两轮自平衡小车毕业设计毕业论文

合集下载

两轮自平衡小车毕业设计毕业论文

两轮自平衡小车毕业设计毕业论文

两轮自平衡小车毕业设计毕业论文目录1.绪论 (1)1.1研究背景与意义 (1)1.2两轮自平衡车的关键技术 (2)1.2.1系统设计 (2)1.2.2数学建模 (2)1.2.3姿态检测系统 (2)1.2.4控制算法 (3)1.3本文主要研究目标与容 (3)1.4论文章节安排 (3)2.系统原理分析 (5)2.1控制系统要求分析 (5)2.2平衡控制原理分析 (5)2.3自平衡小车数学模型 (6)2.3.1两轮自平衡小车受力分析 (6)2.3.2自平衡小车运动微分方程 (9)2.4 PID控制器设计 (10)2.4.1 PID控制器原理 (10)2.4.2 PID控制器设计 (11)2.5姿态检测系统 (12)2.5.1陀螺仪 (12)2.5.2加速度计 (13)2.5.3基于卡尔曼滤波的数据融合 (14)2.6本章小结 (16)3.系统硬件电路设计 (17)3.1 MC9SXS128单片机介绍 (17)3.2单片机最小系统设计 (19)3.3 电源管理模块设计 (21)3.4倾角传感器信号调理电路 (22)3.4.1加速度计电路设计 (22)3.4.2陀螺仪放大电路设计 (22)3.5电机驱动电路设计 (23)3.5.1驱动芯片介绍 (24)3.5.2 驱动电路设计 (24)3.6速度检测模块设计 (25)3.6.1编码器介绍 (25)3.6.2 编码器电路设计 (26)3.7辅助调试电路 (27)3.8本章小结 (27)4.系统软件设计 (28)4.1软件系统总体结构 (28)4.2单片机初始化软件设计 (28)4.2.1锁相环初始化 (28)4.2.2模数转换模块(ATD)初始化 (29)4.2.3串行通信模块(SCI)初始化设置 (30)4.2.4测速模块初始化 (31)4.2.5 PWM模块初始化 (32)4.3姿态检测系统软件设计 (33)4.3.1陀螺仪与加速度计输出值转换 (33)4.3.2卡尔曼滤波器的软件实现 (34)4.4平衡PID控制软件实现 (37)4.5两轮自平衡车的运动控制 (38)4.6本章小结 (40)5. 系统调试 (41)5.1系统调试工具 (41)5.2系统硬件电路调试 (41)5.3姿态检测系统调试 (42)5.4控制系统PID参数整定 (45)5.5两轮自平衡小车动态调试 (45)5.6本章小结 (46)6. 总结与展望 (47)6.1 总结 (47)6.2 展望 (47)参考文献 (48)附录 (49)附录一系统电路原理图 (49)附录二系统核心源代码 (50)致谢 (54)1.绪论1.1研究背景与意义近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科学研究最活跃的领域之一,移动机器人的应用围越来越广泛,面临的环境和任务也越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。

两轮自平衡小车的电动减速轮设计

两轮自平衡小车的电动减速轮设计

学号:24101901695南湖学院毕业论文(设计)题目:两轮自平衡小车的电动减速轮设计作者lxxxx 届别xxx 系别xxxx 专业xxx 指导老师xxxx 职称xxx 完成时间xxxxx摘要两轮自平衡机器人与两轮自平衡电动车都属于两轮自平衡系统的范畴。

两轮自平衡小车是一种可靠、便捷、环保的短途运输交通工具,它占地面积小,通过路面的能力强,并且非常灵活,适用于场馆、机场等地。

近年来国内外对两轮自平衡机器人的控制研究较多,但针对其机械结构的研究却较少,尤其是对两轮自平衡电动车的研究更是少之又少。

本文总结了国内外相关领域的研究成果,对两轮自平衡电动车的减速轮进行了机械设计,选择了各零部件合适的材料,绘制了减速轮的零件图和装配图,并对轴承进行了强度校核。

关键词:两轮自平衡;减速轮;机械设计;Pro/EAbstractBoth the two-wheeled self-balancing electric vehicle and the two-wheeled self-balancing robot belong to the two-wheeled self-balancing system .Since the two-wheeled self-balancing electric vehicle is a kind of reliable and convenient, environmental protection and short-distance transportation vehicles, it covers an area of small, it has the ability to through the pavement, and it is very flexible , and it is applicable to the venue, airport, etc. In recent years studies of the two- wheeled self-balancing robot are too numerous to mention,and most of them focus on the control but not the structure. After having summarized the research results of the field,this thesis designed the two- wheeled self-balancing electric vehicle gear wheel’s mechanical design, choose various spare parts suitable materials, draws the part drawing and the assembly drawing about the gear wheel, and the bearing force respectively.Key words: two- wheeled self-balancing;gear wheel;mechanical design;Pro/E目录第一章绪论 (1)1.1 本论文研究背景 (1)1.2 国内外研究现状 (1)1.2.1 国外研究现状 (1)1.2.2 国内研究现状 (5)1.3 两轮自平衡机器人的研究意义 (6)第二章两轮自平衡系统的平衡原理 (7)第三章两轮自平衡电动车结构的分析 (9)3.1 总体方案分析 (9)3.2 确定减速轮的设计方案 (11)3.2.1 一般自行车电动减速轮结构方案设计 (11)3.2.2 自平衡电动车减速轮整体结构设计 (12)第四章电动减速轮的设计 (15)4.1 Pro/E的介绍 (15)4.2 电机的选择 (15)4.3 轮轴的设计 (16)4.3.1 轴的概述 (16)4.3.2 轴的结构设计 (16)4.3.3 轴的具体装配设计 (17)4.4 减速器设计 (18)4.4.1 减速比的确认 (18)4.4.2 各齿轮参数的确认 (19)4.5 惰轮架设计 (21)4.6 车轮(轮壳)设计 (21)4.7 轴承的选择、定位 (23)4.7.1 轴承的介绍 (23)4.7.2 轴承的选择 (23)4.8 车轮装配体 (24)4.9 减速轮轴承的校核 (25)4.9.1 内侧轴承校核 (25)4.9.2 惰轮轴承寿命校核 (26)第五章全文总结 (30)参考文献 (31)致谢 (32)第一章绪论1.1 本论文研究背景自20 世纪 60 年代人类研制出第一台机器人以来,机器人技术就显示出了强大的新生力,在将近 50 年的时间里,机器人技术得到了飞速的发展[1]。

闽南师范大学_平衡小车毕设 - 最终1

闽南师范大学_平衡小车毕设 - 最终1

闽南师范大学毕业论文(设计)基于STM32单片机的双轮小车近静态动平衡控制统The Design of The Nearly Static Dynamic Balance Two Wheeled Car Control System Based on TheSTM32姓名:陈国文学号:1105000232系别:物理与电子信息工程学院专业:电气工程及其自动化年级:2011级指导教师:李忆2014年12 月28 日摘要本文介绍以STM32F103RCT6单片机为核心的智能自平衡小车技术的研究,本系统分为单片机最小系统,PID自动反馈调节,驱动控制电路。

