考了 89
分,则除甲以外的 5 名同学的平均分为 ____分 .
分,则除甲以外的 5 名同学的平均分为 ______分 .
6. 已知关于 x 的一元二次方程 x2 mx 2m 0 的一个根为 1 ,则方程的另一个根

.
7. 若(
是关于 的一元二次方程,则 的值是 ________.
8. 若方程
2
x
x
0 的两根为 x1, x2 (x1
x2) ,则 x2
x1
_______.
D.87
4. 已知样本 x 1,x 2,x 3,x 4 的平均数是 2,则 x 1+ 3,x2+ 3, x3+3,x 4+3 的平均数是(

A. 2
B. 2.75
C. 3
D. 5
5. 下列说法中正确的有(

①描述一组数据的平均数只有一个;
②描述一组数据的中位数只有一个;
③描述一组数据的众数只有一个;
2. 如果
,那么
的关系是 ________.
3. 如果 关于 x 的方程 x2 2 x k 0 没有实数根,那么 k 的取值范围为 _____________.
4. 某校八年级甲、 乙两班举行电脑汉字输入比赛, 两个班参加比赛的学生每分钟输入汉字的
个数经统计和计算后结果如下表:
有一位同学根据上面表格得出如下结论:

河北省衡水市2019-2020学年中考数学五月模拟试卷含解析

河北省衡水市2019-2020学年中考数学五月模拟试卷含解析

河北省衡水市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,OP 平分∠AOB ,PC ⊥OA 于C ,点D 是OB 上的动点,若PC =6cm ,则PD 的长可以是( )A .7cmB .4cmC .5cmD .3cm2.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1123.在平面直角坐标系中,二次函数y=a (x –h )2+k (a<0)的图象可能是A .B .C .D .4.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有() A .180人 B .117人 C .215人 D .257人5.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+6.河堤横断面如图所示,堤高BC=6米,迎水坡AB 的坡比为13AB 的长为A.12米B.43米C.53米D.63米7.如图是某个几何体的三视图,该几何体是()A.圆锥B.四棱锥C.圆柱D.四棱柱8.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则11x+21x的值是()A.1 B.2 C.﹣34D.﹣439.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是A.B.C.D.10.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE 折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70°B.110°C.130°D.140°11.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6 米,CD=4 米,∠BCD=150°,在D 处测得电线杆顶端A 的仰角为30°,则电线杆AB 的高度为()A.2+23B.4+23C.2+32D.4+3212.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .14.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.15.分解因式:a2-2ab+b2-1=______.16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.18.若y=334x x -+-+,则x+y= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,每个小正方形的边长都为1,DEF V 和ABC V 的顶点都在格点上,回答下列问题:()1DEF V 可以看作是ABC V 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC V 得到DEF V 的过程:______;()2画出ABC V 绕点B 逆时针旋转90o 的图形A'BC'V ;()3在()2中,点C 所形成的路径的长度为______.20.(6分)如图,直线y =﹣x+4与x 轴交于点A ,与y 轴交于点B .抛物线y =﹣12x 2+bx+c 经过A ,B 两点,与x 轴的另外一个交点为C 填空:b = ,c = ,点C 的坐标为 .如图1,若点P 是第一象限抛物线上的点,连接OP 交直线AB 于点Q ,设点P 的横坐标为m .PQ 与OQ 的比值为y ,求y 与m 的数学关系式,并求出PQ 与OQ 的比值的最大值.如图2,若点P 是第四象限的抛物线上的一点.连接PB 与AP ,当∠PBA+∠CBO =45°时.求△PBA 的面积.21.(6分)(1)|﹣327•tan30°+(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.22.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.(8分)先化简,再求值:(231xx--﹣2)÷11x-,其中x满足12x2﹣x﹣4=024.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.25.(10分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.26.(12分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.27.(12分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷解析版

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷解析版

2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷一.选择题(每题3分,共计18分)1.(3分)下列方程为一元二次方程的是()A.ax2+bx+c=0B.x2﹣2x﹣3C.2x2=0D.xy+1=02.(3分)如图是某物体的直观图,它的俯视图是()A.B.C.D.3.(3分)下列图中是太阳光下形成的影子是()A.B.C.D.4.(3分)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.5.(3分)如图,P为反比例函数y=的图象上一点,P A⊥x轴于点A,△P AO的面积为6,则下列各点中也在这个反比例函数图象上的是()A.(2,3)B.(﹣2,6)C.(2,6 )D.(﹣2,3)6.(3分)如图,双曲线y=经过点A(2,2)与点B(4,m),则△AOB的面积为()A.2B.3C.4D.5二.填空题(每题3分,共30分)7.(3分)分解因式:4m2﹣16n2=.8.(3分)一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是cm.9.(3分)将一个正十边形绕其中心至少旋转°就能和本身重合.10.(3分)某工厂两年内产值翻了一番,若设该工厂产值年平均增长的百分率为x,则可列方程为.11.(3分)如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.12.(3分)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.13.(3分)如图,PB是⊙O的切线,A是切点,D是上一点,若∠BAC=70°,则∠ADC的度数是度.14.(3分)如图,正五边形ABCDE内接于⊙O,则∠CAD=度.15.(3分)关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.16.(3分)已知⊙O的直径CD为4,的度数为80°,点B是的中点,点P在直径CD上移动,则BP+AP 的最小值为.三.解答题(共72分)17.用适当的方法解下列方程(1)2x2﹣5x=3(2)x(x﹣5)=2(x﹣5)18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.19.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.20.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为.21.已知:如图A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,∠B=30°.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.22.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)填空:EF=cm,GH=cm;(用含x的代数式表示)(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积.23.如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.(1)求直线AC的表达式;(2)若直线y=x+b与矩形OABC有公共点,求b的取值范围;(3)若点O与点B位于直线y=kx﹣2﹣10k两侧,直接写出k的取值范围.24.如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D 三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为10m,∠BAC=60°,求DE的长.2019-2020学年河北省衡水市武邑中学九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共计18分)1.【解答】解:A、a=0时,属于一元一次方程,故本选项错误;B、不是方程,不符合一元二次方程的定义,故本选项错误;C、该方程符合一元二次方程的定义,故本选项正确;D、该方程中含有2个未知数,不是一元二次方程,故本选项错误.故选:C.2.【解答】解:圆柱的俯视图是圆,长方体的俯视图是长方形,所以该组合几何体的俯视图应是长方形内有一个圆.故选:A.3.【解答】解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选:A.4.【解答】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;依物同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选:A.5.【解答】解:由于P为反比例函数的y=图象上一点,所以S=|k|=6,又因为函数位于第二象限,所以k=﹣12.再把各选项中的坐标代入进行判断:A、2×3=6≠﹣12,故不在函数图象上;B、﹣2×6=﹣12,故在函数图象上;C、2×6=12≠﹣12,故不在函数图象上;D、(﹣2)×3=﹣6≠﹣12,故不在函数图象上.故选:B.6.【解答】解:过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线y=经过点A(2,2),∴k=2×2=4,而点B(4,m)在y=上,∴4•m=4,解得m=1,即B点坐标为(4,1),∴S△AOB=S△AOC+S梯形ABDC﹣S△BOD=OC•AC+×(AC+BD)×CD﹣×OD×BD=×2×2+×(2+1)×(4﹣2)﹣×4×1=3.故选:B.二.填空题(每题3分,共30分)7.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)8.【解答】解:方程x2﹣10x+21=0,分解因式得:(x﹣3)(x﹣7)=0,解得:x=3或x=7,当x=3时,三角形三边分别为3cm,4cm,7cm,3+4=7,不合题意,舍去;当x=7时,三角形三边为4cm,7cm,7cm,此时周长为4+7+7=18cm,故答案为:189.【解答】解:∵多边形每个中心角为:=36°,该图形绕其中心至少旋转36°和本身重合.故答案为:36.10.【解答】解:设该工厂产值年平均增长的百分率为x,原产值为1,由题意得:(1+x)2=2,故答案是:(1+x)2=2.11.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.12.【解答】解:根据旋转过程可知:∠CAD=30°=∠CAB,AC=AD=4.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H点,在Rt△ACH中,CH=AC=2,AH=2.∴HD=AD﹣AH=4﹣2.在Rt△CHE中,∵∠E=45°,∴EH=CH=2.∴DE=EH﹣HD=2﹣(4﹣2)=2﹣2.故答案为2﹣2.13.【解答】解:如图,∵在优弧AC上取点E,连接AE,CE,PB是⊙O的切线,∠BAC=70°,∴∠E=70°,∴∠D=180°﹣∠E=110°.14.【解答】解:∵五边形ABCDE是正五边形,∴=====72°,∴∠CAD=×72°=36°.故答案为36.15.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=﹣2或x+2=1,解得x=﹣4或x=﹣1.故答案为:x3=﹣4,x4=﹣1.16.【解答】解:过点B关于CD的对称点B′,连接AB′交CD于点P,延长AO交圆O与点E,连接B′E.∵点B与点B′关于CD对称,∴PB=PB′..∴当点B′、P、A在一条直线上时,PB+P A有最小值,最小值为AB′.∵点B是的中点,∴=120°.∴∠B′EA=60°.∴AB′=AE•sin60°=4×=2.故答案为:2.三.解答题(共72分)17.【解答】解:(1)方程整理得:x2﹣x=3,配方得:x2﹣x+=,即(x﹣)2=,开方得:x﹣=±,解得:x1=3,x2=﹣;(2)方程整理得:x(x﹣5)﹣2(x﹣5)=0,分解因式得:(x﹣2)(x﹣5)=0,解得:x1=5,x2=2.18.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).故答案为:6.19.【解答】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.20.【解答】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为7.故答案为:18,7.21.【解答】(1)证明:如图,连接OA;∵OC=BC,OA=OC,∴OA=OB.∴∠OAB=90°,即OA⊥AB,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.22.【解答】解:(1)EF=(30﹣2x)cm,GH=(20﹣x)cm.故答案为(30﹣2x),(20﹣x);(2)根据题意,得:40×30﹣2x2﹣2×20x=950,解得:x1=5,x2=﹣25(不合题意,舍去),所以长方体盒子的体积=x(30﹣2x)(20﹣x)=5×20×15=1500(cm3).答:此时长方体盒子的体积为1500cm3.23.【解答】解:(1)∵OA=8,OC=6,∴A(8,0),C(0,6),设直线AC解析式为y=mx+n(m≠0),将A(8,0)、C(0,6)代入y=mx+n,得:,解得:,∴直线AC的解析式为y=﹣x+6;(2)当直线y=x+b过点C时,将C(0,6)代入y=x+b,得:6=0+b,∴b=6;当直线y=x+b过点A时,将A(8,0)代入y=x+b,得:0=8+b,∴b=﹣8.∵若直线y=x+b与矩形OABC有公共点,∴b的取值范围为:﹣8<b<6.(3)∵OA=8,OC=6,四边形OABC为矩形,∴B(8,6).将A(0,0)代入y=kx﹣2﹣10k,得:﹣2﹣10k=0,解得:k=﹣;将B(8,6)代入y=kx﹣2﹣10k,得:8k﹣2﹣10k=6,解得:k=﹣4.∴k的取值范围为:﹣4<k<﹣.24.【解答】(1)证明:如图连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=20,设AC与⊙O交于点F,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=10,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=20,AF=10,根据勾股定理得:BF=,则DE==5.。

精品解析:河北省武邑中学2020学年九年级上学期第一次月考数学试题(解析版)

精品解析:河北省武邑中学2020学年九年级上学期第一次月考数学试题(解析版)

