数学知识点苏教版高中数学(选修1-1)1.3《全称量词与存在量词》(量词)word教案-总结
选修1、2_1-1.3 全称量词与存在量词(二)量词否定
选修:1.3全称量词与存在量词(二)量词否定 教学目标:利用日常生活中的例子和数学的命题介绍对量词命题的否定,使学生进一步理解全称量词、存在量词的作用.教学重点:全称量词与存在量词命题间的转化;教学难点:隐蔽性否定命题的确定;课 型:新授课教学过程:一、创设情境数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与存在性命题。
在全称命题与存在性命题的逻辑关系中,,p q p q ∨∧都容易判断,但它们的否定形式是我们困惑的症结所在。
二、活动尝试问题1:指出下列命题的形式,写出下列命题的否定。
(1)所有的矩形都是平行四边形; (2)每一个素数都是奇数;(3)∀x ∈R ,x 2-2x+1≥0 分析:(1)∀∈x M,p(x),否定:存在一个矩形不是平行四边形;∃∈⌝x M,p(x)(2)∀∈x M,p(x),否定:存在一个素数不是奇数;∃∈⌝x M,p(x)(3)∀∈x M,p(x),否定:∃x ∈R ,x 2-2x+1<0;∃∈⌝x M,p(x)这些命题和它们的否定在形式上有什么变化?结论:从命题形式上看,这三个全称命题的否定都变成了存在性命题.三、师生探究∃问题2:写出命题的否定(1)p :∃ x ∈R ,x 2+2x +2≤0;(2)p :有的三角形是等边三角形;(3)p :有些函数没有反函数;(4)p :存在一个四边形,它的对角线互相垂直且平分; 分析:(1)∀ x ∈R ,x 2+2x+2>0;(2)任何三角形都不是等边三角形;(3)任何函数都有反函数;(4)对于所有的四边形,它的对角线不可能互相垂直或平分;从集合的运算观点剖析:()U U U A B A B = 痧 ,()U U U A B A B = 痧四、数学理论1.全称命题、存在性命题的否定一般地,全称命题P :∀ x ∈M,有P (x )成立;其否定命题┓P 为:∃x ∈M,使P (x )不成立。
苏教版数学高二-1.3素材 聚焦全称量词与存在量词
聚焦全称量词与存在量词该部分内容是《课程标准》新增加的内容,要求我们会判断含有一个量词的全称命题和一个量词的特称命题的真假;会正确的写出这两类命题的否定;正确理解含有一个量词的全称命题的否定是特称命题和含有一个量词的特称命题的否定是全称命题,并能利用数学符号加以表示。
一、要点梳理1.全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示。
(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示。
2.全称命题与特称命题(1)全称命题:含有全称量词的命题。
“对∀x∈M,有p(x)成立”简记成“∀x∈M,p(x)”。
(2)特称命题:含有存在量词的命题。
“∃x∈M,有p(x)成立” 简记成“∃x∈M,p (x)”。
3.同一个全称命题、特称命题,由于自然语言的不同,可以有不同的表述二、范例点悟例1 判定下列命题的真假:(1)3,0x Z x ∃∈<; (2)4,1x N x ∀∈≥。
分析:要判定一个特称命题真,只要在限定集合M 中至少找到一个x =x 0值,使P (x 0)成立;否则,这一命题为假。
要判定一个全称命题真,必须对限定集合M 中的每一个x 验证P (x )成立;但要判定全称命题假,只要能举出M 中一个x =x 0,使P (x 0)为假。
解析:(1)∵1Z -∈,当1x =-时,能使30x <, ∴命题“3,0x Z x ∃∈<”是真命题。
(2)∵0N ∈,当0x =时,41x ≥不成立, ∴命题“4,1x N x ∀∈≥”是假命题。
评注:应熟练掌握全称命题与特称命题的判定方法。
例2 写出下列命题的否定,并判断其真假: (1) 每一个素数都是奇数; (2) 某些平行四边形是菱形; (3):p 21,04x R x x ∀∈-+≥; (4)2:,220r x R x x ∃∈++≤。
苏教版 高中数学必修第一册 全称量词命题与存在量词命题的否定 课件2
【例3】 写出下列存在量词命题的否定,并判断所得命题的真假:
(1)∃x∈R,x2+2x+3≤0; (2)至少有一个实数x,使x3+1=0; (3)∃x,y∈Z, 2x+y=3. 解 (1)命题的否定:∀x∈R,x2+2x+3>0. ∵∀x∈R,x2+2x+3=(x+1)2+2≥2>0恒成立, ∴命题的否定为真命题.
2) P : 存在一个四边形,它的四个顶点不在同一个圆上.
3) p : x0 z, x20 的个位数字等于3 .