通过MPU-6050传感器采集到姿态感知信号传给STM32F103RCT6单片机,经单片机PID反馈调节,发出命令控制驱动模块L298N,驱动2台直流电动机进行相应的动作,最终使得小车能够平稳站立。

为了提高平衡效果,本文引入了卡尔曼滤波器,在调试中应注意初始角度的矫正和PID的参数调节。

本设计现能实现小车在正负2度内平衡,时超超过4S,在小车的控制方面还有待改进。

关键词:STM32F103RCT6单片机姿态检测卡尔曼滤波 PID控制电机驱动AbstractIn this paper, we introduce STM32F103RCT6 single-chip microcomputer as the core of intelligent since the balance of the car technology research, this system is divided into single chip microcomputer minimum system, PID automatic feedback adjustment, the drive control circuit. By MPU - 6050 sensor collected posture perception to STM32F103RCT6 MCU signals, the microcontroller PID feedback control, a command control L298N drive module, drive two dc motor for the corresponding action, eventually making the car can stand steadily.In order to improve the effect of equilibrium, this paper introduced the Calman filter, in needing attention in debugging the parameters initial angle correction and PID regulation. This design is to achieve car in the positive and negative balance within 2 degrees, super than 4S, in control of the car has to require improvement.KeyWord: STM32F103RCT6 single-chip microcomputer Posture perception Kalman filter PID controller motor drive目录中英文摘要 (I)1 引言 (1)1.1 选题背景及实际意义 (1)2 整体方案设计 (1)2.1系统整体设计 (1)2.2姿态检测模块选型方案比较 (2)2.3项目设计要求 (2)2.4平衡小车的总体框图 (2)3 各单元模块的硬件设计 (3)3.1 STM32F103RCT6单片机系统 (3)3.2 稳压模块选型 (3)3.3 姿态检测模块 (4)3.3.1加速度计模块 (5)3.3.2陀螺仪模块 (7)3.4 电机驱动模块选型 (7)3.5电机选型 (8)3.6 电路接线表 (9)3.6.1电源接口解析 (9)3.6.2器件I/O口连接表 (9)4 理论分析与计算 (10)4.1 自平衡小车数学模型 (10)4.2 PID控制器设计 (11)4.2.1 PID控制器原理 (11)4.2.2 PID控制器设计 (11)4.3基于卡尔曼滤波的数据融合 (12)4.4 本章小结 (14)5 系统软件设计 (15)5.1软件系统总体结构 (15)5.2单片机初始化软件设计 (15)5.3姿态检测系统调试 (15)5.3.1角度矫正 (15)5.3.2卡尔曼滤波调试 (16)5.3.3控制系统PID参数整定 (18)6 系统测试 (19)6.1 平衡度测试 (19)6.2站立时间测试 (20)7 器件清单 (20)7.1元器件清单 (20)7.2平衡小车实物图 (21)8 总结与展望 (21)8.1 总结 (21)8.2 展望 (22)参考文献 (22)附录 (i)致谢 (vii)1 引言两轮自平衡小车是一种特殊轮式移动机器人,其动力学系统具有多变量、非线性、强耦合、参数不确定等特性。

两轮自平衡小车的设计毕业设计(论文)

两轮自平衡小车的设计毕业设计(论文)

本科毕业设计(论文)题目两轮自平衡小车的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计毕业设计题目:两轮自平衡小车设计一、毕业设计背景与意义目前,智能机器人技术已经在各个领域得到广泛的应用,其中自平衡小车是一种非常具有代表性的机器人。

自平衡小车能够通过自身的控制系统来保持平衡姿态,并能够实现各种转向和动作。

因此,自平衡小车不仅能够广泛应用于工业生产中,还可以成为搬运、巡逻和助力等领域的优秀协助工具。

本毕业设计的目标是设计和实现一种能够自动控制、实现平衡的两轮自平衡小车。

通过这个设计,进一步探究并研究自平衡技术的原理及应用,增加对机器人控制系统和传感器的理解,提高对计算机控制和嵌入式系统的应用能力。

二、毕业设计的主要内容和任务1.研究和调研a)研究两轮自平衡小车的构造和原理;b)调研目前市场上相关产品,并分析其特点和存在的问题。

2.模块设计a)根据研究结果,设计自平衡小车的主要模块,包括平衡控制模块、动作控制模块和传感器模块;b)设计相关控制算法和策略,使小车能够保持平衡并能够实现转向和动作。

3.硬件搭建和调试a)根据模块设计的结果,搭建小车的硬件系统,包括选择适用的电机、陀螺仪、加速度计等;b)进行相应的调试和优化,保证小车的平衡和动作控制能力。

4.软件开发和系统集成a)开发小车的控制系统软件,包括实时控制系统和传感器数据处理等;b)将硬件系统和软件系统进行有机地集成,实现小车的平衡和动作控制。

5.实验和测试a)进行实验测试,验证设计的有效性和稳定性;b)进行相关的性能测试和比较研究。

三、设计预期成果1.自平衡小车的系统设计和实现,能够平衡姿态并能够实现转向和动作控制;2.控制系统软件的开发和优化,实现小车的实时控制和数据处理;3.相关模块和算法的设计和实现,如平衡控制模块和动作控制模块;4.实验和测试结果的总结和分析;5.毕业设计报告的撰写。

四、设计周期和工作安排1.阶段1:研究和调研阶段(1周)2.阶段2:模块设计阶段(2周)3.阶段3:硬件搭建和调试阶段(2周)4.阶段4:软件开发和系统集成阶段(2周)5.阶段5:实验和测试阶段(1周)6.阶段6:总结和报告撰写阶段(2周)五、预期解决的关键问题和技术难点1.小车平衡控制算法的设计和优化;2.小车动作控制算法的设计和优化;3.小车硬件系统与软件系统的有效集成;4.多个传感器数据的处理和融合。

浅论小型两轮自平衡电动车系统的设计与研究论文

浅论小型两轮自平衡电动车系统的设计与研究论文

浅论小型两轮自平衡电动车系统的设计与研究论文浅论小型两轮自平衡电动车系统的设计与研究论文小型两轮自平衡电动车控制方案,是使用姿态检测传感器来检测小车姿态的变化,运用合适的运动控制原理,驱动电机进行相应的调整,以保持小车平衡、但在实际设计中,加速度计检测出来的数据易受小车运动速度影响,陀螺仪检测出来的数据易受温度影响,因此需要采用滤波器对其进行滤波、通过对卡尔曼滤波器与互补滤波器这两种不同的滤波器进行比较,在基于飞思卡尔公司Kinetis K60的小型两轮自平衡电动车姿态稳定系统上加以验证,从而得出在实际设计中卡尔曼滤波器优于互补滤波器。