河北武邑中学2020届上学期九年级月考数学试卷全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一.选择题(每题3分,共计18分)1.下列方程为一元二次方程的是( )A. ax2+bx+c=0B. x2-2x-3C. 2x2=0D. xy+1=0【答案】C【解析】A. ax2+bx+c=0,当a≠0时是一元二次方程,条件中没有强调,因此不一定是一元二次方程,故不符合要求;B. x2-2x-3,不是方程,故不符合要求;C. 2x2=0,满足定义,故符合要求;D. xy+1=0,是二元二次方程,故不符合要求,故选C.【点睛】本题主要考查一元二次方程的概念,解答本题的关键是要判断所给的是否为方程,然后看是否是整式方程,最后要看是只含有一个未知数且未知数的最高次数是2.2.右图是某物体的直观图,它的俯视图是A. B. C. D.【答案】A【解析】分析:找到从上面看得到的图形即可.解答:解:圆柱的俯视图是圆,长方体的俯视图是长方形,所以该组合几何体的俯视图应是长方形内有一个圆.故选A .3. 下列图中是太阳光下形成的影子是( )A.B.C.D.【答案】A【解析】试题分析:根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B 、D 的影子方向相反,都错误; C 中物体的物高和影长不成比例,也错误.故选A .点评:本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.4.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )A.B.C.D.【答案】A【解析】 解:将矩形木框立起与地面垂直放置时,形成B 选项的影子;将矩形木框与地面平行放置时,形成C 选项影子;将木框倾斜放置形成D 选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A 选项中的梯形,因为梯形两底不相等.故选A .5.如图,P为反比例函数y=kx的图像上一点,PA⊥x轴于点A,△PAO的面积为6,则下列各点中也在这个反比例函数图像上的是()A. (2,3)B. (﹣2,6)C. (2,6)D. (﹣2,3)【答案】B【解析】【分析】根据反比例函数系数k的几何意义及△PAO的面积先求出k的值,再把各选项代入代数式验证即可解答.【详解】由于P为反比例函数的y= kx图像上一点,所以S=12|k|=6,又因为函数位于第二象限,所以k=﹣12.把各选项中的坐标代入进行判断:选项A,2×3=6≠﹣12,故不在函数图像上;选项B,﹣2×6=﹣12,故在函数图像上;选项C,2×6=12≠﹣12,故不在函数图像上;选项D,(﹣2)×3=﹣6≠﹣12,故不在函数图像上.故选B.【点睛】本题考查了反比例函数系数k的几何意义及反比例函数图象上点的坐标的特征,利用反比例函数系数k的几何意义求得k值是解决问题的关键.6.如图,双曲线y=kx经过点A(2,2)与点B(4,m),则△AOB的面积为()A. 2B. 3C. 4D. 5 【答案】B【解析】【分析】过A、B分别作x轴的垂线,垂足分别为C、D,把点A(2,2)代入双曲线y=kx确定k的值,再把点B(4,m)代入双曲线y=kx,确定点B的坐标,根据S△AOB=S△AOC+S梯形ABDC−S△BOD和三角形的面积公式与梯形的面积公式进行计算即可.【详解】过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线y=kx经过点A(2,2),∴k=2×2=4,而点B(4,m)在y=4x上,∴4•m=4,解得m=1,即B点坐标为(4,1),∴S△AOB=S△AOC+S梯形ABDC −S△BOD=12OC•AC+12×(AC+BD)×CD−12×OD×BD=12×2×2+12×(2+1)×(4−2)−12×4×1=3.故选:B.【点睛】本题考查了点在图象上,点的横纵坐标满足图象的解析式;也考查了利用坐标表示线段的长以及利用规则的几何图形的面积的和差计算不规则的图形面积.二.填空题(每题3分,共30分)7.分解因式:4m 2﹣16n 2=_____.【答案】4(m+2n )(m ﹣2n ).【解析】【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为:()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.8.一个三角形的两边长分别为4cm 和7cm ,第三边长是一元二次方程x 2﹣10x+21=0的实数根,则三角形的周长是____cm .【答案】18.【解析】试题分析:由方程x 2﹣10x+21=0,利用分解因式得:(x ﹣3)(x ﹣7)=0,解得:x=3或x=7,当x=3时,三角形三边分别为3cm ,4cm ,7cm ,3+4=7,不合题意,舍去;当x=7时,三角形三边为4cm ,7cm ,7cm ,此时周长为4+7+7=18cm ,考点:1、解一元二次方程-因式分解法;2、三角形三边关系9.将一个正十边形绕其中心至少旋转____°就能和本身重合.【答案】36【解析】 试题分析:多边形每个中心角为:36010=36°,该图形绕其中心至少旋转36°和本身重合.考点:旋转对称图形10.某工厂两年内产值翻了一番,若设该工厂产值年平均增长的百分率为x ,则可列方程为______.【答案】(1+x )2=2【解析】设原来的产值为1,则现在的产值为2.则(1+x )2=2.11.如图,AD 为⊙O 的直径,75ABC ∠=,且AC BC =,则BED ∠= .【答案】135【解析】试题分析:联结CD .根据同弧所对的圆周角相等,有75ADC ABC ∠=∠=,又根据直径所对的圆周角是直角,有15DAC ∠=,又根据AC BC =,有75BAC ABC ∠=∠=,所以30ACB ∠=,所以135AEC ∠=.因对顶角相等,故135BED ∠=.考点:1.圆的性质;2.同弧所对圆周角的大小关系;3.等腰三角形的性质.12.如图,在△ABC 中,AB=AC=4,将△ABC 绕点A 顺时针旋转30°,得到△ACD ,延长AD 交BC 的延长线于点E ,则DE 的长为__________【答案】2-【解析】【分析】过点C 作CH ⊥AE 于H 点,利用旋转的性质可得∠E =45°,再利用等腰直角三角形的性质和勾股定理求出HD =4﹣和EH =CH =2,即可解答.【详解】解:根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°﹣2×75°=30°.∴∠E =75°﹣30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =∴HD =AD ﹣AH =4﹣.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH ﹣HD =2﹣(4﹣﹣2.故答案2.【点睛】此题考查旋转的性质、等腰三角形的性质以及含特殊角的直角三角形的性质,解题关键在于做出辅助线.13.如图,PB 是⊙O 的切线,A 是切点,D 是AC 上一点,若∠BAC =70°,则∠ADC 的度数是_____度.【答案】110【解析】设点E是优弧AC上的一点,由弦切角定理知,∠E=∠BAC=70°,再由圆内接四边形的对角互补知,∠D =180°﹣∠E=110°.【详解】如图:∵在优弧AC上取点E,连接AE,CE,PB是⊙O的切线,∠BAC=70°,∴∠E=70°,∴∠D=180°﹣∠E=110°.【点睛】考查了弦切角定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14. 如图,正五边形ABCDE内接于⊙O,则∠CAD= ______度.【答案】36.【解析】试题分析:∵五边形ABCDE是正五边形,∴AB BC CD DE EA=====72°,∴∠ADB=12×72°=36°.故答案为:36.考点:1.圆周角定理;2.正多边形和圆.15.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0 的解是__________.【答案】x=-4,x=-1【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,(a ,m ,b 均为常数,a≠0),∴方程a (x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a (x+m+2)2+b=0的解为x 1=-4,x 2=-1.故答案为:x 1=-4,x 2=-1.【点睛】本题考查方程解的定义.注意由两个方程的特点进行简便计算.16.已知⊙O 的直径CD 为4,AC 的度数为80°,点B 是AC 的中点,点P 在直径CD 上移动,则BP+AP 的最小值为____.【答案】【解析】 试题分析:过点B 关于CD 的对称点B′,连接AB′交CD 于点P ,延长AO 交圆O 与点E ,连接B′E .∵点B 与点B′关于CD 对称, ∴PB=PB′.'BC B C . ∴当点B′、P 、A 在一条直线上时,PB+PA 有最小值,最小值为AB′. ∵点B 是AC 的中点, ∴'AB =120°.∴∠B′EA=60°.∴.考点:1、轴对称-最短路线问题;2、勾股定理;3、垂径定理三.解答题(共72分)17.用适当的方法解下列方程(1)2x2﹣5x=3(2)x(x﹣5)=2(x﹣5)【答案】(1)x1=3,x2=﹣12;(2)x1=5,x2=2.【解析】【分析】(1)方程整理后,利用配方法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【详解】(1)方程整理得:253 2x x-=,配方得:252549 21616x x-+=,即2549416x⎛⎫-=⎪⎝⎭,开方得:5744x-=,解得:x1=3,x2=﹣12;(2)方程整理得:x(x﹣5)﹣2(x﹣5)=0,分解因式得:(x﹣2)(x﹣5)=0,解得:x1=5,x2=2.【点睛】考查了解一元二次方程-因式分解法,配方法,公式法,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.【答案】6【解析】试题分析:过点E作EQ⊥FG于点Q,由题意可得出:FQ=AB,∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm)。

河北省衡水市数学九年级上第一次月考

河北省衡水市数学九年级上第一次月考

河北省衡水市数学九年级上第一次月考姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·伊通期末) 二次函数 y=(x﹣4)2+3 的最小值是()A . 2B . 3C . 4D . 52. (2分) (2017八下·简阳期中) 如果点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y= 的图象上,那么()A . y1<y2<y3B . y1<y3<y2C . y2<y1<y3D . y3<y2<y13. (2分)若二次函数y=(x-m)2-1.当x≤1时,y随x的增大而减小,则m的取值范围是()A . m=1B . m>1C . m≥1D . m≤14. (2分)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A .B .C .D .5. (2分)已知二次函数y=ax2+bx+c(a≠0)与x轴的交点坐标为A(m,0),B(n,0),点A在点B的左边,当ax2+bx+c=2015时有实数根x1 , x2(x1<x2),以下说法中不正确的是()A . 当a>0时,x1<m<n<x2B . 当a<0时,m<x1<x2<nC . 存在m+n=x1+x2D . y=ax2+bx+c﹣2015与x轴的交点坐标不可能是(x1 , 0),(x2 , 0)6. (2分)将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A . y=﹣2(x+1)2B . y=﹣2(x+1)2+2C . y=﹣2(x﹣1)2+2D . y=﹣2(x﹣1)2+17. (2分)如图,已知抛物线y=x2+bx+c的对称轴为x=1,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(n,3),则点B的坐标为().A . (n+2,3)B . (n-2,3)C . (2-n,3)D . (2-2n,3)8. (2分)下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A . y=-x+1B . y=x2-1C . y=D . y=-9. (2分)(2017·南充) 二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A . 4ac<b2B . abc<0C . b+c>3aD . a<b10. (2分)(2016·新疆) 已知A(x1 , y1),B(x2 , y2)是反比例函数y= (k≠0)图象上的两个点,当x1<x2<0时,y1>y2 ,那么一次函数y=kx﹣k的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共8分)11. (2分)如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.12. (1分) (2018九上·绍兴月考) 已知抛物线y=x2+(m-4)x-4m的顶点在y轴上,则m=________;13. (1分) (2019九下·富阳期中) 如图,一次函数y=2x与反比例函数y= (k>0)的图象交于点A,B,点P在以C(-2,0)为圆心,1为半径的⊙C上,Q是AP的中点,若OQ长的最大值为,则k的值为________。

2019~2020学年初三数学九年级上学期第一次月考数学试卷含有答案

2019~2020学年初三数学九年级上学期第一次月考数学试卷含有答案

2019~2020学年初三数学九年级上学期第一次月考数学试卷含有答案一、选择题1、下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0 B .x 2-2x -3 C .2x 2=0 D .xy +1=0 2、关于的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则值为( )A .B .C .或D .03、关于x 的一元二次方程(a+1)x 2-4x -1=0有两个不相等的实数根,则a 的取值范围是 ( )A .a >-5B .a >-5且a ≠-1C .a <-5D .a ≥-5且a ≠-1 4、已知点P 是线段OA 的中点,P 在半径为r 的⊙O 外,点A 与点O 的距离为8,则r 的取值范围是( )A .r >4B .r >8C .r <4D .r <8 5、下列方程中两根之和为2的方程个数有:( )A .1B .2C .3D .46、如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠A =20°,∠B =70°,则∠ACB 的度数为( )A .50°B .55°C .60°D .65°(第6题) (第8题) (第10题)7、以下命题:①直径相等的圆是等圆; ②长度相等弧是等弧; ③相等的弦所对的弧也相等; ④圆的对称轴是直径;⑤相等的圆周角所对的弧相等;其中正确的个数是( )A .4B .3C .2D .18、如图所示,已知四边形ABDC 是圆内接四边形,∠1=112°,则∠CDE =( ) A .56° B .68° C .66° D .58°9、若圆的一条弦把圆分成度数的比为1:3的两条弧,则弦所对的圆周角等于( ) A .45° B .90° C .135° D .45°或135° 10、如图是由三个边长分别为6、9、x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则的值是( )A .1或9B .3或5C .4或6D .3或6 二、填空题11、一元二次方程(x-2)(x+3)=x+1化为一般形式是 。

