《弹性力学及有限元》测验试卷
弹性力学与有限元分析试题及其答案
弹性力学与有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学有限元考试试卷及答案(AB卷)
2009-2010学年第一学期《弹性力学有限元》课内考试A卷授课班号年级专业学号姓名一、判断正误(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(×)9. 线性应力分析也可以得到极大的变形(√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小二、填空1.平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是:平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。
(3分)2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。
(3分)3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。
(3分)4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。
(2分) 5.薄板弯曲问题每个节点有个3自由度,分别是:w 、θx 、θy ,但其中只有 一个是独立的,其余两个可以用它表示为:,x y w wy xθθ∂∂==-∂∂。
(3分) 6.用有限元程序计算分析一结构的强度须提供(4分) ① 几何信息:节点坐标,单元节点组成,板厚度,梁截面等 ② 材料信息:弹性模量,泊松比,密度等 ③ 约束信息:固定约束,对称约束等④ 载荷信息:集中力,集中力矩,分布面力,分布体力等7.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。
《弹性力学及有限单元法》期末考试试卷
《弹性力学及有限元基础》期末考试班级: 姓名: 学号:一.填空题(37分)1(9分). 杆件在竖向体力分量f (常量)的作用下,其应力分量为:x C x 1=σ;32C y C y +=σ;0=xy τ。
支承条件如图所示,C 1 =______ ;C 2=______; C 3=______。
2(12分). 一无限长双箱管道,深埋在地下,如图2所示,两箱中输送的气体压强均为σ0,设中间隔板AB (图中阴影所示)的位移分量为:u = Cx , v = 0,隔板材料模量为E 和μ。
计算隔板上各点的应力分量:σx = _______, σy ,= ______, σz =______。
3(9分). 圆环的内半径为r ,外半径为R ,受内压力q 1及外压力q 2的作用。
若内表面的环向应力为0,则内外压力的关系是:_________________。
4(10分).等截面实心直杆受扭矩的作用,假设应力函数为:()()222222y bx a by x a k -++-=Φ,扭矩引起的单位长度扭转角测得为θ,材料的剪切弹性模量为G ,a 、b 均为常数,则k = _____ 二.分析题5.(20分)一宽度为b 的单向薄板,两长边简支,横向荷载为⎪⎭⎫⎝⎛=b y p p πsin 0,计算板的挠度方程。
(设材料的弹性模量为E ,泊松比为μ,薄板的弯曲刚度为D )6.(20分)如图,一长度为l 的简支梁,在距右端为c 的位置作用一集中荷载P ,请用里兹法计算梁的挠度曲线。
(设挠度曲线为)(x l ax w -=,a 为代求系数)7.(23分)1cm 厚的三角形悬臂梁,长4m ,高2m 。
其三个顶点i , j , k 及内部点m 的面积坐标如图所示。
在面积坐标(1/8,1/2,3/8)处和j 节点处受到10kN 的集中力的作用,在jk 边受到垂直于斜边的线性分布力的作用。
用一个4节点的三角形单元对此题1图 题2图 x 题5图悬臂梁进行有限元分析,域内任一点的位移都表示成⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=+++=m m k k j j i i m m k k j j i i v N v N v N v N v u N u N u N u N u 。
弹性力学与有限元分析试题及参考答案
按应力求解平面应变问题的相容方程:
将已知应力分量 , , 代入上式,可知满足相容方程。
4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。
(1) , , ;
(2) , , ;
(3) , , ;
其中,A,B,C,D为常数。
弹性力学与有限元分析试题及参考答案
四、分析计算题
1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1) , , ;
(2) , , ;
其中,A,B,C,D,E,F为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ;(2)在区域内的相容方程 ;(3)在边界上的应力边界条件 ;(4)对于多连体的位移单值条件。
6、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
解:将应力函数 代入相容方程