1控制系统分析与设计1.1系统分析小型两轮自平衡电动车系统主要由姿态传感器,CMOS摄像头传感器、矢量光电编码器,Kinetis K60单片机、直流减速电泪L及其驱动电路组成。

陀螺仪与加速度计的数据经过AD转换后传至控制器中,通过滤波器进行滤波后,获得较为精确的角速度和角加速度数据,从而计算得到角度偏差;摄像头采集道路信息,进行路径识别,使小车沿一定路径J决速运行光电编码器采集车轮速度,通过负反馈控制小车速度,三者数据融合后,再通过PID算法输出控制量,生成PWM从而控制电机运行。

1.2矢量编码器小车进行角度姿态控制时会产生两个自由度上的偏移,除用测量角度的加速度计和陀螺仪外,还需要增加测量两轮车位移的传感器,这里选用可以测量正负位移的欧姆龙500线矢量编码器(A日相光电编码器)。

2角度滤波算法分析从加速度计采集到的角度信息存在高频干扰,输出电压,矢量编码器控制电路会在实际反映倾角的电压值附近波动、要从陀螺仪获得角度信息,需要经过积分运算,而从单片机采集的角速度信息存在误差和温度偏移、这个误差会随时间延长而积累,最终导致输出信号偏离真实角度信号、因此,下面介绍两种滤波法,对两种传感器所获得信息进行校正。

2.1互补滤波器通过加速度计和陀螺仪积分获得的`两种与角度相关的信息,利用加速度计修正陀螺仪的积分输出,利用陀螺仪修正加速度计的高频干扰。

两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现

两轮自平衡小车的设计与实现一、本文概述随着科技的飞速发展,智能化、自主化已经成为现代机器人技术的重要发展方向。

两轮自平衡小车作为一种典型的动态稳定控制机器人,其设计与实现技术对于推动机器人技术的进步具有重要意义。

本文旨在深入探讨两轮自平衡小车的设计理念、实现方法以及关键技术,为相关领域的研究者和爱好者提供有益的参考。

本文将首先介绍两轮自平衡小车的基本概念和原理,阐述其动态稳定控制的基本思想。

随后,将详细介绍两轮自平衡小车的硬件设计,包括电机驱动、传感器选型、控制器设计等关键部分,并阐述各部件之间的协同工作原理。

在此基础上,本文将重点探讨两轮自平衡小车的软件实现,包括平衡控制算法、运动控制算法以及人机交互界面设计等。

本文还将对两轮自平衡小车的性能优化和实际应用进行深入分析,探讨如何提高其稳定性、响应速度以及续航能力等问题。

本文将对两轮自平衡小车的发展趋势和前景进行展望,为相关领域的研究和发展提供有益的参考。

通过本文的阐述,读者可以全面了解两轮自平衡小车的设计与实现过程,掌握其关键技术和应用方法,为推动机器人技术的发展做出贡献。

二、两轮自平衡小车的基本原理两轮自平衡小车,又称作双轮自稳车或双轮倒立摆,是一种基于动态稳定技术设计的个人交通工具。

其基本原理主要涉及到力学、控制理论以及传感器技术。

两轮自平衡小车的稳定性主要依赖于其独特的力学结构。

与传统三轮或四轮的设计不同,双轮自平衡小车只有两个支撑点,这意味着它必须通过动态调整自身姿态来维持稳定。

这种动态调整的过程类似于杂技演员走钢丝,需要精确的平衡和快速的反应。

实现自平衡的关键在于控制理论的应用。

两轮自平衡小车通常搭载有先进的控制系统,该系统通过传感器实时监测小车的姿态(如倾斜角度、加速度等),并根据这些信息计算出必要的调整量。

控制系统随后会向电机发送指令,调整小车的运动状态,以保持平衡。

传感器在两轮自平衡小车中扮演着至关重要的角色。

常见的传感器包括陀螺仪、加速度计和角度传感器等。

【精品毕设】两轮平衡车的设计

【精品毕设】两轮平衡车的设计

毕业设计(论文)
题目两轮平衡车的设计
系(院)机电工程系
专业机械设计制造及其自动化
学号
指导教师
职称
二〇一四年六月二十日
独创声明
本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本声明的法律后果由本人承担。

作者签名:
二〇一二年月日
毕业设计(论文)使用授权声明
本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。

本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。

(保密论文在解密后遵守此规定)
作者签名:
二〇一二年月。

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计

两轮自平衡小车毕业设计04161120(总24页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除两轮自平衡小车的设计摘要最近这几年来,自平衡电动车的研发与商用获得了快速发展。

自平衡车具有体积小,运动十分灵活,便利,节能等特点。

本文提出了一种双轮自平衡小车的设计方案,机械结构采用了双轮双马达驱动;控制主要采用的是反馈调节,为了使车体更好的平衡,使用了PID调节方式;硬件上采用陀螺仪GY521 MPU-6050来采集车体的旋转角度以及旋转角加速度,同时采用了加速度传感器来间接测量车体旋转角度。

采用意法半导体ST 公司的低功耗控制器芯片stm32作为主控,采集上述传感器信息进行滤波,分析等操作后进而控制马达的驱动,从而达到反馈调节的闭环,实现小车的自动平衡。

系统设计,调试完成后,能够实现各个功能部件之间协调工作,在适度的干扰情形下仍然能够保持平衡。

同时,也可以使用手机上的APP通过蓝牙与小车通信控制小车的前进和后退以及转弯。

关键词:自平衡小车陀螺仪传感器滤波 APPDesign of Two-Wheel Self-Balance VehicleAbstractIn the last few years, with the development of commercial self balancing electric vehicle was developed rapidly. Self balancing vehicle has the advantages of small volume, the movement is very flexible, convenient, energy saving etc.. This paper presents a two wheeled self balancing robot design, mechanical structure adopts double motor drive; controlled mainly by the feedback regulation, in order to make the balance of the body better, with the PID regulation; hardware using gyroscope GY521 mpu-6050 to collect the rotation angle of the car body and the rotation angle acceleration. At the same time, acceleration sensor to measure indirectly body rotation angle. St, the low power consumption controller STM32 chip used as the main control, collecting the sensor information filtering, analysis backward and control motor drive, so as to achieve close loop feedback regulation, the realization of the car automatic balance. System design, debugging is completed, the coordination between the various functional components can be achieved, in the case of moderate interference can still maintain a balance. At the same time, you can also use the APP on the mobile phone with the car to control the car's forward and backward and turning.Key Words: Self balancing car gyroscope sensor filter APP目录1.绪论 0研究背景与意义 0自平衡小车的设计要点 0整体构思 0姿态检测系统 0控制算法 (1)本文主要研究目标与内容 (1)论文章节安排............................................... 错误!未定义书签。