河北省衡水市九年级上学期数学第三次月考试卷

河北省衡水市九年级上学期数学第三次月考试卷

河北省衡水市九年级上学期数学第三次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知,则的值为()A .B .C .D .2. (2分) (2019八下·重庆期中) 对于函数,下列结论不正确的是()A . 它的图象必经过点(-1,-2)B . 图象与y轴的交点是(-2,0)C . 当 x<-2时,y>0D . 它的图象不经过第一象限3. (2分)如图所示,下列水平放置的几何体中,俯视图是矩形的是()A .B .C .D .4. (2分)(2020·营口) 反比例函数y=(x<0)的图象位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)在Rt△ABC中,∠C=90°,若BC=2AC,则∠A的正切值是()A .B .C .D . 26. (2分)设ab≠0,且函数f1(x)=x2+2ax+4b与f2(x)=x2+4ax+2b有相同的最小值u;函数f3(x)=﹣x2+2bx+4a与f4(x)=﹣x2+4bx+2a有相同的最大值v;则u+v的值()A . 必为正数B . 必为负数C . 必为0D . 符号不能确定7. (2分)如图,已知⊙O中,圆心角∠AOB=100°,则圆周角∠ACB等于().A . 130°B . 120°C . 110°D . 100°8. (2分)(2019·江北模拟) 如图,△AB C是⊙O的内接三角形,∠A=30°,BC=2,则⊙O的直径长为()A . 2B .C . 4D . 89. (2分)小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A .B .C . 1D .10. (2分) (2019九上·马山月考) 下列叙述正确的是()A . 平分弦的直径必垂直于弦B . 三角形的外心到三边的距离相等C . 相等的圆心角所对的弧相等D . 垂直平分弦的直线必平分这条弦所对的弧11. (2分) (2020八下·唐县期末) A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系。

河北省冀教版2019—2020学年度第一学期九年级第二次月考数学试题

河北省冀教版2019—2020学年度第一学期九年级第二次月考数学试题

2019——2020学年度第一学期第二次月考九年级数学试卷满分:120分 考试时间:120分钟一、 选择题 (本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 数据8,9,10,10,11的众数是( ) A.8 B.9 C.10 D.112. 一组数据2,6,2,5,4,则这组数据的中位数是( ) A.2 B.4 C.5 D.63. 如果)0(23≠=ab b a ,那么比例式中正确的是( ) A.23=b a B.32=a b C.32b a = D.23b a =4. 甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m ,方差分别是60.02=甲S ,62.02=乙S ,58.02=丙S ,45.02=丁S ,则这四名同学跳高成绩最稳定的是( ) A.甲 B.乙 C.丙 D.丁5. 已知25=y x ,则yy x -的值为( ) A.53 B.23 C.32 D.53-6. 已知线段a=4,b=16,线段c 是a 、b 的比例中项,那么c 等于( ) A.8 B.10 C.8- D.8±7. 如图,在△ABC 中,DE ∥BC ,若AD=4,BD=2,则DE ∶BC 的值为( )A.1:2B.2:1C.3:1D.2:38. 已知1=x 是方程022=+-c x x 的一个根,则实数c 的值是( )A.1-B.0C.1D.29. 用配方法解方程0142=++x x ,配方后的方程是( ) A.5)2(2=+x B.3)2(2=-x C.5)2(2=-xD.3)2(2=+x10. 一元二次方程是02=+x x 的根的是( ) A.1,021==x x B.1,121-==x x C.1,021-==x x D.121-==x x11. 若关于x 的一元二次方程022=+-c x x 有两个相等实数根,则c 的值是( ) A.1 B.1- C.4- D.412. 某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x ,根据题意列方程为( ) A.900)1(4002=+x B.900)21(400=+x C.400)1(9002=-xD.900)1(4002=+x13. 已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A.13 B.11或13 C.11 D.1214. 参加一次聚会的每两个都握了一次手,所有人共握手6次,则参加聚会的人数是( ) A.3人 B.4人 C.5人 D.6人15. 如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .则该矩形草坪BC 边的长是( ) A.12 B.18 C.20 D.12或2016.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AE =EB =EC =a ,且a 是一元二次方程x 2+2x -3=0的一个根,则平行四边形ABCD 的周长为( )A .4+2 2B .12+6 2C .2+2 2D .2+2或12+6 2请将选择题答案填入表格中,不按要求答题不得分:一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分)17. 如图,已知AD ∥BE ∥CF ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .如果AB=6,BC=10,那么DFDE的值是________。