可知,所给应力函数 能满足相容方程。
由于不计体力,对应的应力分量为
, ,
对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:
上边, , , , , ;
解:应变分量存在的必要条件是满足形变协调条件,即
将以上应变分量代入上面的形变协调方程,可知:
(1)相容。
(2) (1分);这组应力分量若存在,则须满足:B=0,2A=C。
(3)0=C;这组应力分量若存在,则须满足:C=0,则 , , (1分)。
5、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
弹性力学与有限元智慧树知到答案章节测试2023年武汉工程大学
第一章测试1.下列不属于弹性力学研究对象的是()。
A:板壳B:刚体C:杆件D:实体结构答案:B2.下列不属于弹性力学中基本未知量的是()。
A:位移分量B:应力分量C:面力分量D:应变分量答案:C3.在工程强度校核中起着重要作用的是()。
A:应力分量B:主应力C:正应力D:切应力答案:B4.已知物体内某点的应力张量(单位:Pa),则沿方向的正应力大小为()。
A:222.22 PaB:888.89 PaC:666.67 PaD:444.44 Pa答案:D5.下列关于应力分量的说法,正确的有()。
A:坐标面上的应力B:一点的9个应力分量可以完全确定该点的应力状态C:应力分量与面力分量的正负号规定相同D:正截面上的应力E:弹性力学中应力分量的正负号规定反映了作用力与反作用力原理以及“受拉为正、受压为负”的传统观念。
答案:ABDE6.理想弹性体满足的假设有()。
A:无初始应力假设B:均匀性假设C:连续性假设D:完全弹性假设E:各向同性假设答案:BCDE7.建立在基本假设上的弹性力学,也称为()。
A:弹性理论B:线性弹性力学C:应用弹性力学D:数学弹性力学答案:ABD8.弹性力学的主要任务是解决各类工程中所提出的问题,这些问题包括()。
A:稳定B:刚度C:强度D:动力答案:ABC9.弹性力学的研究方法是在弹性体的区域内严格考虑三方面条件,建立三套基本方程,这三方面条件包括()。
A:几何学B:物理学C:静力学D:动力学答案:ABC10.中国科学家胡海昌于1954年最早提出了三类变量的广义变分原理。
()A:错B:对答案:B11.物体内任意一点的应力分量、应变分量和位移分量,都不随该点的位置而变化,它们与位置坐标无关。
()A:对B:错答案:B12.在最大正应力的作用面上切应力为零,在最大切应力的作用面上正应力为零。
()A:对B:错答案:B13.应力张量的三个不变量是与坐标选择无关的标量。
()A:错B:对答案:B14.弹性力学与材料力学在研究方法上是完全相同的。
弹性力学试题及答案
弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是12。
5、弹性力学的根本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、一点处的应力分量100=x σ,50=y σ,5010=xy τ ,那么主应力=1σ150,=2σ0,=1α6135' 。
8、一点处的应力分量, 200=x σ,0=y σ,400-=xy τ ,那么主应力=1σ512 ,=2σ-312 ,=1α-37°57′。
9、一点处的应力分量,2000-=x σ,1000=y σ,400-=xy τ ,那么主应力=1σ1052 ,=2σ-2052 ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化构造,然后再用构造力学位移法进展求解。
其具体步骤分为单元分析和整体分析两局部。
15、每个单元的位移一般总是包含着两局部:一局部是由本单元的形变引起的,另一局部是由于其他单元发生了形变而连带引起的。
16、每个单元的应变一般总是包含着两局部:一局部是与该单元中各点的位置坐标有关的,是各点不一样的,即所谓变量应变;另一局部是与位置坐标无关的,是各点一样的,即所谓常量应变。
弹性力学与有限元分析试题答案
最新弹性力学与有限元分析复习题及其答案一、 填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
(绝密试题)弹性力学与有限元分析试题及其答案
2012年度弹性力学与有限元分析复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学试题及标准答案
弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
--弹性力学与有限元分析试题及参考答案
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
弹性力学及有限元试题
弹性力学及有限元试题(一) 问答题(20分)1、什么是圣维南原理?举例说明怎样把它应用于工程问题的简化中。
2、什么叫做一点的应力状态?如何表示一点的应力状态(要求具体说明或表达)。
3、何谓逆解法和半逆解法?它们的理论依据是什么?4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。