智能车两轮自平衡小车系统毕业论文

智能车两轮自平衡小车系统毕业论文

摘要近年来,两轮自平衡机器人的研究取得了快速的发展,两轮自平衡小车的动力学系统是一种多变量、非线性、强耦合的系统,是检验各种控制方法的典型装置。

同时由于它具有体积小、运动灵活、零转弯半径等特点,必将会在军用和民用领域有着广泛的应用前景。

本文主要介绍了基于Freescale MC9S12XS128单片机为控制核心的两轮自平衡小车系统,以验证经典的PID控制在动态平衡系统上的控制效果。

在该系统上,姿态传感器采用MPU6050,单片机在采集到姿态数据后,采用Kalman滤波器对得到的数据进行融合,并在此基础上分析不同滤波方法的效果。

借助增量式PID控制PWM的输出和利用TB6612FNG控制电机的转向以及转速,从而实现了小车的自平衡控制。

关键词:两轮自平衡系统; Kalman滤波;数据融合; HCS12; MPU6050 .Design and implementation of two-wheeled self-balancing vehicleAbstractIn recently years, the research of two-wheeled self-balancing robot has made a rapid development, the dynamics system of two-wheeled self-balancing vehicle is a multivariable, nonlinear, strong coupling system, and also ,it’s a typical devices to test a variety of control methods. Because of it has a small, flexible movement and zero turning radius. It will have a wide range of applications in military and civilian fields.In the article, it describes the Freescale MC9S12XS128 microcontroller-based control of two-wheeled self-balancing vehicle system to verify the classic PID control system in the dynamic balance . On this system, It used MPU6050 as the car state sensing system, and it used the Kalman filter to fuse the obtained angle data, and analyzed the effect of different filtering methods based on this. With incremental PID control PWM output and use TB6612FNG steering and speed control motors, enabling the car's self-balance control finally.Keywords: two-wheeled self-balancing system; the Kalman filter;HCS12;MPU6050目录摘要 (1)第1章绪论 (4)1.1 两轮自平衡机器人概述 (4)1.2 两轮自平衡机器人的发展 (4)1.3 方案论证及选择 (5)1.4 关键技术及目标 (6)1.4.1 姿态数据处理 (6)1.4.2 控制算法的实现 (7)1.4.3 目标 (7)第2章两轮自平衡小车的原理 (8)2.1 小车的直立控制 (8)2.2 倾角与角速度的测量 (12)2.3 本章小结 (12)第3章电路设计 (13)3.1 整体电路框图 (13)3.2 电源电路 (14)3.3 单片机最小系统 (15)3.3.1 S12单片机简介 (15)3.3.2 MC9S12XS128最小系统电路 (15)3.4 MPU6050 (16)3.4.1 MPU6050简介 (16)3.4.2 I2C通信 (17)3.5 电机驱动电路 (17)3.5.1 驱动芯片介绍 (17)3.5.2 驱动电路设计 (18)3.6 速度传感器电路 (19)3.6.1 光电编码器介绍 (19)3.7 无线遥控电路 (19)3.7.1 Pt2262简介 (19)3.7.2 Pt2262应用 (20)3.8 液晶显示电路 (21)3.8.1 LCD1602简介 (21)3.8.2 LCD1602电路 (21)3.9 车模控制电路全图 (22)3.10 本章小结 (24)第4章系统软件设计 (25)4.1 控制算法介绍 (25)4.2 S12单片机初始化 (26)4.2.1 锁相环初始化 (26)4.2.2 PWM模块初始化 (26)4.2.3 串行通信初始化 (26)4.2.4 外部中断初始化 (27)4.3 PID控制的实现 (27)4.4 姿态数据处理 (27)4.4.1 角度计算函数 (27)4.4.2 滤波方法分析与选择 (27)4.5 小车的运动控制 (31)4.6 无线遥控 (31)4.7 本章小结 (31)第5章系统调试 (33)5.1 软件调试工具 (33)5.2 系统调试工具 (33)5.3 系统硬件电路调试 (33)5.4 姿态检测模块调试 (33)5.5 Kalman滤波器参数的整定 (35)5.6 PID参数的整定 (35)5.7 本章小结 (36)第6章总结 (37)6.1 总结与展望 (37)参考文献 (39)附录 (41)附录一系统主控板 (41)附录二系统核心源码 (42)致谢 (45)第1章绪论两轮自平衡系统最早可追溯到上世纪80年代,日本电气通信大学的山藤一雄教授提出的基于倒立摆原理的自动站立机器人的模型被认为是两轮自平衡小车的构思起源。

两轮自平衡电动车论文:两轮电动车自平衡控制算法的研究

两轮自平衡电动车论文:两轮电动车自平衡控制算法的研究

两轮自平衡电动车论文:两轮电动车自平衡控制算法的研究【中文摘要】两轮自平衡电动车是一种新型的交通工具,它与电动自行车和摩托车车轮前后排列方式不同,而是采用两轮并排固定的方式,就像一种两轮平行的机器人一样。

该系统是一种两轮左右平行布置的,像传统的倒立摆一样,本身是一个自然不稳定体,必须施加强有力的控制手段才能使之稳定。

其体积小、结构简单、运动灵活,适于在狭小和危险的空间内工作,在民用和军事上有着广泛的应用前景。

本课题旨在研制一种两轮电动车自平衡控制系统,其工作原理是系统以姿态传感器(陀螺仪、加速度计)来监测车身所处的俯仰状态和状态变化率,通过高速微控制器计算出适当数据和指令后,驱动电动机产生前进或后退的加速度来达到车体前后平衡的效果。

本文在总结和归纳国内外两轮自平衡小车的研究现状后,选用AtmeDgal16微控制器、德国冯哈勃Faulhaber带编码器空心杯减速电机2342L012、MMA226D加速度计传感器和EWTS82陀螺仪、驱动车轮、设计制作主板和电机驱动板,组装两轮自平衡电动车模型;通过C语言编写自平衡控制程序,烧录程序,实车验证所选用的控制算法可行性。

在研究过程中,本文首先通过建立动力学模型,运用拉格朗日方程来验证系统中三个自由度可否能控,并且求出控制算法中的四个K值,基于陀螺仪存在漂移的问题及加速度计的动态响应慢,对于系统的姿态检测而言,单独使用陀螺仪或者加速度计,都不能提供有效和可靠的信息来反映车体的实时状态。

本文对传感器两者所采集的数据进行了卡尔曼滤波优化处理,补偿陀螺仪的漂移误差和加速度计的动态误差,得到一个更优的倾角近似值。

基于在过程控制中,PID控制器一直是应用最为广泛的一种自动控制器,PID控制也一直是众多控制方法中应用最为普遍的控制算法,它解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性,调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。