2019-2020年九年级(上)月考数学试卷(9月份)(解析版).docx

2019-2020年九年级(上)月考数学试卷(9月份)(解析版).docx

2019-2020 年九年级(上)月考数学试卷(9 月份)(解析版)一、选择题:本大题共12 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分1.已知关于 x 的一元二次方程( a﹣1)x2﹣ 2x+1=0 有两个不相等的实数根,则a 的取值范围是()A. a<2B.a>2C.a<2 且 a≠ 122.要将抛物线 y=x +2x+3 平移后得到抛物线D. a<﹣ 22)A.向左平移 1 个单位,再向上平移 2 个单位B.向左平移 1 个单位,再向下平移 2 个单位C.向右平移 1 个单位,再向上平移 2 个单位D.向右平移 1 个单位,再向下平移 2 个单位3.在如图所示的单位正方形网格中,△ABC 经过平移后得到△ A1B1C1,已知在AC 上一点(,)平移后的对应点为1,点P1 绕点O逆时针旋转180°,得P 2.4 2P到对应点 P2,则 P2点的坐标为()A.(1.4,﹣ 1) B.(1.5,2) C.( 1.6,1)D.( 2.4, 1)4.若 ab<0,则正比例函数 y=ax 和反比例函数 y=在同一坐标系中的大致图象可能是()A.B.C.D.5.函数y=ax2+bx+c 的图象如图所示,那么关于x 的方程ax2+bx+c﹣3=0的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根6.如图,在直角梯形 ABCD 中,AD ∥BC,∠ABC=90°,AB=8 ,AD=3 ,BC=4,点 P 为 AB 边上一动点,若△ PAD 与△ PBC 是相似三角形,则满足条件的点P 的个数是()A.1 个B.2 个 C.3 个 D.4 个7.如图,将∠ AOB 放置在 5×5 的正方形网格中,则sin∠AOB 的值是()A.B.C.D.8.在下列四个命题中:①所有等腰直角三角形都相似;②所有等边三角形都相似;③所有正方形都相似;④所有菱形都相似.其中真命题有()A.4 个B.3 个 C.2 个 D.1 个9ABC中,已知∠C=90° BC=3,AC=4,⊙O是内切圆,E F.如图,在△,,,D 分别为切点,则 tan∠OBD= ()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足 a+b+c=0,那么我们称这个方程为“凤凰”方程.已知 ax2 +bx+c=0( a≠ 0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. a=c B.a=b C. b=c D.a=b=c11.如图,已知△ ABC 中,∠ ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线 l1,l2,l 3上,且 l1, l2之间的距离为 2,l2,l3之间的距离为 3,则 AC的长是()A.B.C.D.712.如图,抛物线 y=ax2+bx+c 与 x 轴交于点 A(﹣ 1,0),顶点坐标为( 1, n),与 y 轴的交点在( 0, 2)、(0,3)之间(包含端点),则下列结论:①当 x>3 时, y< 0;② 3a+b>0;③﹣ 1≤a≤﹣;④ 3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共 6 小题,共 24 分,只要求填写最后结果,每小题填对得4 分.13.半径为 1 的圆内接正三角形的边心距为.14.若a 是方程x2﹣x﹣1=0 的一个根,则﹣a3+2a+2017 的值为.15.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离 x(m)的关系式为h=﹣x2+x+2,则大力同学投掷标枪的成绩是m.16.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点 D 对应的刻度是58°,则∠ ACD的度数为.17.在平面直角坐标系的第一象限内,边长为 1 的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则 a 的取值范围是.18.如图是由 6 个棱长均为 1 的正方体组成的几何体,它的主视图的面积为.三、解答题:本大题共7 个小题,满分 60 分.解答时请写出必要的演推过程..计算﹣2sin45 +°(﹣ 2)﹣3+()0.1920.如图所示,在△ ABC 中,∠ B=90°,AB=6cm ,BC=12cm,点 P 从点 A 开始沿 AB 边向点 B 以 1cm/s 的速度移动,点 Q 从点 B 开始沿 BC 边向点 C 以 2cm/s 的速度移动,如果点P、Q 分别从 A 、B 同时出发.(1)几秒钟后,△ PBQ 的面积等于 8cm2?(2)△ PBQ 的面积可能等于 10cm2吗?为什么?21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.22.如图, AB 是⊙ O 的直径,过点 A 作⊙ O 的切线并在其上取一点 C,连接 OC交⊙ O 于点 D, BD 的延长线交 AC 于 E,连接 AD .( 1)求证:△ CDE∽△CAD ;( 2)若 AB=2 , AC=2,求AE的长.23.如图,一次函数y=﹣x+4 的图象与反比例函数y=(k为常数,且k≠ 0)的图象交于 A (1,a),B 两点.(1)求反比例函数的表达式及点 B 的坐标;(2)在 x 轴上找一点 P,使 PA+PB 的值最小,求满足条件的点 P 的坐标及△ PAB的面积.24.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639 年),碑记为“尉迟敬德监建”,距今已 1300 多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在 B 处测得海丰塔最高点 P 的仰角为 45°,又前进了 18 米到达 A 处,在 A 处测得 P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点 A 、B、C、 D 分别是“蛋圆”与坐标轴的交点, AB 为半圆的直径,点 M 为圆心, A 点坐标为(﹣ 2,0), B 点坐标为( 4,0),D 点的坐标为( 0,﹣ 4).(1)你能求出经过点 C 的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量 x 的取值范围.(3)你能求出经过点D 的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.2016-2017 学年山东省滨州市无棣县小泊头中学九年级(上)月考数学试卷(9 月份)参考答案与试题解析一、选择题:本大题共12 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分1.已知关于 x 的一元二次方程( a﹣1)x2﹣ 2x+1=0 有两个不相等的实数根,则a 的取值范围是()A. a<2B.a>2C.a<2 且 a≠ 1D. a<﹣ 2【考点】根的判别式.【分析】根据一元二次方程的定义结合根的判别式即可得出关于 a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于 x 的一元二次方程(a﹣1)x2﹣ 2x+1=0 有两个不相等的实数根,∴,解得: a<2 且 a≠ 1.故选 C.2 2x3 平移后得到抛物线 y=x2,下列平移方法正确的是()2.要将抛物线 y=x + +A.向左平移 1个单位,再向上平移2个单位B.向左平移 1个单位,再向下平移2个单位C.向右平移 1个单位,再向上平移2个单位D.向右平移 1 个单位,再向下平移 2 个单位【考点】二次函数图象与几何变换.【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【解答】解: y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线 y=x2的顶点坐标是( 0, 0),则平移的方法可以是:将抛物线 y=x2+2x+3 向右移 1 个单位,再向下平移 2 个单位.故选: D.3.在如图所示的单位正方形网格中,△ABC 经过平移后得到△ A1B1C1,已知在1P1绕点 O 逆时针旋转180°,得AC 上一点 P( 2.4,2)平移后的对应点为 P ,点到对应点 P2,则 P2点的坐标为()A.(1.4,﹣ 1) B.(1.5,2) C.( 1.6,1)D.( 2.4, 1)【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【分析】根据平移的性质得出,△ABC 的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.【解答】解:∵ A 点坐标为:(2,4), A1(﹣ 2, 1),∴点 P(2.4,2)平移后的对应点P1为:(﹣ 1.6,﹣ 1),∵点 P1绕点 O 逆时针旋转 180°,得到对应点 P2,∴P2点的坐标为:( 1.6,1).故选: C.4.若 ab<0,则正比例函数 y=ax 和反比例函数 y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据 ab<0 及正比例函数与反比例函数图象的特点,可以从a> 0,b<0 和 a< 0, b> 0 两方面分类讨论得出答案.【解答】解:∵ ab<0,∴a、b 为异号,分两种情况:( 1)当 a>0,b<0 时,正比例函数 y=ax 数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当 a<0,b>0 时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项 C 符合.故选 C.5.函数y=ax2+bx+c 的图象如图所示,那么关于x 的方程 ax2+bx+c﹣3=0的根的情况是()A.有两个不相等的实数根B.有两个异号实数根C.有两个相等实数根D.无实数根【考点】抛物线与 x 轴的交点.【分析】由图可知 y=ax2 +bx+c﹣3 可以看作是函数y=ax2+bx+c 的图象向下平移3个单位而得到,再根据函数图象与x 轴的交点个数进行解答.【解答】解:∵函数 y=ax2+bx+c 的图象顶点的纵坐标为3,∴函数 y=ax2+bx+c﹣3 的图象可以看作是y=ax2+bx+c 的图象向下平移 3 个单位得到,此时顶点在x 轴上,∴函数 y=ax2+bx+c﹣3 的图象与 x 轴只有 1 个交点,2∴关于 x 的方程 ax +bx+c﹣3=0 有两个相等实数根.6.如图,在直角梯形 ABCD 中,AD ∥BC,∠ABC=90°,AB=8 ,AD=3 ,BC=4,点 P 为 AB 边上一动点,若△ PAD 与△ PBC 是相似三角形,则满足条件的点 P的个数是()A.1 个B.2 个 C.3 个 D.4 个【考点】相似三角形的判定;直角梯形.【分析】由于∠ PAD=∠PBC=90°,故要使△ PAD 与△ PBC 相似,分两种情况讨论:①△ APD ∽△ BPC,②△ APD ∽△ BCP,这两种情况都可以根据相似三角形对应边的比相等求出 AP 的长,即可得到 P 点的个数.【解答】解:∵ AB⊥BC,∴∠ B=90°.∵AD∥BC,∴∠ A=180°﹣∠ B=90°,∴∠ PAD=∠PBC=90°.AB=8, AD=3 ,BC=4,设AP的长为x,则BP 长为8﹣ x.若AB边上存在P 点,使△PAD 与△ PBC 相似,那么分两种情况:①若△ APD ∽△ BPC,则AP: BP=AD :BC,即x:( 8﹣x )=3:4,解得x=;②若△ APD ∽△ BCP,则 AP:BC=AD : BP,即 x:4=3:(8﹣x ),解得 x=2 或x=6.∴满足条件的点P 的个数是 3 个,故选: C.7.如图,将∠ AOB 放置在 5×5 的正方形网格中,则sin∠AOB 的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】在直角△ OAC 中,利用勾股定理求得OA的长,然后根据正弦的定义即可求解.【解答】解:在直角△ OAC 中, OC=2, AC=3,则OA===,则 sin∠ AOB= ==.故选 D.8.在下列四个命题中:①所有等腰直角三角形都相似;②所有等边三角形都相似;③所有正方形都相似;④所有菱形都相似.其中真命题有()A.4 个B.3 个 C.2 个 D.1 个【考点】相似多边形的性质;命题与定理.【分析】相似三角形的判定方法:①两个角对应相等;②两组对应边的比相等,且夹角相等;③三组对应边的比相等.相似多边形的判定:对应角相等、对应边的比相等的两个多边形是相似多边形.【解答】解:①中,所有的等腰直角三角形的三角相等,故正确;②中,所有的等边三角形的三角相等,故正确;③中,所有正方形都四角相等,四条边成比例,故正确;④中,所有菱形的四个角不一定相等,因此不都相似,故错误.故选 B.9.如图,在△ ABC 中,已知∠ C=90°,BC=3, AC=4,⊙ O 是内切圆, E, F,D 分别为切点,则 tan∠OBD= ()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【分析】首先根据切线的性质和切线长定理证得四边形OECD 是正方形,那么AC+BC﹣ AB 即为 2R(⊙ O 的半径 R)的值,由此可得到 OD、CD 的值,进而可在 Rt△ OBD 中求出∠ OBD 的正切值.【解答】解:∵ BC、 AC、 AB 都是⊙ O 的切线,∴CD=CE、AE=AF 、 BF=BD ,且 OD⊥BC、 OE⊥AC ;易证得四边形 OECD 是矩形,由 OE=OD 可证得四边形 OECD 是正方形;设 OD=OE=CD=R,则: AC +BC﹣AB=AE +R+BD +R﹣AF ﹣BF=2R,即 R= (AC+BC﹣AB )=1,∴ BD=BC ﹣CD=3﹣ 1=2;在 Rt△OBD 中, tan∠ OBD= = .故选 C.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足 a+b+c=0,那么我们称这个方程为“凤凰”方程.已知 ax2 +bx+c=0( a≠ 0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. a=c B.a=b C. b=c D.a=b=c【考点】根的判别式.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣ 4ac=0,又﹣﹣,代入2﹣4ac=0 得(﹣ a﹣ c)2﹣4ac=0,化简即可得到 a a+b+c=0,即 b= a c b与 c 的关系.【解答】解:∵一元二次方程ax2 bx c=0(a≠0)有两个相等的实数根,+ +∴△ =b2﹣4ac=0,又 a+b+c=0,即 b=﹣a﹣c,代入 b2﹣ 4ac=0 得(﹣ a﹣c)2﹣ 4ac=0,即( a+c)2﹣ 4ac=a2+2ac+c2﹣4ac=a2﹣ 2ac+c2=(a﹣c)2=0,∴a=c.故选 A11.如图,已知△ ABC 中,∠ ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线 l1,l2,l 3上,且 l1, l2之间的距离为 2,l2,l3之间的距离为 3,则 AC 的长是()A.B.C.D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【分析】过 A 、C 点作 l 3的垂线构造出直角三角形,根据三角形全等和勾股定理求出 BC 的长,再利用勾股定理即可求出.【解答】解:作 AD ⊥l3于 D,作 CE⊥ l3于 E,∵∠ ABC=90°,∴∠ ABD +∠ CBE=90°又∠ DAB +∠ ABD=90°∴∠ BAD= ∠ CBE,,∴△ ABD ≌△ BCE ∴ BE=AD=3在 Rt△BCE 中,根据勾股定理,得在 Rt△ABC 中,根据勾股定理,得故选 A.BC=AC==×,=2;12.如图,抛物线 y=ax2+bx+c 与 x 轴交于点 A(﹣ 1,0),顶点坐标为( 1, n),与 y 轴的交点在( 0, 2)、(0,3)之间(包含端点),则下列结论:①当x>3时, y<0;② 3a b>0;③﹣ 1≤a≤﹣;④ 3≤n≤4 中,+正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【分析】①由抛物线的对称轴为直线x=1,一个交点 A (﹣ 1, 0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定 a 的符号,由对称轴方程求得 b 与 a 的关系是 b=﹣2a,将其代入( 3a+b),并判定其符号;③根据两根之积=﹣ 3,得到 a=﹣,然后根据c的取值范围利用不等式的性质来求 a 的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c= c,利用 c 的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c 与 x 轴交于点 A (﹣ 1,0),对称轴直线是x=1,∴该抛物线与 x 轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3 时, y< 0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴 x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即 3a+b< 0.故②错误;③∵抛物线与 x 轴的两个交点坐标分别是(﹣1, 0),( 3, 0),∴﹣ 1×3=﹣ 3,∴=﹣ 3,则 a=﹣.∵抛物线与 y 轴的交点在( 0,2)、(0,3)之间(包含端点),∴2≤ c≤3,∴﹣ 1≤﹣≤﹣,即﹣1≤ a≤﹣.故③正确;④根据题意知, a=﹣,﹣=1,∴ b=﹣2a=,∴ n=a+b+c=c.∵2≤ c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选 D.二、填空题:本大题共 6 小题,共 24 分,只要求填写最后结果,每小题填对得4分.13.半径为 1 的圆内接正三角形的边心距为.【考点】正多边形和圆.【分析】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.【解答】解:如图,△ ABC 是⊙ O 的内接等边三角形, OB=1, OD⊥BC.∵等边三角形的内心和外心重合,∴OB 平分∠ ABC ,则∠OBD=30°;∵ OD⊥ BC,OB=1,∴OD= .故答案为:.14.若 a 是方程 x 2﹣x﹣1=0的一个根,则﹣ a32a 2017的值为 2016.+ +【考点】一元二次方程的解.【分析】根据方程根的定义,得出a2﹣ a﹣1=0,把原式降次即可得出答案.【解答】解:∵ a 是方程 x2﹣x ﹣1=0 的一个根,∴a2﹣a﹣ 1=0,∴a3﹣a2﹣a=0,∴﹣ a3 =﹣a2﹣a,∴﹣ a3 +2a+2017=﹣a2﹣ a+2a+2017=﹣a2+a+2017=﹣a﹣ 1+a+2017=2016,故答案为 2016.15.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离 x(m)的关系式为 h=﹣x2+ x+2,则大力同学投掷标枪的成绩是48 m.【考点】二次函数的应用.【分析】根据题意可知,大力同学投掷标枪的最远距离就是当h=0 时, x 的值.【解答】解:∵h=﹣x2x 2,++∴当h=0 时, 0=﹣x2+x 2,+解得, x1=﹣2,x2=48,即大力同学投掷标枪的成绩是48m,故答案为: 48.16.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点 D 对应的刻度是58°,则∠ ACD的度数为61° .【考点】圆周角定理.【分析】首先连接 OD,由直角三角板ABC 的斜边 AB 与量角器的直径恰好重合,可得点 A , B, C,D 共圆,又由点 D 对应的刻度是 58°,利用圆周角定理求解即可求得∠ BCD 的度数,继而求得答案.【解答】解:连接 OD,∵直角三角板 ABC 的斜边 AB 与量角器的直径恰好重合,∴点 A,B,C,D 共圆,∵点 D 对应的刻度是58°,∴∠ BOD=58°,∴∠ BCD=∠ BOD=29° ,∴∠ ACD=90° ﹣∠ BCD=61° .故答案为: 61°.17.在平面直角坐标系的第一象限内,边长为 1 的正方形ABCD的边均平行于坐标轴, A 点的坐标为(点,则 a 的取值范围是a,a).如图,若曲线≤ a.与此正方形的边有交【考点】反比例函数图象上点的坐标特征.【分析】根据题意得出 C 点的坐标( a﹣1,a﹣1),然后分别把 A 、C 的坐标代入求得 a 的值,即可求得 a 的取值范围.【解答】解:∵ A 点的坐标为( a,a).根据题意 C(a﹣1,a﹣ 1),当 C 在曲线时,则a﹣1=,解得a=1,+当A在曲线时,则 a=,解得 a=,∴ a 的取值范围是≤a.故答案为≤a.18.如图是由 6 个棱长均为 1 的正方体组成的几何体,它的主视图的面积为5.【考点】简单组合体的三视图.【分析】根据立体图形画出它的主视图,再求出面积.【解答】解:主视图如图所示,∵由 6 个棱长均为 1 的正方体组成的几何体,2∴主视图的面积为5×1 =5,三、解答题:本大题共7 个小题,满分 60 分.解答时请写出必要的演推过程..计算﹣2sin45 +°(﹣ 2)﹣3+()0.19【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2× ﹣1+=﹣.20.如图所示,在△ABC中,∠ B=90°,AB=6cm ,BC=12cm,点P 从点A 开始沿AB边向点 B 以1cm/s 的速度移动,点Q 从点B 开始沿BC边向点 C 以2cm/s 的速度移动,如果点P、Q分别从 A 、B 同时出发.(1)几秒钟后,△ PBQ 的面积等于 8cm2?(2)△ PBQ 的面积可能等于 10cm2吗?为什么?【考点】一元二次方程的应用.【分析】(1)根据直角三角形的面积公式和路程=速度×时间进行求解即可.(2)根据( 1)中的解题思路列出方程,结合根的判别式进行解答.【解答】解:(1)设 x 秒钟后,△ PBQ 的面积等于 8cm2,由题意可得:2x(6﹣x)÷ 2=8,解得 x1=2,x2=4.答: 2 或 4 秒钟后,△ PBQ 的面积等于 8cm2.( 2)设 x 秒钟后,△ PBQ 的面积等于 10cm2,由题意可得:2x(6﹣x)÷ 2=10,整理,得x2﹣ 6x+10=0,因为△ =36﹣ 40=﹣4<0,所以该方程无解,答:△ PBQ 的面积不可能等于10cm2.21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【解答】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;( 2)列表如下:所有等可能的情况有 6 种(除去三个人相同的情况),其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有 2 个,则小莹与小芳打第一场的概率为=22.如图, AB 是⊙ O 的直径,过点 A 作⊙ O 的切线并在其上取一点 C,连接 OC 交⊙ O 于点 D, BD 的延长线交 AC 于 E,连接 AD .( 1)求证:△ CDE∽△ CAD ;( 2)若 AB=2 , AC=2,求AE的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)根据圆周角定理由 AB 是⊙ O 的直径得到∠ ADB=90°,则∠ B+∠BAD=90°,再根据切线的性质,由 AC 为⊙ O 的切线得∠ BAD +∠ CAD=90°,则∠B=∠CAD ,由于∠ B=∠ODB ,∠ODB= ∠CDE,所以∠ B=∠ CDE,则∠ CAD=∠CDE,加上∠ ECD=∠DCA ,根据三角形相似的判定方法即可得到△ CDE∽△CAD ;( 2)在 Rt△AOC 中,OA=1 ,AC=2 ,根据勾股定理可计算出 OC=3,则 CD=OC ﹣ OD=2,然后利用△ CDE∽△ CAD ,根据相似比可计算出 CE,再由 AE=AC ﹣CE 可得 AE 的值.【解答】(1)证明:∵ AB 是⊙ O 的直径,∴∠ ADB=90°,∴∠ B+∠ BAD=90°,∵AC 为⊙O 的切线,∴BA⊥AC,∴∠ BAC=90°,即∠ BAD+∠CAD=90°,∴∠ B=∠ CAD ,∵OB=OD,∴∠ B=∠ ODB ,而∠ ODB=∠ CDE,∴∠ B=∠ CDE,∴∠ CAD= ∠ CDE,而∠ ECD=∠ DCA ,∴△ CDE∽△ CAD ;(2)解:∵ AB=2,∴ OA=1,在 Rt△AOC 中, AC=2 ,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△ CDE∽△ CAD ,∴=,即=,∴CE= .∴AE=AC ﹣CE=2 ﹣ = .23.如图,一次函数y=﹣x+4 的图象与反比例函数y=(k为常数,且k≠ 0)的图象交于 A (1,a),B 两点.(1)求反比例函数的表达式及点 B 的坐标;(2)在 x 轴上找一点 P,使 PA+PB 的值最小,求满足条件的点 P 的坐标及△ PAB的面积.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;轴对称﹣最短路线问题.【分析】(1)由点 A 在一次函数图象上,结合一次函数解析式可求出点A 的坐标,再由点 A 的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点 B 坐标;(2)作点 B 作关于 x 轴的对称点 D,交 x 轴于点 C,连接 AD ,交 x 轴于点 P,连接 PB.由点 B、D 的对称性结合点 B 的坐标找出点 D 的坐标,设直线 AD 的解析式为 y=mx+n,结合点 A、D 的坐标利用待定系数法求出直线 AD 的解析式,令直线 AD 的解析式中 y=0 求出点 P 的坐标,再通过分割图形结合三角形的面积公式即可得出结论.【解答】解:(1)把点 A (1,a)代入一次函数y=﹣ x+4,得: a=﹣ 1+4,解得: a=3,∴点 A 的坐标为( 1,3).把点 A (1,3)代入反比例函数y=,得: 3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点 B 的坐标为( 3,1).(2)作点 B 作关于 x 轴的对称点 D,交 x 轴于点 C,连接 AD ,交 x 轴于点 P,此时 PA+PB 的值最小,连接 PB,如图所示.∵点 B、D 关于 x 轴对称,点 B 的坐标为( 3,1),∴点 D 的坐标为( 3,﹣ 1).设直线AD 的解析式为 y=mx n,+把 A ,D 两点代入得:,解得:,∴直线 AD 的解析式为 y=﹣2x+5.令 y=﹣ 2x+5 中 y=0,则﹣ 2x +5=0,解得: x= ,∴点 P 的坐标为(,0).S△PAB=S△ABD﹣ S△PBD = BD?(x B﹣ x A)﹣BD?(x B﹣x P)=×[ 1﹣(﹣1)]×(3﹣1)﹣×[ 1﹣(﹣1)]×(3﹣)=.24.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639 年),碑记为“尉迟敬德监建”,距今已 1300 多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在 B 处测得海丰塔最高点 P 的仰角为 45°,又前进了 18 米到达 A 处,在 A 处测得 P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用﹣仰角俯角问题.【分析】设海丰塔的高 OP=x,在 Rt△POB 中表示出 OB,在 Rt△POA 中表示出OA,再由 AB=18 米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB 中,∠OBP=45°,则 OB=OP=x,在 Rt△POA 中,∠ OAP=60°,则 OA==x,由题意得, AB=OB ﹣ OA=18m,即 x ﹣x=18,解得:x=27 9,+故海丰塔的高度OP=27 9≈42 米.+答:海丰塔的高度约为42米.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点 A 、B、C、 D 分别是“蛋圆”与坐标轴的交点, AB 为半圆的直径,点 M 为圆心, A 点坐标为(﹣ 2,0), B 点坐标为( 4,0),D 点的坐标为( 0,﹣ 4).(1)你能求出经过点 C 的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量 x 的取值范围.(3)你能求出经过点 D 的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点 A 、B 的坐标,用交点式设出二次函数解析式,把 D 坐标代入即可.自变量的取值范围是点 A 、 B 之间的数.( 2)先设出切线与 x 轴交于点 E.利用直角三角形相应的三角函数求得EM 的长,进而求得点 E 坐标,把 C、E 坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除 y,让跟的判别式为0,即可求得一次函数的比例系数 k.【解答】解:( 1)如图,设经过点C“蛋圆”的切线 CE 交 x 轴于点 E,连结 CM ,∴CM ⊥CE,又∵ A 点坐标为(﹣ 2,0),B 点坐标为( 4,0),AB 为半圆的直径,点M 为圆心,∴ M 点的坐标为( 1,0),∴ AO=2,BO=4,OM=1 .又因为 CO⊥x 轴,所以 CO2=AO?OB,解得:CO=2 ,又∵ CM ⊥CE,CO⊥x 轴,∴CO2=EO?OM,解之得: EO=8,∴E 点的坐标是(﹣ 8,0),∴切线 CE 的解析式为: y=x 2;+(2)根据题意可得: A(﹣ 2,0),B(4,0);则设抛物线的解析式为 y=a(x +2)(x﹣ 4)(a≠0),又∵点 D( 0,﹣ 4)在抛物线上,∴a= ;∴y= x2﹣x﹣4 自变量取值范围:﹣ 2≤x ≤4;( 3)设过点 D(0,﹣ 4),“蛋圆”切线的解析式为: y=kx ﹣4(k≠0),由题意可知方程组只有一组解.即 kx﹣ 4=x 2﹣x ﹣4 有两个相等实根,∴k=﹣1,∴过点 D“蛋圆”切线的解析式y=﹣x ﹣4;2017年 3月 21日。