5、要保证有限元方法解答的收敛性,位移模式必须满足那些条件?(二) (10分)1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。
2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。
(三)已知,其他应力分量为零,求位移场。
(10分)(四)设有矩形截面的悬臂粱,在自由端受有集中荷载F;体力可以不计。
试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。
(五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。
提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ).(六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。
设μ=0,试取位移分量的表达式为用瑞利—里茨法求解(15分)。
(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。
(八)用刚度集成法求下图所示结构的整体刚度矩阵K。
(10分)要求:单元刚度矩阵元素用ek形式表示;单元刚度矩阵用e K形式表ij示,其中e为单元号。
弹性力学及有限元课程考试
湖南工业大学研究生课程考试《弹性力学及有限元》答卷本人承诺:本试卷确为本人独立完成,若有违反愿意接受处理。
签名:______________学号:____________________专业:__________________所在院(部):_________________一、读书报告弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。
在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。
材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域.弹性力学的基本假设如下:(一)物体构造的连续性假设,假定组成物体的介质充满了该物体所占有的全部空间,中间没有任何空隙,是连续的密实体。
(二)物体的完全弹性假设,假定除去引起物体变形的外力之后,物体能够完全恢复到未知此外力时的原来形状,而没有任何残余变形(在温度保持不变的条件下),并假定材料服从虎克定律,即应力与应变成正比。
(三)物体的均匀性假设,假定整个物体是由同一种材料组成的。
(四)物体的各向同性假设,假定物体的力学性质在各个方向上都是相同的。
(五)小变形假设,假定物体在受力变形以后,体内所有各点的位移都远远小于物体的原来尺寸,应变和转角远远小于1。
有限元法是一种数值计算的近似方法。
早在40年代初期就已有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限元法得以迅速发展。
有限元法的优点很多,其中最突出的优点是应用范围广。
弹性力学试题及答案
弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
《弹性力学及有限元》测验试卷
一、在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假定?
二、在什么条件下平面应力问题与平面应变问题的应力分量xy y x τσσ,,是相同的?
三、体力为零的单连体应力边界问题,设下列应力分量已满足边界条件。
试考察它们是否为
正确解答,并说明原因。
0,2,2)2(===xy y x y x τσσ
四、有限单元法中,位移模式应满足什么条件? 下列位移函数 2321x a y a x a u ++= 2321y b y b x b v ++=
能否作为三角形单元的位移模式? 简要说明理由。
)(,,)1(a
y
b x q b y q a x q
xy y x +-===τσσ
题六图
七、某结构的有限元计算网格如题七图(a )所示。
网格中两种类型单元按如题七图(b )所
示的局部编号,它们单元劲度矩阵均为
⎥⎥⎤⎢⎢⎡-----25.025.0025.025.0025.025.0025.025.0005.0000
5.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、在建立弹性力学平衡微分方程、几何方程、物理方程时分别应用了哪些基本假定?
二、在什么条件下平面应力问题与平面应变问题的应力分量xy y x τσσ,,是相同的?
三、体力为零的单连体应力边界问题,设下列应力分量已满足边界条件。
试考察它们是否为
正确解答,并说明原因。
0,2,2)2(===xy y x y x τσσ
四、有限单元法中,位移模式应满足什么条件? 下列位移函数 2321x a y a x a u ++= 2321y b y b x b v ++=
能否作为三角形单元的位移模式? 简要说明理由。
)(,,)1(a
y
b x q b y q a x q
xy y x +-===τσσ
题六图
七、某结构的有限元计算网格如题七图(a )所示。
网格中两种类型单元按如题七图(b )所
示的局部编号,它们单元劲度矩阵均为
⎥⎥⎤⎢⎢⎡-----25.025.0025.025.0025.025.0025.025.0005.0000
5.0。