两轮自平衡车的设计研究

两轮自平衡车的设计研究

两轮自平衡车的设计研究首先,两轮自平衡车的设计中最重要的组件是姿态感知器和控制系统。

姿态感知器通过加速度计和陀螺仪等传感器来感知车辆的姿态变化,并将数据传递给控制系统。

控制系统根据这些数据来计算出应该施加的力矩,以保持车辆的平衡。

我们需要精确地设计和调整这些组件,以确保车辆能够稳定地保持平衡。

其次,两轮自平衡车的动力系统也至关重要。

目前常用的动力系统是电池供电的电动机。

电动机将电能转化为机械能,驱动车辆前进。

设计动力系统时需要考虑能量效率、稳定性和驱动力的大小。

另外,选择合适的电池类型和容量也是关键,以确保车辆的续航能力。

此外,两轮自平衡车的操控系统也需要设计和研究。

一个简单直观的操控系统可以提高用户体验,并减少操作难度。

常见的操控系统包括使用身体重心移动来控制车辆的前进、后退和转向。

此外,也可以考虑添加智能化的操控功能,如蓝牙连接手机进行远程操控等。

在结构设计方面,两轮自平衡车需要考虑车辆的稳定性和可靠性。

一个好的结构设计能够提高车辆的抗风性和减震性能。

此外,车辆的重心位置也需要合理安排,以减小车辆倾倒的风险。

最后,两轮自平衡车的安全性是设计中不可忽视的因素。

设备应具备紧急停止和防护措施,以防止意外伤害。

例如,可以在车辆上加装限位开关,在发生故障时停止电机的运转。

另外,可以考虑添加LED灯和蜂鸣器等装置,以提高车辆的可见性和警示效果。

总之,两轮自平衡车的设计研究涉及姿态感知器和控制系统、动力系统、操控系统、结构设计和安全性等多个方面。

通过合理设计和研究,可以提高车辆的平衡性、稳定性和安全性,进一步推动两轮自平衡车的发展和广泛应用。

两轮自平衡小车毕业设计04161120讲诉

两轮自平衡小车毕业设计04161120讲诉

两轮自平衡小车的设计摘要最近这几年来,自平衡电动车的研发与商用获得了快速发展。

自平衡车具有体积小,运动十分灵活,便利,节能等特点。

本文提出了一种双轮自平衡小车的设计方案,机械结构采用了双轮双马达驱动;控制主要采用的是反馈调节,为了使车体更好的平衡,使用了PID调节方式;硬件上采用陀螺仪GY521 MPU-6050来采集车体的旋转角度以及旋转角加速度,同时采用了加速度传感器来间接测量车体旋转角度。

采用意法半导体ST公司的低功耗控制器芯片stm32作为主控,采集上述传感器信息进行滤波,分析等操作后进而控制马达的驱动,从而达到反馈调节的闭环,实现小车的自动平衡。

系统设计,调试完成后,能够实现各个功能部件之间协调工作,在适度的干扰情形下仍然能够保持平衡。

同时,也可以使用手机上的APP通过蓝牙与小车通信控制小车的前进和后退以及转弯。

关键词:自平衡小车陀螺仪传感器滤波APPDesign of Two-Wheel Self-Balance VehicleAbstractIn the last few years, with the development of commercial self balancing electric vehicle was developed rapidly. Self balancing vehicle has the advantages of small volume, the movement is very flexible, convenient, energy saving etc.. This paper presents a two wheeled self balancing robot design, mechanical structure adopts double motor drive; controlled mainly by the feedback regulation, in order to make the balance of the body better, with the PID regulation; hardware using gyroscope GY521 mpu-6050 to collect the rotation angle of the car body and the rotation angle acceleration. At the same time, acceleration sensor to measure indirectly body rotation angle. St, the low power consumption controller STM32 chip used as the main control, collecting the sensor information filtering, analysis backward and control motor drive, so as to achieve close loop feedback regulation, the realization of the car automatic balance. System design, debugging is completed, the coordination between the various functional components can be achieved, in the case of moderate interference can still maintain a balance. At the same time, you can also use the APP on the mobile phone with the car to control the car's forward and backward and turning.Key Words: Self balancing car gyroscope sensor filter APP目录1.绪论 (1)1.1研究背景与意义 (1)1.2自平衡小车的设计要点 (1)1.2.1整体构思 (1)1.2.2姿态检测系统 (1)1.2.3控制算法 (2)1.3本文主要研究目标与内容 (2)1.4论文章节安排........................................................................................ 错误!未定义书签。

两轮自平衡小车角度检测软件设计毕业论文

两轮自平衡小车角度检测软件设计毕业论文

两轮自平衡小车角度检测软件设计毕业论文目录摘要................................................................................................... 错误!未定义书签。

Abstract........................................................................................... 错误!未定义书签。

1 概述 (1)1.1 两轮自平衡小车的研究意义 (1)1.2两轮自平衡小车的发展历程和国内外研究现状 (2)1.2.1 国外研究现状 (2)1.2.2国内研究成果 (3)1.2.3国内外研究分析总结 (4)1.3 本人所做工作 (4)2两轮自平衡小车整体设计 (6)2.1机械系统的设计 (6)2.2 控制系统的设计 (8)2.2.1主控制器模块 (9)2.2.2角度检测模块 (10)3 两轮自平衡小车常见数学模型及控制算法 (11)3.1动力学模型及其参数说明 (11)3.2控制算法的设计 (12)3.2.1平衡控制 (12)3.2.2 直行和转弯控制 (13)3.2.3小车运动的精确控制 (14)4 两轮自平衡小车角度检测的软件设计 (16)4.1 系统模块结构框图 (16)4.2主程序模块 (16)4.3 I2C总线模块 (19)4.3.1 I2C总线的概念 (19)4.3.2 I2C总线的起始和停止条件 (20)4.3.3 数据传输格式 (21)4.3.4 响应 (21)4.4 加速度传感器模块 (22)4.4.1 ADXL345概念 (22)4.4.2 ADXL345的I2C连接 (23)4.4.3 ADXL345的功耗模式 (25)4.4.4 ADXL345的初始化 (26)4.4.5 连续读出ADXL345内部加速度数据 (32)4.5 液晶显示模块 (35)4.5.1 管脚功能 (35)4.5.2 LCD1602控制指令 (36)4.5.3 LCD1602内部显示地址 (37)4.5.4各轴速度的显示 (38)4.5.5 倾角的显示 (41)5 结论 (43)参考文献 (45)附录 (46)文献综述 (58)1 概述机器人技术是一种面向未来的尖端技术,也是一项涉及通信技术、微电子技术、人工智能技术、材料科学、计算机技术、控制技术、传感器技术、通讯技术、数学方法和仿生学的多学科的综合高新技术。

两轮自平衡小车论文

两轮自平衡小车论文

2013年全国大学生电子设计竞赛两轮自平衡小车设计作者:杨魏,黄敏杰,夏俊逸2015.7.17摘要本文采用自制的两轮简易小车作为试验平台,以MEMS传感MPU6050为传感器的姿态感知系统,通过离散卡尔曼滤波器对两种传感器的数据进行滤波融合,选用32位单片机STM32F103RB为控制核心处理器,完成对数据的采集处理和车身控制,采用PID控制算法实现小车两轮自平衡。