冀教版2019至2020学年九年级数学上学期第一次月考试卷

冀教版2019至2020学年九年级数学上学期第一次月考试卷

2019——2020学年度第一学期第一次月考九年级数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算结果为正数的是( ) A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作( ) A .+3B .﹣3C .﹣D .+3. 数据8,9,10,10,12的众数是( ) A.8 B.9和11 C.10 D.114. 下列图形既是轴对称图形又是中心对称图形的是( ) A.B.C.D.5. 一组数据1,8,4,2,2,5的中位数是( ) A.2 B.3 C.4 D.56. 将方程352=+x x 化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别为()A.5,-3B.5,3C.-5,3D.-5,-37. 中国汽车工业协会的统计数据显示,2019年上半年我国汽车销量接近9600000辆.可将这个数据用科学记数法表示为n 106.9⨯的形式,则n 的值为( ) A.4 B.5 C.6 D.78. 下列说法正确的是( )A.了解某班学生的身高情况,适宜采用抽样调查B.数据3,5,4,1,1的中位数是4C.数据5,3,5,4,1,1的众数是1和5D.甲、乙两人射中环数的方差分别为22=甲s ,32=乙s ,说明乙的射击成绩比甲稳定 9. 下列方程中,是关于的一元二次方程的是( )A.02=++c bx axB.012=--y xC.112=+x xD.22=x10. 为进一步普及环保和健康知识,我区某校举行了“共建绿色地球,关注环保健康”的知A.70分,80分 B.80分,80分 C.90分,80分 D.80分,90分 11. 将一元二次方程0142=+-x x 配方后,原方程可化为( ) A.5)2(2=+x B.5)2(2=-x C.3)2(2=-x D.15)4(2=-x12. 一元二次方程022=-+px x 的一个根为2,则p 的值( ) A.1 B.2 C.-1 D.-213. 一组数据1,2,1,4的方差为( ) A.1 B.1.5 C.2 D.2.514. 方程05)2()2(22=+++--x m x m m 是关于x 的一元二次方程,则( ) A.2±=m B.2-=mC.2=mD.1=m15. 一元二次方程0322=-+x x 的根是( )A.2,121==x xB.21,121-==x xC.321==x xD.23,121-==x x16.五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是( ) A.20 B.28 C.30 D.31二、填空题(本题共有4个小题,满分12分,将答案填在答题纸上) 17.一元二次方程042=-x 的根是 。

2020年河北省衡水市九年级(上)月考数学试卷

2020年河北省衡水市九年级(上)月考数学试卷

月考数学试卷题号一二三四总分得分一、选择题(本大题共11小题,共33.0分)1.下列图形,可以看作中心对称图形的是()A. B. C. D.2.下列成语表示随机事件的是()A. 水中捞月B. 水滴石穿C. 瓮中捉鳖D. 守株待兔3.已知在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin B的值是()A.B.C.D.4.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为点E,连接CO,AD,∠BAD=20°.下列说法正确的是()A. AD=2OBB. CE=EOC. ∠OCE=40°D. ∠BOC=2∠BAD5.x=1是关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A. -2B. -3C. -1D. -66.已知点A(1,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2>y1C. y1>y2>2D. y2>y1>27.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A. (-2,2)B. (-2,4)C. (-2,2)D. (2,2)8.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A. 20°B. 25°C. 40°D. 50°9.如图,己知点B,D在AC的两侧,E,F分别是△ACD与△ABC的重心,且EF=2,则BD的长度是()A. 4B. 5C. 6D. 710.如图,抛物线y=-x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是()A.B.C.D.11.如图,AB为⊙O的切线,切点为A.连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. 54°B. 36°C. 32°D. 27°二、填空题(本大题共6小题,共18.0分)12.已知关于x的方程-(m+1)8x+2=0是一元二次方程,则m=______.13.将二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k的形式为为.14.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为______.15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是________cm.16.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.17.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的有______.(填所以正确的序号)三、计算题(本大题共1小题,共6.0分)18.已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值.四、解答题(本大题共7小题,共66.0分)19.选用适当的方法解下列一元二次方程:(1)3x2+2x-1=0(2)(x-3)2+2x(x-3)=020.如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,只借助直尺确定该圆弧所在圆的圆心D,并连接AD、CD.(保留作图痕迹,不写作法)(2)请在(1)的基础上,完成下列填空与计算:①写出点的坐标:C______、D______;②⊙D的半径=______;(结果保留根号)③求扇形ADC的面积.(结果保留π)21.如图,AD是△ABC的中线,tan B=,cos C=,AC=.(1)求BC的长;(2)尺规作图(保留作图痕迹,不写作法):作出△ABC的外接圆,并求外接圆半径.22.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为______度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.23.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系y=-2x+80.(1)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(2)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?24.如图,AB是⊙O的直径,点C,D分别在两个半圆上(不与点A、B重合),AD、BD的长分别是方程x2-2x+(m2-2m+13)=0的两个实数根.(1)若∠ADC=15°,求CD的长;(2)求证:AC+BC=CD.25.已如抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,-)和(m-b,m2-mb+n),其中a,b,c,m,n为实数,且a,m不为0.(1)求c的值;(2)求证:抛物线y=ax2+bx+c与x轴有两个交点;(3)当-1≤x≤1时,设抛物线y=ax2+bx+c与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.答案和解析1.【答案】B【解析】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.根据必然事件、不可能事件、随机事件的概念进行解答即可.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【解析】【分析】根据勾股定理求出AC,根据正弦的定义计算即可.本题考查的是勾股定理、锐角三角函数的定义,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.【解答】解:∵∠C=90°,AB=5,BC=4,∴AC==3,∴sin B==,故选:A.4.【答案】D【解析】【分析】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB=2OB,且AB>AD,∴AD≠2OB,故A项错误;∵AB⊥CD,∴=,CE=DE,故B项错误;∴∠BOC=2∠BAD=40°,故D项正确;∴∠OCE=90°-40°=50°,故C项错误;故选D.5.【答案】A【解析】解:把x=1代入方程x2+ax+2b=0得1+a+2b=0,所以a+2b=-1,所以2a+4b=2(a+2b)=2×(-1)=-2.故选:A.先把x=1代入方程x2+ax+2b=0得a+2b=-1,然后利用整体代入的方法计算2a+4b的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点的坐标满足其解析式.分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【解答】解:当x=1时,y1=-(x+1)2+2=-(1+1)2+2=-2;当x=2时,y2=-(x+1)2+2=-(2+1)2+2=-7;所以2>y1>y2.故选A.7.【答案】A【解析】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(-4,0),O点坐标为(0,0),在Rt△BOC中,BC==2,∴B点坐标为(-2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(-2,2),故选:A.作BC⊥x轴于C,如图,根据等边三角形的性质得OA=OB=4,AC=OC=2,∠BOA=60°,则易得A点坐标和O点坐标,再利用勾股定理计算出BC=2,然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,则点A′与点B重合,于是可得点A′的坐标.本题考查了坐标与图形变化-旋转:记住关于原点对称的点的坐标特征;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.【答案】B【解析】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,得出垂直关系.9.【答案】C【解析】解:如图,连接DE并延长,交AC于点O,连接BO.∵点E为△ADC的重心,∴点O为AC的中点,FB=2FO;又∵点F为△ABC的重心,∴点F在线段BO上,ED=2EO;∴==,又∵∠EOF=∠DOB,∴△EOF∽△DOB,∴===,∴BD=3EF=6.故选C.连接DE并延长,交AC于点O,连接BO.根据重心的性质得出FB=2FO,ED=2EO,再证明△EOF∽△DOB,根据相似三角形对应边成比例求出BD=3EF=6.本题主要考查了三角形的重心及其应用问题;解题的关键是作辅助线,灵活运用三角形重心的性质及相似三角形的判定与性质来解题.10.【答案】D【解析】解:过点O作OH∥AC交BE于点H,令y=-x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴==1,∴OH=CE,∴==,∴==,故选D.过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据==,可得出答案.本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.11.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选:D.由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.12.【答案】-1【解析】解:由题意得:解得m=-1,故答案是:-1.本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.13.【答案】y=(x-2)2+1【解析】【分析】本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).利用配方法整理即可得解.【解答】解:y=x2-4x+5=x2-4x+4+1=(x-2)2+1,所以,y=(x-2)2+1.故答案为:y=(x-2)2+1.14.【答案】1.6【解析】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC 边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.15.【答案】10【解析】【分析】此题主要考查了垂径定理的应用,勾股定理,构造出直角三角形是解本题的关键.先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【解答】解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16-4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r-2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=BD2+OD2,∴r2=36+(r-2)2,∴r=10cm,故答案为10.16.【答案】2【解析】解:设点A的坐标为(a,),点B的坐标为(b,)∵点C是x轴上一点,且AO=AC,∴点C的坐标为(2a,0),设过点O、点A的解析式为y=kx,则,∴k=,∴直线OA的解析式为:,又∵点B在直线OA上,∴,∴,∴(负值不合题意,舍去),∴S△ABC=S△AOC-S△OBC==4-2=2.故答案为:2根据题意可以分别设点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A横坐标的两倍,从而可以得到△ABC的面积.此题主要考查反比例函数图象上点的坐标特征.通过一次函数,三角形面积的计算,突出考查的目的.17.【答案】②③④【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=-=1,∴b=-2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①错误;∵x=-1时,y>0,∴a-b+c>0,即a+2a+c>0,所以②正确;∵x=1,y<0,∴a+b+c<0,∴(a+c)2-b2=(a+c-b)(a+b+c)<0,所以③正确;∵x=1时,y有最小值a+b+c,∴a+b+c≤am2+bm+c,∴a+b≤m(am+b)(m为实数).所以④正确.故答案为②③④.利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=-2a<0,利用抛物线与y轴的交点在x轴下方得到c<0,则可对①进行判断;利用x=-1得到y=a-b+c>0,然后把b=-2a代入后可对②进行判断;由于a-b+c>0和a+b+c<0,而(a+c)2-b2可分解为(a+c-b)(a+b+c),则可对③进行判断;根据二次函数的性质得x=1时,y有最小值a+b+c,则可对④进行判断.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.18.【答案】(解法一)解:当x=1时,代入原方程得:12+m+3=0,解得m=-4;当m=-4时,原方程可化为:x2-4x+3=0,上式可化简为(x-1)(x-3)=0,∴方程的另一个根为x=3.(解法二)解:假设方程的另一个根为x0,∵x=1由根与系数关系可知:x0×1=3,∴x0=3;又由根与系数关系可知:x0+1=-m,即3+1=-m;∴m=-4.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;亦可利用根与系数的关系去做.此题解法灵活,选择自己喜欢的一种解法即可.19.【答案】解:(1)∵3x2+2x-1=0,∴(x+1)(3x-1)=0,则x+1=0或3x-1=0,解得x=-1或x=;(2)∵(x-3)2+2x(x-3)=0,∴(x-3)(x-3+2x)=0,则x-3=0或3x-3=0,解得x=3或x=1.【解析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】(6,2)2,0 2【解析】解(1)如图.(2)①C(6,2),D(2,0)②AD==;③=5π;故答案为①(6,2)、(2,0)②2.(1)①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系即可;②根据图形提供的信息,只借助直尺确定该圆弧所在圆的圆心D,并连接AD、CD即可(2)在(1)的基础上,①写出点C、D的坐标即可;②根据勾股定理即可求⊙D的半径;③根据扇形面积公式即可求扇形ADC的面积.本题考查了作图-应用与设计作图、垂径定理、扇形面积的计算,解决本题的关键是建立适当的平面直角坐标系.21.【答案】解:(1)过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°,在Rt△ACE中,CE=AC•cos C=1,∴AE=CE=1,在Rt△ABE中,tan B=,即=,∴BE=4AE=4,∴BC=BE+CE=5;(2)如图,①作线段AB的垂直平分线NM.②作线段AC的垂直平分线GH与直线MN的交点O就是△ABC外接圆的圆心.③以点O为圆心OA为半径作圆.⊙O就是所求作的△ABC的外接圆.∵∠AOC=2∠ABC,∠AOK=∠COK,∴∠ABC=∠AOK,∵sin∠AOK=sin∠ABC==,由(1)可知AB==,∴=,∴AO=.【解析】(1)过点A作AE⊥BC于点E,根据三角函数的定义和特殊角的三角函数即可得出答案;(2)作AB、AC的垂直平分线,交点O即为圆心,以OA为半径作圆,即可得出△ABC 的外接圆,根据sin∠ABC=sin∠AOK即可解决问题.本题考查的是作图-复杂作图,三角形的外接圆与外心,解直角三角形等知识,正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用,本题也可以用相似三角形求半径,属于中考常考题型.22.【答案】(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)①60;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).【解析】(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°-60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°.故答案为:60.②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定时提到过.23.【答案】解:(1)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价为x元(20≤x≤28),根据题意得:(-2x+80)(x-20)=150,整理得:x2-60x+875=0,解得:x=25或x=35(舍去).答:当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是25元.(2)由题意可得:w=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,∵售价不低于20元且不高于28元,又∵x<30时,y随x的增大而增大,∴当x=28时,w最大=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】(1)根据题意结合销量×每本的利润=150,进而求出答案;(2)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.24.【答案】解:(1)∵AD、BD的长分别是方程x2-2x+(m2-2m+13)=0的两个实数根,∴△==-(m-1)2≥0,∴m-1=0,得m=1,∴,解得,,即AD=BD=,∵AB是⊙O的直径,点C,D分别在两个半圆上(不与点A、B重合),∴∠ADB=90°,∴∠DAB=∠DBA=45°,作DE⊥BC于点E,如下图一所示,∵∠ADC=15°,∠ADB=90°,∴∠ABC=∠ADC=15°,∠CDB=75°,∴∠DBE=∠DBA+∠ABC=60°,∴∠DCE=180°-∠CDB-∠DBE=45°,∵BD=,∴DE=BD•sin60°=,∵∠DEC=90°,DE=,∠DCE=45°,∴CD=;(2)证明:作DE⊥BC于点E,DF⊥CA交CA的延长线于点F,如下图二所示,由(1)可得,DE=EC,∵∠DEC=∠ECA=∠CFD=90°,∴四边形CFDE是正方形,∴DF=CE,∵∠AFD=∠BFD=90°,DA=DB,∴在Rt△AFD和Rt△BED中∴Rt△AFD≌Rt△BED(HL),∴BE=AF,∴BC+AC=BE+CE+AC=AF+AC+CE=CF+CE=2CE,∵,∴BC+AC=2CE==,即AC+BC=CD.【解析】(1)根据AD、BD的长分别是方程x2-2x+(m2-2m+13)=0的两个实数根,可以求得AD、BD的长,从而可以求得∠DBA和∠DAB的度数,由∠ADC=15°,可以求得∠ABC的度数,作辅助线DE⊥CD于点E,从而可以可以求得CD的长;(2)作辅助线DE⊥BC于点E,DF⊥CA交CA的延长线于点F,画出相应的图形,然后进行灵活变化,即可证明所要证明的结论.本题考查圆的综合题、圆周角、一元二次方程中的△的值、特殊角的三角函数值,解题的关键是明确题意,画出相应的图形,利用数形结合的思想,找出所求结论需要的条件.25.【答案】解:(1)∵(0,)在y=ax2+bx+c上,∴=a×02+b×0+c,∴c=;(2)又可得n=,∵点(m-b,m2-mb+n)在y=ax2+bx+c上,∴m2-mb=a(m-b)2+b(m-b),∴(a-1)(m-b)2=0,若(m-b)=0,则(m-b,m2-mb+n)与(0,)重合,与题意不合,∴a=1,∴抛物线y=ax2+bx+c,就是y=x2+bx-,△=b2-4ac=b2-4×()=b2+2>0,∴抛物线y=ax2+bx+c与x轴有两个交点;(3)抛物线y=x2+bx的对称轴为x=,最小值为,设抛物线y=x2+bx在x轴上方与x轴距离最大的点的纵坐标为H,在x轴下方与x轴距离最大的点的纵坐标为h,①当<-1,即b>2时,如图1,在x轴上方与x轴距离最大的点是(1,y o),∴|H|=y o=+b>,在x轴下方与x轴距离最大的点是(-1,y o),∴|h|=|y o|=|-b|=b->,∴|H|>|h|,∴这时|y o|的最小值大于;②当-1≤≤0,即0≤b≤2时,如图2,在x轴上方与x轴距离最大的点是(1,y o),∴|H|=y o=+b≥,当b=0时等号成立.在x轴下方与x轴距离最大的点是(,),∴|h|=||=≥,当b=0时等号成立.∴这时|y o|的最小值等于.③当0<≤1,即-2≤b<0时,如图3,在x轴上方与x轴距离最大的点是(-1,y o),∴|H|=y o=1+(-1)b-=-b>,在x轴下方与x轴距离最大的点是(,),∴|h|=|y o|=||=>.∴这时|y o|的最小值大于.④当1<,即b<-2时,如图4,在x轴上方与x轴距离最大的点是(-1,y o),∴|H|=-b>,在x轴下方与x轴距离最大的点是(1,y o),∴|h|=|+b|=-(b+)>,∴|H|>|h|,∴这时|y o|的最小值大于,综上所述,当b=0,x0=0时,这时|y o|取最小值,为|y o|=.【解析】(1)将(0,-)代入抛物线y=ax2+bx+c中即可;(2)先求n的值,再将点的坐标(m-b,m2-mb+n)代入y=ax2+bx+c中,计算△>0即可;(3)先根据公式分别求抛物线的对称轴和最小值,分四种情况进行讨论:①当<-1,即b>2时,如图1,在x轴上方与x轴距离最大的点是(1,y o),在x轴下方与x轴距离最大的点是(-1,y o),代入抛物线的解析式中分别求|H|和|h|,作判断即可;②当-1≤≤0,即0≤b≤2时,如图2,③当0<≤1,即-2≤b<0时,如图3,④当1<,即b<-2时,如图4,根据图象分别求其y0的取值范围,可得结论.本题是带有字母系数的二次函数的综合问题,此类问题有难度,考查了抛物线与x轴的交点问题、对称轴、最值问题,并利用了数形结合的思想,第三问能正确画出图形进行分类讨论是关键.。