用蓝牙控制前后运动。

实验结果验证了该系统的性能满足设计要求。

关键词:两轮自平衡;姿态感知;STM32F103RB;卡尔曼滤波;PID控制。

目录1系统方案 (1)1.1 姿态检测模块的论证与选择 (1)1.2 电机驱动模块的论证与选择 (1)2 系统硬件设计 (1)2.1 STM32F103RB 单片机系统 (2)2.1.1 STM32F103RB 单片机介绍 (2)2.1.2单片机最小系统设计 (3)2.1.3 电源管理模块设计 (4)2.2 姿态检测模块MPU-6050 (5)2.2.1 MPU-6050简介 (5)2.2.3数字运动处理器(DMP) (6)2.3速度检测模块设计 (7)2.3.1编码器介绍 (7)2.3.2 编码器电路设计 (8)2.4 电机驱动模块 (8)2.4.1 L298N简介 (8)2.4.2 L298N特点 (9)3理论分析与计算 (9)3.1 两轮平衡小车数学模型 (9)3.2 PID控制器设计 (10)3.2.1 PID控制器原理 (10)3.2.2 PID控制器设计 (11)3.2.3 PID程序 (12)3.3 基于卡尔曼滤波的数据融合 (13)4 系统软件设计 (15)4.1 系统软件设计框架 (15)4.2 资源模块初始化 (15)4.3 两轮小车姿态信息检测 (16)5测试方案与测试结果 (16)5.1测试方案 (16)5.1.1硬件连接检测 (16)5.1.2小车功能检测 (16)5.2 测试分析与结论 (16)1系统方案本系统主要由姿态检测模块、电机驱动模块、蓝牙模块、红外对管模块、电源模块组成,下面分别论证这几个模块的选择。

毕业论文基于msp430f149单片机的两轮自平衡小车的设计与研究【管理资料】

毕业论文基于msp430f149单片机的两轮自平衡小车的设计与研究【管理资料】

基于MSP430F149单片机的两轮自平衡小车的设计与研究摘要两轮自平衡小车类似于传统的倒立摆,其本身是不稳定的,必须施加强有力的控制手段才能使之稳定,是研究各种控制方法的一个理想平台。

其工作原理是系统通过陀螺仪和加速度传感器整合出当前车身较精确的与垂直方向的偏角和小车的运行加速度,利用光电编码器测得当前运行速度。

依据运动学原理,通过微控制器计算出适当的数据,输出相应占空比的PWM波形驱动电机以适当的速度运行,从而来维持车体的平衡。

本文选用MSP430F149单片机为控制器,光电编码器来测得车体当前速度,MPU-6050测得车体的角加速度和运行加速度,并通过带有减速器的直流电机实现小车的平衡控制。

关键词:两轮自平衡小车,陀螺仪,加速度计,MSP430F149,光电编码器,PWMABSTRACTTwo-wheeled self-balancing car is similar to that of a traditional inverted pendulum, which itself is not stable whom must be exerted strong control to make .It is an ideal platform for the research of various control methods. Its working principle is through the system of gyro and acceleration sensor integrated operation of the body of vehicle acceleration accurately and the angle, measured its speed by the photoelectric encoder. Through the single-chip microprocessor to calculate the appropriate data based on kinematics, and output the corresponding PWM waveform to drive motor running at an appropriate rate in order to maintain body balance. This paper chooses MSP430F149 MCU as the controller, photoelectric encoder to measure the velocity, MPU-6050 as the gyro and acceleration sensor, and the DC motor with reducer to realize the control system of car.Keywords: gyroscope, accelerometer, MSP430F149, photoelectric encoder, PWM,self-balanced two-wheel vehicle目录2 自平衡小车自平衡设计原理 ------------------------------------------ 0自平衡小车直立控制------------------------------------------------------------------------------------------ 0自平衡小车速度控制------------------------------------------------------------------------------------------ 2 ------------------------------------------------------------------------------------------------------------------------- 5 ------------------------------------------------------------------------------------------------------------------------- 7 3 自平衡小车硬件电路的设计 ------------------------------------------ 7 MSP430F149单片机最小系统 ------------------------------------------------------------------------------- 7 ------------------------------------------------------------------------------------------------------------------------- 8 MPU6050电路 ---------------------------------------------------------------------------------------------------- 9供电电源电路-------------------------------------------------------------------------------------------------- 10 4 自平衡小车软件分析设计 ------------------------------------------- 10系统程序结构分析 ------------------------------------------------------------------------------------------- 10 IIC通信程序设计 -------------------------------------------------------------------------------------------- 11计数程序设计-------------------------------------------------------------------------------------------------- 13 PID调节器程序设计----------------------------------------------------------------------------------------- 13卡尔曼滤波器程 ---------------------------------------------------------------------------------------------- 14 5 结论 ------------------------------------------------------------- 16参考文献 ----------------------------------------------------------- 17致谢 ----------------------------------------------- 错误!未定义书签。

两轮自平衡小车研究毕业设计论文 精品

两轮自平衡小车研究毕业设计论文 精品

本科毕业设计题目两轮自平衡小车研究学院电子信息工程学院专业自动化学生姓名刘长根学号 200910311332 年级 2009级指导教师罗浚溢职称博士年月日两轮自平衡小车研究专业:自动化学号:200910311332学生:刘长根指导教师:罗浚溢摘要:现在两轮自平衡小车的研究在全世界得到很大的关注。

本论文主要工作是对两轮自平衡小车的原理进行研究并且和提出一种设计方案。

本次设计方案是采用ENC-03MB陀螺仪传感器和MMA7361LC 三轴加速度倾角传感器构成小车的状态检测装置,使用算法使陀螺仪数据和加速度计数据的融合得到小车的倾角,再通过一定的算法使小车保持直立状态。

系统采用飞思卡尔公司的DSC 16位处理器XS128单片机为核心控制处理器,完成传感器信号的处理,滤波算法的实现和车身控制等一些任务。

在小车制作完成后,各个模块之间能够正常并且协调的工作,小车可以只无人干预的条件下实现自主平衡,运用手机蓝牙可以控制小车的前进、后退、左右转动等各个动作。

关键词:两轮自平衡小车;陀螺仪;加速度倾角传感器;XS128单片机Research of The Two-wheel Self-balance Car Specialty:Automation Student Number:200910311332Student:Liu Changgen Supervisor:Luo JunyiAbstract:Now ,the research of two-wheel self-balance car get great attention all over the world.The main job of this paper is to study the principle of the two-wheel self-balance car and put forward a design scheme.This design used ENC-03MB gyroscope sensor and MMA7361LC triaxial acceleration and angle sensor constitute the car status detection ing algorithms made fusion of gyroscope data and accelerometer data to get the tilt angle of the car.Then ,through a certain algorithm to make the car keep upright.The system adopted freescale company DSC 16-bit processor XS128 single-chip microcomputer as the control core,it realized the sensor signal processing the sensor signal processing,filtering algorithm and body control and so on.After the car production is completed,each module can be normal and to coordinate work,the car can keep balancing in unmanned ing mobile phone Bluetooth can control the car forward,backward,turn right or left,and other actions.Key words:Two-wheel Self-balance Car ;Gyroscope;Angle Acceleration Sensor;XS128 Single Chip Microcomputer目录第1章绪论 (1)1.1 背景 (1)1.2 选题的目的和意义 (1)1.3两轮自平衡小车的国内外研究现状 (2)1.3.1 两轮自平衡小车在国外的研究现状 (2)1.3.2 两轮自平衡小车在国内的研究现状 (4)1.4 主要的研究内容 (5)第2章两轮自平衡小车的原理 (6)2.1 两轮自平衡小车直立运动分析 (6)2.2 小车的平衡控制 (6)2.3 小车的角度和角速度测量 (8)2.3.1 加速度传感器 (8)2.3.2 陀螺仪 (8)2.4 小车的速度控制 (9)第3章两轮自平衡小车的电路和程序设计 (10)3.1 两轮自平衡小车电路设计 (10)3.1.1 小车的整体电路框图 (10)3.1.2 单片机最小系统 (11)3.1.3 陀螺仪和加速度计传感器电路 (11)3.1.4 电机驱动电路 (12)3.1.5 电源模块电路 (13)3.2 两轮自平衡小车程序设计 (13)3.2.1 程序的功能和流程框架 (13)3.2.2 各个模块的程序 (15)第4章两轮自平衡小车的制作和调试 (33)4.1 小车的承载部分制作 (33)4.2 小车传感器的安装 (33)4.3 小车的调试 (34)4.3.1 小车调试条件 (34)4.3.2 小车调试 (34)4.3.3 参数调试 (35)第5章结论 (36)附录 (37)附录1 电路原理图 (37)附录2电路PCB图 (37)附录3 小车直立图片 (38)参考文献 (39)致谢 (40)第1章绪论1.1 背景近年来,随着移动机器人研究不断深入、应用领域更加广泛,所面临的环境和任务也越来越复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两轮自平衡小车毕业设计毕业论文目录1.绪论 (1)1.1研究背景与意义 (1)1.2两轮自平衡车的关键技术 (2)1.2.1系统设计 (2)1.2.2数学建模 (2)1.2.3姿态检测系统 (2)1.2.4控制算法 (3)1.3本文主要研究目标与内容 (3)1.4论文章节安排 (3)2.系统原理分析 (5)2.1控制系统要求分析 (5)2.2平衡控制原理分析 (5)2.3自平衡小车数学模型 (6)2.3.1两轮自平衡小车受力分析 (6)2.3.2自平衡小车运动微分方程 (9)2.4 PID控制器设计 (10)2.4.1 PID控制器原理 (10)2.4.2 PID控制器设计 (11)2.5姿态检测系统 (12)2.5.1陀螺仪 (12)2.5.2加速度计 (13)2.5.3基于卡尔曼滤波的数据融合 (14)2.6本章小结 (16)3.系统硬件电路设计 (17)3.1 MC9SXS128单片机介绍 (17)3.2单片机最小系统设计 (19)3.3 电源管理模块设计 (21)I3.4倾角传感器信号调理电路 (22)3.4.1加速度计电路设计 (22)3.4.2陀螺仪放大电路设计 (22)3.5电机驱动电路设计 (23)3.5.1驱动芯片介绍 (24)3.5.2 驱动电路设计 (24)3.6速度检测模块设计 (25)3.6.1编码器介绍 (25)3.6.2 编码器电路设计 (26)3.7辅助调试电路 (27)3.8本章小结 (27)4.系统软件设计 (28)4.1软件系统总体结构 (28)4.2单片机初始化软件设计 (28)4.2.1锁相环初始化 (28)4.2.2模数转换模块(ATD)初始化 (29)4.2.3串行通信模块(SCI)初始化设置 (30)4.2.4测速模块初始化 (31)4.2.5 PWM模块初始化 (32)4.3姿态检测系统软件设计 (32)4.3.1陀螺仪与加速度计输出值转换 (32)4.3.2卡尔曼滤波器的软件实现 (34)4.4平衡PID控制软件实现 (36)4.5两轮自平衡车的运动控制 (37)4.6本章小结 (39)5. 系统调试 (40)5.1系统调试工具 (40)5.2系统硬件电路调试 (40)5.3姿态检测系统调试 (41)5.4控制系统PID参数整定 (43)II5.5两轮自平衡小车动态调试 (44)5.6本章小结 (45)6. 总结与展望 (46)6.1 总结 (46)6.2 展望 (46)参考文献 (47)附录 (48)附录一系统电路原理图 (48)附录二系统核心源代码 (49)致谢 (52)III常熟理工学院毕业设计(论文)1.绪论1.1研究背景与意义近年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前科学研究最活跃的领域之一,移动机器人的应用范围越来越广泛,面临的环境和任务也越来越复杂,这就要求移动机器人必须能够适应一些复杂的环境和任务。

比如,户外移动机器人需要在凹凸不平的地面上行走,有时环境中能够允许机器人运行的地方比较狭窄等。

如何解决机器人在这些环境中运行的问题,逐渐成为研究者关心的问题。

两轮自平衡机器人的概念正是在这样一个背景下提出来的,这种机器人区别于其他移动机器人的最显著的特点是:采用了两轮共轴、各自独立驱动的工作方式(这种驱动方式又被称为差分式驱动方式),车身的重心位于车轮轴的上方,通过轮子的前后移动来保持车身的平衡,并且还能够在直立平衡的情况下行驶。

由于特殊的结构,其适应地形变化能力强,运动灵活,可以胜任一些复杂环境里的工作。

两轮自平衡机器人自面世以来,一直受到世界各国机器人爱好者和研究者的关注,这不仅是因为两轮自平衡机器人具有独特的外形和结构,更重要的是因为其自身的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高的研究价值。

早在1987年,日本电信大学教授山藤一雄就提出了两轮自平衡机器人的概念。

这个基本的概念就是用数字处理器来侦测平衡的改变,然后以平行的双轮来保持机器的平稳[1][2]。

本世纪初瑞士联邦工业大学的Joe、美国的SegwayN等两轮自平衡机器人相继问世,世界各国越来越多的机器人爱好者和研究者开始关注两轮自平衡机器人。

美国发明家狄恩•卡门与他的DEKA研发公司研发出了可以用于载人的两轮自平衡车命名为赛格威,并已投入市场。

由于两轮自平衡车有着活动灵便,环境无害等优点,其被广泛应用于各类高规格社会活动,目前该车已用于奥运会以及世博会等大型场合。

当今唯一市场化的两轮自平衡电动车,如图1-1所示,在2002年上市以来就备受各界的关注。

卡门观察人类走路的姿势特性,领悟到其实人类之所以可以平稳地直立行走,是因为体内灵敏的平衡器官可以精确地判断出身体重心的改变量,透过小脑的即时反应,然后利用腿部的肌肉即时出力来平衡倾倒的态势。