河北省衡水市九年级上学期数学第一次月考试卷

河北省衡水市九年级上学期数学第一次月考试卷

河北省衡水市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·曲靖模拟) 下列是一元二次方程的是A .B .C .D .2. (2分)计算(﹣2y﹣x)2的结果是()A . x2﹣4xy+4y2B . ﹣x2﹣4xy﹣4y2C . x2+4xy+4y2D . ﹣x2+4xy﹣4y23. (2分)(2019·定远模拟) 如图,E、F分别是矩形ABCD边AB、CD上的点,将矩形ABCD沿EF折叠,使A、D分别落在A′和D′处,若∠1=50°,则∠2的度数是()A . 65°B . 60°C . 50°D . 40°4. (2分)关于x的方程x2﹣4=0的根是()A . 2B . -2C . 2,﹣2D . 2,5. (2分)若两个连续整数的积是56,则它们的和是()A . 11B . 15C . -15D . ±156. (2分)用配方法解一元二次方程时可配方得A .B .C .D .7. (2分)若关于x的方程x2﹣4x+k=0的一个根为2﹣,则k的值为()A . 1B . -1C . 2D . -28. (2分)方程x(x+2)=3(x+2)的解是()A . 3和﹣2B . 3C . ﹣2D . 无解二、填空题 (共8题;共8分)9. (1分) (2018九上·大连月考) 根据下列表格的对应值,判断(,,,为常数)的一个解的取值范围是________10. (1分)(2017·宁波模拟) 如图,扇形AOB中,OA=10,∠AOB=36°.若将此扇形绕点B顺时针旋转,得一新扇形A′O′B,其中A点在O′B上,则点O的运动路径长为________cm.(结果保留π)11. (1分) (2016九下·邵阳开学考) 已知x=1是关于x的一元二次方程2x2+kx-1=0的一个根,则实数k值是________。

河北省衡水市2019-2020学年中考数学三月模拟试卷含解析

河北省衡水市2019-2020学年中考数学三月模拟试卷含解析

河北省衡水市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②1014043n n ++=;③1014043n n --=;④40m+10=43m+1,其中正确的是( ) A .①②B .②④C .②③D .③④2.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .153.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .a•a 2=a 3C .a 6÷a 2=a 3D .(a 2)3=a 54.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3B .43C .5D .135.如图,已知点 P 是双曲线 y =2x上的一个动点,连结 OP ,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ ,则经过点 Q 的双曲线的表达式为( )A .y =3xB .y =﹣13xC .y =13xD .y =﹣3x6.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40B .45C .51D .567.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( ) A .1种B .2种C .3种D .6种8.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作弧AC 、弧CB 、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18πB.27πC.452πD.45π9.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα10.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.1411.以下各图中,能确定12∠=∠的是()A.B.C. D.12.下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.14.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 _______mm . 15.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.16.如图,△ABC 中,AB =5,AC =6,将△ABC 翻折,使得点A 落到边BC 上的点A′处,折痕分别交边AB 、AC 于点E ,点F ,如果A′F ∥AB ,那么BE =_____.17.如图,点A 的坐标为(3,7),点B 的坐标为(6,0),将△AOB 绕点B 按顺时针方向旋转一定的角度后得到△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为_____.18.因式分解:a 2b-4ab+4b=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)在△ABC 中,∠A,∠B 都是锐角,且sinA=123求△ABC 的面积. 20.(6分)已知:a+b =4(1)求代数式(a+1)(b+1)﹣ab 值;(2)若代数式a 2﹣2ab+b 2+2a+2b 的值等于17,求a ﹣b 的值.21.(6分)如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.22.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?23.(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN 的面积?若存在,求出t的值;若不存在,请说明理由.24.(10分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)请你完成如下的统计表;AQI 0~50 51~100 101~150 151~200 201~250 300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.25.(10分)画出二次函数y=(x﹣1)2的图象.26.(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?27.(12分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6 7 8y/cm 0 1.6 2.5 3.3 4.0 4.7 5.8 5.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.2.A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O.连接OA.根据垂径定理和勾股定理求解.得AD=6设圆的半径是r,根据勾股定理,得r2=36+(r﹣4)2,解得r=6.5考点:垂径定理的应用.3.B【解析】【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.a•a2=a3,正确;C.原式=a4,故C不正确;D.原式=a6,故D不正确;故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.4.A【解析】根据锐角三角函数的性质,可知cosA=ACAB=23,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A的邻边斜边,然后带入数值即可求解. 5.D 【解析】 【分析】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,利用AAS 得到两三角形全等,由全等三角形对应边相等及反比例函数k 的几何意义确定出所求即可. 【详解】过P ,Q 分别作PM ⊥x 轴,QN ⊥x 轴,∵∠POQ=90°, ∴∠QON+∠POM=90°, ∵∠QON+∠OQN=90°, ∴∠POM=∠OQN , 由旋转可得OP=OQ , 在△QON 和△OPM 中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ), ∴ON=PM ,QN=OM , 设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x 上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x上.故选D . 【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键. 6.C 【解析】 【分析】解:根据定义,得x45<5110+≤+∴50x4<60≤+解得:46x<56≤.故选C.7.C【解析】试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.考点:正方体相对两个面上的文字.8.B【解析】【分析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.9.B【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.10.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型. 11.C【解析】【分析】逐一对选项进行分析即可得出答案.【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误.故选:C .【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.12.C【解析】【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【详解】A 、a 2•a 3=a 5,此选项不符合题意;B 、a 12÷a 2=a 10,此选项不符合题意;C 、(a 2)3=a 6,此选项符合题意;D 、(-a 2)3=-a 6,此选项不符合题意;故选C .【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a 1+1ab+b 1=(a+b )1【解析】试题分析:两个正方形的面积分别为a 1,b 1,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.14.7×10-1.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.x<﹣2或0<x<2【解析】【分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.16.25 11【解析】【分析】设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得'CF A F CA BA=,即16x+=55x-,进而得到BE=2511.【详解】解:如图,由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折叠可得,AF=A'F,设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴'CF A FCA BA=,即16x+=55x-,解得x=25 11,∴BE=25 11,故答案为:25 11.【点睛】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.17.(212372【分析】作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=7、BC=OC=3,从而知tan∠ABC=ACBC=7,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO='O DBD=7,设O′D=7x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.【详解】如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(3, 7),∴7,∵OB=6,∴BC=OC=3,则tan∠ABC=ACBC7由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,∴'O DBD=ACBC7设7,BD=3x,由O′D2+BD2=O′B2可得7x)2+(3x)2=62,解得:x=32或x=−32(舍),则BD=3x=927x=327,∴OD=OB+BD=6+92=212,∴点O′的坐标为(212,372.本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.18.2(2)b a -【解析】【分析】先提公因式b ,然后再运用完全平方公式进行分解即可.【详解】a 2b ﹣4ab+4b=b (a 2﹣4a+4)=b (a ﹣2)2,故答案为b (a ﹣2)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2532【解析】【分析】根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.【详解】如图:由已知可得:∠A=30°,∠B=60°,∴△ABC 为直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=1012⨯=5, AC=AB·cos30°=1032=53, ∴S △ABC =125AC?BC 322=. 【点睛】 本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形. 20.(1)5;(2)1或﹣1.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b )2+2(a+b )可得(a-b )2+2×4=17,据此进一步计算可得. 【详解】(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a 2﹣2ab+b 2+2a+2b=(a ﹣b )2+2(a+b ),∴(a ﹣b )2+2×4=17,∴(a ﹣b )2=9,则a ﹣b=1或﹣1.【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用. 21.(1)抛物线的解析式为248y x x 433=-++;(2)PM=24m 4m 3-+(0<m <3);(3)存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形. 【解析】【分析】 (1)将A (3,0),C (0,4)代入2y ax 2ax c =-+,运用待定系数法即可求出抛物线的解析式. (2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,从而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长.(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC ∽△AEM ,②△CFP ∽△AEM ;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.【详解】解:(1)∵抛物线2y ax 2ax c =-+(a≠0)经过点A (3,0),点C (0,4), ∴,解得4a {3c 4=-=. ∴抛物线的解析式为248y x x 433=-++. (2)设直线AC 的解析式为y=kx+b ,∵A (3,0),点C (0,4),∴3k b 0{b 4+==,解得4k {3b 4=-=. ∴直线AC 的解析式为4y x 43=-+. ∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,4m 43-+). ∵点P 的横坐标为m ,点P 在抛物线248y x x 433=-++上, ∴点P 的坐标为(m ,248m m 433-++). ∴PM=PE -ME=(248m m 433-++)-(4m 43-+)=24m 4m 3-+. ∴PM=24m 4m 3-+(0<m <3). (3)在(2)的条件下,连接PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=4m 43-+,CF=m ,PF=248m m 4433-++-=248m m 33-+, 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况: ①若△PFC ∽△AEM ,则PF :AE=FC :EM ,即(248m m 33-+):(3-m )=m :(4m 43-+), ∵m≠0且m≠3,∴m=2316. ∵△PFC ∽△AEM ,∴∠PCF=∠AME .∵∠AME=∠CMF ,∴∠PCF=∠CMF .在直角△CMF 中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM 为直角三角形.②若△CFP ∽△AEM ,则CF :AE=PF :EM ,即m :(3-m )=(248m m 33-+):(4m 43-+), ∵m≠0且m≠3,∴m=1.∵△CFP ∽△AEM ,∴∠CPF=∠AME .∵∠AME=∠CMF ,∴∠CPF=∠CMF .∴CP=CM .∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形.22.(1)117(2)见解析(3)B (4)30【解析】【分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A 等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B 等级,故答案为B .(4)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23. (1) S=﹣231003t 0<t <1); (2)307;(3)见解析. 【解析】【分析】(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.【详解】解:(1)如图1,∵四边形ABCD是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,由题意得:AP=4t,∴PQ=2t,,∴S=S△ABC﹣S△APQ,=11··22AC OB PQ AQ-,=1110222t⨯⨯⨯⨯,=﹣2(0<t<1);(2)如图2,在Rt△APM中,AP=4t,∵点Q关于O的对称点为M,∴OM=OQ,设PM=x,则AM=2x,∴x=4t,∴∴∵AM=AO+OM,,t=307;答:当t为307秒时,点P、M、N在一直线上;(3)存在,如图3,∵直线PN平分四边形APMN的面积,∴S△APN=S△PMN,过M作MG⊥PN于G,∴11··22PN AP PN MG,∴MG=AP,易得△APH≌△MGH,∴AH=HM=3t,∵AM=AO+OM,同理可知:OM=OQ=103﹣23t,3t=103=103﹣23t,t=30 11.答:当t为3011秒时,使得直线PN平分四边形APMN的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.24.(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】【分析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.【详解】(1)补全统计表如下:AQI 0~50 51~100 101~150 151~200 201~250 300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16 20 7 3 3 1(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×3150≈29天.【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.25.见解析【解析】【分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:x …﹣1 0 1 2 3 …y … 4 1 0 1 4 …如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.26.(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.27.(1)5.3(2)见解析(3)2.5或6.9【解析】【分析】(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE 为非负数,函数为分段函数.【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y=()()28048248x xx x⎧-+≤≤⎪⎨-≤≤⎪⎩与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE.故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.。

2019-2020学年九年级数学第一学期第一次月考试卷(附答题卷)

2019-2020学年九年级数学第一学期第一次月考试卷(附答题卷)

2019–2020学年度第一学期第一次月考试卷 九年级数学 (满分:150;考试时间:100分钟) 亲爱的同学们,新的学期已经开始,新的一年里你有哪些成长呢,现在是你展示自我的时候了。