所以当人类的身体前倾时,这种不自主的反应会促使人类伸出其中的一只脚往前走来平衡身体,所以透过这种前倾、往前踏脚、前倾、往前踏脚的动作循环,即构成了“步行”这种动作。

因此1常熟理工学院毕业设计(论文)卡门尝试使用精密的陀螺仪来代替人类的前庭与耳蜗等平衡器官,以电动马达与车轮代替人类的双脚,发展出所谓的“动态稳定"概念[3]。

图1-1 Segway两轮自平衡车1.2两轮自平衡车的关键技术1.2.1系统设计两轮自平衡车的系统设计包括:车身机械结构设计,硬件系统设计和软件系统设计。

在机械结构上保持小车重心的稳定性,才能减少控制系统由于车身机械结构的不合理性而造成的控制复杂化;硬件系统必须包含自平衡车所需的所有电子系统与电气设备;软件系统则具体负责车身平衡控制。

1.2.2数学建模系统模型的建立,有助于控制器设计,以及控制系统各项参数的确定。

系统数学模型建立的重点在于动力学方面,主要采用拉格朗日动力学方程以及牛顿力学定律的方法。

然而通常的动力学建模方法没有考虑电机转动,车身震动对模型的影响。

并且两轮子平衡车是本质不稳定的非线性系统,因此建模必须考虑线性化问题。

1.2.3姿态检测系统两轮子平衡车通过姿态检测系统来实时检测车身姿态及运动状态,并根据姿态信息对小车进行控制。

因此,对于两轮自平衡车来说,能够精确并稳定的检测当前车身倾角,是实现有效控制的关键所在。

目前有多重技术可以实现倾角检测,但是实时性,经济性还不够理想。

采用MEMS(Micro-Electro-Mechanical System,微机电系统)陀螺仪和加速度计等惯性传感器构成的姿态检测系统可以实时、准确的检测两轮自平衡车的倾角。

但是由于惯性传感器自身固有特性,随着温度,震动等外界变化,会产生不同程度的漂移与噪声,因2常熟理工学院毕业设计(论文)此必须使用一些滤波算法,对陀螺仪和加速度计采集的数据进行融合,使测量角度更加真实稳定。

1.2.4控制算法两轮自平衡车属于本质不稳定系统,因此其实现的平衡是一种动态平衡。

在遇到外界干扰如何快速恢复,保持自平衡等问题是控制算法需要考虑的问题。

传统的PID控制在各类工业场合有着广泛的应用,完全可以满足两轮自平衡车的控制系统要求。

当然,也可以采用各类先进的控制算法,诸如基于状态空间的LQR(最优控制)、模糊控制、神经网络等[4]。

1.3本文主要研究目标与内容本课题设计了一款两轮自平衡小车,研究了车身姿态检测中陀螺仪与加速度传感器的互补特性,并根据其特性比较并设计滤波算法,包括卡尔曼滤波,互补滤波等常用滤波算法。

PID控制算法的实现以及直流电机调速的研究。

具体包括:(1) 机器人本体设计:包括机械,重心调整,电气系统设计等,为进一步研究提供良好的平台;(2) 信号调理及控制部分电路设计:陀螺仪输出信号需要经过进一步滤波放大,因此需要设计信号调理电路,同时控制核心需要构建相关输入输出模块及人际交互设备,因此需要对主控单元电路进行设计。

同时还需要设计直流电机驱动电路。

(3) 基于卡尔曼滤波的数据融合:由于陀螺仪测量的角速度只在短时间内稳定而加速度传感器的自身白噪声很严重,因此根据其互补特性设计卡尔曼滤波器以得到准确稳定的角度和角速度。

(4) PID控制算法:包括两路闭环控制。

小车的倾角闭环控制以及直流电机的闭环速度控制。

1.4论文章节安排第一章:绪论,介绍两轮自平衡车的发展历史、研究方向及应用前景,然后阐述课题的研究目标及主要内容。

第二章:系统原理阐述与分析,对小车的运动进行建模,分析陀螺仪与加速度计的特性并对滤波算法进行阐述,介绍PID控制器的设计。

第三章:系统硬件设计,介绍两轮子平衡车硬件系统的组成与设计,主要介绍单片机最小系统、陀螺仪信号放大电路、电机驱动电路等。

第四章:系统软件设计,介绍单片机初始化,滤波算法及控制算法,阐述各模块软件3常熟理工学院毕业设计(论文)设计方法。

第五章:系统调试,介绍滤波算法的效果与参数调整方法,PID参数整定、电机、编码器等模块的调试效果,对调试结果进行分析。

第六章:总结与展望,总结本设计各模块,并对两轮自平衡小车的优化方向进行了简要阐述。

4常熟理工学院毕业设计(论文)2. 系统原理分析2.1控制系统要求分析根据系统要求,小车必须要能够在无外界干预下依靠一对平行的车轮保持平衡,并完成前进,后退,左右转弯等动作。

分析系统要求可知,保持小车直立和运动的动力都来自于小车的两只车轮,车轮由两只直流电机驱动。

因此,从控制角度来看,可以将小车作为一个控制对象,控制输入量是两个车轮的转动速度。

整个控制系统可以分为三个子系统:(1)小车平衡控制:以小车倾角为输入量,通过控制两个电机的正反转保持小车衡。

(2)小车速度控制:在保持平衡的基础上,通过调节小车倾角实现对速度的控制,实际上还是演变为对电机的控制实现小车的速度控制。

(3)小车方向控制:通过控制两个电机间的转速不同实现转向。

小车直立和方向控制任务都是直接通过控制车模两个后轮驱动电机完成的,而速度控制则是通过调节小车倾角完成的。

小车不同的倾角会引起车模的加减速,从而达到对小车速度的控制。

三个子系统各自独立进行控制。

由于最终都是对同一个控制对象(小车的电机)进行控制,所以各个子系统之间存在着耦合。

为了方便分析,在分析其中之一时,假设其它控制对象都已经达到稳定。

比如在速度控制时,需要小车已经能够保持直立控制;在方向控制时,需要小车能够保持平衡和速度恒定;同样,在小车平衡控制时,也需要速度和方向控制已经达到平稳。

这三个任务中保持小车平衡是关键。

由于小车同时受到三种控制的影响,从小车平衡控制的角度来看,其它两个控制就成为干扰。

因此对小车速度、方向的控制应该尽量保持平滑,以减少对平衡控制的干扰。

以速度调节为例,需要通过改变车模平衡控制中小车倾角设定值,从而改变车模实际倾斜角度,达到速度控制的要求。

相关文档
最新文档