相信自己,定会成功! 一、精心选一选,你肯定很棒!(本大题共8小题,每小题3分,共24分,每小题仅有 一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格) 1.下列方程中是一元二次方程的是( ) A.210x += B.21y x += C.210x += D.211x x += 2.用配方法解方程2410x x ++=,配方后的方程是( ) A. 2(2)3x += B. 2(2)3x -= C. 2(2)5x -= D. 2(2)5x += 3.下列方程中,常数项为零的是( ) A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+2 4.方程x 2﹣2x+3=0的根的情况是( ) A 、有两个相等的实数根 B 、只有一个实数根 C 、没有实数根 D 、有两个不相等的实数根 5.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A 、 1或1- B 、 1 C 、1- D 、12 6.已知三角形的两边长分别是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长是( ) A. 14 B. 12 C. 12或14 D.以上都不对 7.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的总产值为175亿元,若设平均每月的增长率为x ,根据题意可列方程( ) A .50(1+x )2 =175 B .50+50(1+x )2=175 C .50(1+x )+50(1+x )2=175 D .50+50(1+x )+50(1+x )2=175 8.已知m 是方程210x x --=的一个根,则代数2m m -的值等于( ) A.-1 B.0 C.1 D.2…………………密……………封……………线……………内……………不……………准……………答……………题…………………… 学校 ________________九()班姓名____________考号________二、认真填一填,你一定能行!(本大题共12空,每空3分,共36分)9.方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 10.22___)(_____6+=++x x x11.若方程(x + 3)2 + a = 0有解,则a 的取值范围是_________12.若一元二次方程mx 2 + 4x + 5 = 0有两个不相等实数根,则m 的取值范围__________.13.当m = 时,关于x 的方程22(2)690m m x x -++-=是一元二次方程。

2019-2020学年冀教版九年级数学上册第一次月考试题(有答案)(精品文档)

2019-2020学年冀教版九年级数学上册第一次月考试题(有答案)(精品文档)

2019-2020学年度第一学期冀教版九年级数学上册第一次月考试题(九月第23、24、25章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若,则的值为()A.或B.C. D.无数多个值2.如图所示,在平面直角坐标系中,有两点,,以原点为位似中心,与的相似比为,得到线段.正确的画法是()A B C D3.某班数学兴趣小组名同学的年龄情况如下表:A.,B.,C.,D.,4.下面方程中,有两个不等实数根的方程是()A. B.C. D.5.某商店天的营业额如下(单位:元):,,,,,利用计算器求得这天的平均营业额是()A.元B.元C.元D.元6.在目前的八年级数学下册第二章《一元二次方程》中新增了一节选学内容,其中有这样的知识点:如果方程的两根是、,那么,,则若关于的方程的两个实数根满足关系式,则的值为()A. B.C.或D.或或7.一组数据,,,,,的中位数是,则等于()A. B. C. D.8.如果数据,,的平均数是,那么等于()A. B. C. D.9.某中学礼仪队女队员的身高如下表:A.,B.,C.,D.,10.已知数据是,,,,,,,,则下面结论正确的是()A.平均数是B.中位数是C.众数是D.方差是二、填空题(共 10 小题,每小题 3 分,共 30 分)11.,,,,这五个数的平均数是,则这组数据的方差是________.12.已知,则________.13.要了解一批电视机的使用寿命,从中任意抽取台电视机进行试验,在这个问题中,是________.14.上海与南京的实际距离约千米,在比例尺为的地图上,上海与南京的图上距离约________厘米.15.实验探究:从装同种豆子布袋中取出拉,做上记号后放入袋子中充分搅匀,再取出粒刚好有记号的粒.从而估计布袋中有豆子________粒.16.已知黄金比为,线段,点是黄金分割点,,则________.(结果保留根号)17.若关于的一元二次方程有实数根,则的取值范围是________.18.如图,已知、分别是的边、上的点,且,,,.连接和,它们相交于点,过点分别作,,它们分别与边交于点、,则的面积与的面积之比为________.19.把一元二次方程化为一般形式为________,二次项为________,一次项系数为________,常数项为________.20.已知两个相似三角形的相似比为,若较小的三角形面积为,则较大的三角形面积是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.解方程..22.如图,已知:,且,试说明.23.为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:组的频数比组的频数小,样本容量________,为________:为________,组所占比例为________:补全频数分布直方图;若成绩在分以上优秀,全校共有名学生,估计成绩优秀学生有________名.24.有一块三角形的余料,要把它加工成矩形的零件,已知:,高,矩形的边在边上,、分别在、上,设的长为、的长为写出与的函数关系式.当取多少时,是正方形?25.某商店经营儿童益智玩具,已知成批购进时的单价是元.调查发现:销售单价是元时,月销售量是件,而销售单价每上涨元,月销售量就减少件,但每件玩具售价不能高于元.设每件玩具的销售单价上涨了元时(为正整数),月销售利润为元.求与的函数关系式并直接写出自变量的取值范围.每件玩具的售价定为多少元时,月销售利润恰为元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?26.如图,矩形的一边落在矩形的一边上,并且矩形,其相似比为,连接、.试探究、的位置关系,并说明理由;将矩形绕着点按顺时针(或逆时针)旋转任意角度,得到图形、图形,请你通过观察、分析、判断中得到的结论是否能成立,并选取图证明你的判断;在中,矩形绕着点旋转过程中,连接、、,且,,,的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.答案1.B2.D3.A4.A5.C6.C7.C8.A9.A10.A11.12.13.样本容量14.15.16.17.且18.19.20.21.解:,,,解得,;,,,,,,,,;,,所以或,解得,.22.证明:∵,∴,∵,∴,∴,又∵,∴.23.组的频数为,组的频数为,补全频数分布直方图为:24.当时,四边形是正方形.25.每件玩具的售价定为元时,月销售利润恰为元.根据题意得:,∵,∴当时,有最大值为,∵且为正整数,∴当时,,(元),当时,,(元),答:每件玩具的售价定为元或元时,每个月可获得最大利润,最大的月利润是元.26.解:,理由如下:如图,∵矩形矩形,∴,,∴,∴.延长交于.又∵,∴,∴;仍然成立,理由如下:如图,∵矩形矩形,∴,,∴,∴,∴,又∵,,∴,∴,∴;的面积是否存在最大值与最小值.理由如下:∵矩形,其相似比,,∴,∴点的轨迹是以点为圆心,为半径的圆.设点到的距离为,∴,解得,∴当点到的距离为时,的面积有最大值,当点到的距离为时,的面积有最小值,,最大.最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省衡水市武邑县2019-2020学年九年级数学上学期月考试题
一.选择题(每题3分,共计18分)
1.下列方程为一元二次方程的是( )
A .ax 2+bx +c =0
B .x 2﹣2x ﹣3
C .2x 2=0
D .xy +1=0
2. 右图是某物体的直观图,它的俯视图是( )
3. 下面是在太阳光下形成的影子的是( )
A B C D
4. 在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )
A B C D
5. 如图,P 为反比例函数y =k x
的图象上一点,PA ⊥x 轴于点A ,△PAO 的面积为6,下面各点中也在这个反比例函数图象上的是( )
A. (2,3)
B. (-2,6)
C. (2,6)
D. (-2,3)
第6题 第7题
6. 如图,双曲线y =k x
经过点A (2,2)与点B (4,m ),则△AOB 的面积为( )
A. 2
B. 3
C. 4
D. 5
二.填空题(每题3分,共30分)
7.分解因式:4m2﹣16n2=_____.
8.一个三角形的两边长分别为4cm和7cm,第三边长是一元二次方程x2﹣10x+21=0的实数根,则三角形的周长是cm.
9.将一个正十边形绕其中心至少旋转°就能和本身重合.
10.某工厂两年内产值翻了一番,若设该工厂产值年平均增长的百分率为x,则可列方程为.11.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.
12.(2019新疆)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.
13.如图,PB是⊙O的切线,A是切点,D是上一点,若∠BAC=70°,则∠ADC的度数是度.
14.如图,正五边形ABCDE内接于⊙O,则∠CAD=度.
15.关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均为常数,a≠0),则方程a (x+m+2)2+b=0的解是.
16.已知⊙O的直径CD为4,的度数为80°,点B是的中点,点P在直径CD上移动,则BP+AP 的最小值为.
三.解答题(共72分)
17.用适当的方法解下列方程
(1)2x2﹣5x=3
(2)x(x﹣5)=2(x﹣5)
18.三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为
cm.
19.如图,点B是双曲线y=k
x
(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=
60°,则k=_____.
20.有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;
方式2:如图2;
若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n的最大值为__________.
21.已知:如图A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,∠B=30°.(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
22.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)
(1)填空:EF=cm,GH=cm;(用含x的代数式表示)
(2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积.
23.如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=8,OC=6.
(1)求直线AC 的表达式
(2)若直线y x b =+与矩形OABC 有公共点,求b 的取值范围;
(3)若点O 与点B 位于直线210y kx k =--两侧,直接写出k 的取值范围。

24.如图,在ABC 中,AB AC =,点D 在BC 上,BD DC =,过点D 作DE AC ⊥,垂足为E ,O 经过A ,B ,D 三点.
()1求证:AB 是
O 的直径; ()2判断DE 与
O 的位置关系,并加以证明; ()3若O 的半径为10m ,60BAC ∠=,求DE 的长.
九年级数学第一次月考试答案
1. C
2. A
3. A
4. A
5. B
6. B
7. 4 8. 18 9. 36 10. (1+x)2=2. 11. 135°. 12. 16 13. 110 14. 36 15.x3=﹣4,x4=﹣1. 16.2.
17.4(m+2n)(m﹣2n).
18.6
19.33
20.(1). 18 (2). 7
21.(1)证明:如图,连接OA;
∵OC=BC,OA=OC,
∴OA=OB.
∴∠OAB=90°,即OA⊥AB,
∴AB是⊙O的切线;
(2)解:作AE⊥CD于点E,
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=;
∵∠D=30°,
∴AD=2,
∴DE=AE=,
∴CD=DE+CE=+.
22.解:(1)EF=(30﹣2x)cm,GH=(20﹣x)cm.
故答案为(30﹣2x),(20﹣x);
(2)根据题意,得:40×30﹣2x 2﹣2×20x =950,
解得:x 1=5,x 2=﹣25(不合题意,舍去),
所以长方体盒子的体积=x (30﹣2x )(20﹣x )=5×20×15=1500(cm 3). 答:此时长方体盒子的体积为1500cm 3.
23.【详解】解:(1)∵OA=8,OC=6,
∴A (8,0),C (0,6),
设直线AC 解析式为y=kx+m ,
把A 、C 两点坐标代入可得0=86k m m
+⎧⎨=⎩, 解得346
k m ⎧=-⎪⎨⎪=⎩, ∴直线AC 的解析式为y=-34
x+6; (2)由图象可知当直线y=x+b 过点C 时,把C 点坐标代入可得6=0+b , ∴b=6;
当直线y=x+b 过点A 时,把A 点坐标代入可得0=8+b ,解得b=-8, ∵若直线y=x+b 与矩形OABC 有公共点
∴b 的取值范围为:-8<b <6,
故答案为: -8<b <6;
(3)∵OA=8,OC=6,∴B(8,6),
把点A(0,0)代入210y kx k =--,得-2-10k=0,解得:k=-
15
, 把点B(86)代入210y kx k =--,得8k-2-10k=6 ,解得:k= -4,
∴k 的取值范围为:145k -<<-.
24.【详解】()1证明:如图
连接AD ,
AB AC =,BD DC =,
AD BC ∴⊥,
90ADB ∴∠=,
AB ∴为圆O 的直径;
()2DE 与圆O 相切,理由为:
证明:连接OD , O 、D 分别为AB 、BC 的
中点,
OD ∴为ABC 的中位线,
//OD AC ∴,
DE AC ⊥,
DE OD ∴⊥,
OD 为圆的半径,
DE ∴与圆O 相切;
()3解:AB AC =,60BAC ∠=, ABC ∴为等边三角形,
20AB AC BC ∴===,
设AC 与O 交于点F ,连接BF , AB 为圆O 的直径,
90AFB DEC ∴∠=∠=,
10AF CF ∴==,//DE BF , D 为BC 中点, E ∴为CF 中点,即DE 为BCF 中位线, 在Rt ABF 中,20AB =,10AF =,
根据勾股定理得:22
2010103
BF=-=,

1
53
2
DE BF
==.。

相关文档
最新文档