练一练 写出下列命题的否定:
(1)∀n∈Z,n∈Q;
∃n∈Z,n∉Q. (2)任意奇数的平方还是奇数;
存在一个奇数的平方不是奇数.
(3)每个平行四边形都是中心对称图形. 存在一个平行四边形不是中心对称图形.
2.(多选)对下列命题的否定,其中说法正确的是( ) A.p:∀x≥3,x2-2x-3≥0;p 的否定:∃x≥3,x2-2x-3<0 B.p:存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆 C.p:有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形 D.p:∃x∈R,x2+2x+2≤0;p 的否定:∀x∈R,x2+2x+2>0
(3)该命题的否定: x Z , x2 的个位数字等于3.
探究 写出下列命题的否定:
(1)存在一个实数的绝对值是正数; (2)有些平行四边形是菱形;
(3)x R, x2 2x 3 0.
它们与原命题在形式上有什么变化?
(1)否定:不存在一个实数它的绝对值是正数,即所有实数的绝对值都不是正数; (2)否定:没有一个平行四边形是菱形,即每一个平行四边形都不是菱形;
【例 1】 指出下列命题是全称量词命题还是存在量词命题,并判断 它们的真假.
苏教版数学高二-选修1-1 全称量词与存在量词
1.4 全称量词与存在量词问题导学一、全称命题和特称命题的判定活动与探究1(1)下列命题中全称命题的个数是( )①任意一个自然数都是正整数;②所有的素数都是奇数;③有的等差数列也是等比数列;④三角形的内角和是180°.A .0B .1C .2D .3(2)下列命题中特称命题的个数是( )①有的自然数是偶数;②存在α,β,使sin α+sin β=sin(α+β);③至少有一个函数f (x )既是偶函数又是奇函数;④圆内接四边形的对角互补.A .1B .2C .3D .4迁移与应用1.已知下列命题:①对任意a ,b ∈R ,若a >b ,则1a <1b; ②存在一个实数α,使tan α无意义;③所有的二次函数的图象都和x 轴相交;④整数中1最小;⑤存在直线l ,平面α,β,使α∥l ,β∥l .其中是全称命题的为______,特称命题的为______.(填序号)2.判断下列语句是全称命题,还是特称命题.(1)存在一条直线其斜率不存在.(2)所有圆的圆心到其切线的距离都等于半径吗?(3)圆外切四边形,其对角互补.判定一个语句是全称命题还是特称命题的步骤:(1)首先判定语句是否为命题,若不是命题,就当然不是全称命题或特称命题.(2)若是命题,再分析命题中所含的量词,含有全称量词的命题是全称命题,含有存在量词的命题是特称命题.(3)当命题中不含量词时,要注意理解命题含义的实质.二、全称命题和特称命题真假的判断活动与探究2(1)下列命题中的假命题是()A.∃x∈R,lg x=0B.∃x∈R,tan x=1C.∀x∈R,x3>0D.∀x∈R,2x>0(2)已知命题p:∃x∈R,使sin x=52;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧(q)”是假命题;③命题“(p)∨q”是真命题;④命题“(p)∨(q)”是假命题.其中正确的是()A.②④B.②③C.③④D.①②③迁移与应用1.下列命题中,真命题是()A.∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B.∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数2.判断下列命题的真假:(1)若a>0,且a≠1,则对任意实数x,a x>0;(2)对任意实数x1,x2,若x1<x2,则tan x1<tan x2;(3)∃T0∈R,使|sin(x+T0)|=|sin x|;(4)∃x0∈R,x20+1<0.(1)全称命题的真假判断要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,却只要能举出集合M 中的一个x =x 0,使得p (x 0)不成立即可(这就是通常所说的“举出一个反例”).(2)特称命题的真假判断要判定一个特称命题是真命题,只要在限定集合M 中,找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题就是假命题.三、全称命题和特称命题的否定活动与探究3写出下列命题的否定,并判断真假:(1)p :∀x ∈R ,x 2-x +14≥0; (2)q :所有的正方形都是矩形;(3)r :∃x 0∈R ,x 20-2x 0+8<0.迁移与应用1.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数2.写出下列命题的否定,并判断其真假:(1)p :不论m 取何实数,方程x 2+mx -1=0必有实根;(2)p :存在实数a ,b ,使得|a -1|+|b +2|=0.(1)在含有一个量词的命题的否定中,全称命题的否定是特称命题,而特称命题的否定是全称命题.(2)注意有些原命题无关键量词,但隐含着其含义,要注意辨析.如:实数的绝对值是正数,它的否定应是:存在一个实数,它的绝对值不是正数,而不能写成:实数的绝对值不是正数.答案:课前·预习导学【预习导引】1.(1)对所有的 对任意一个 全称命题 (2)存在一个 至少有一个 ∃ 特称命题(3)∀x∈M,p(x)(4)∃x0∈M,p(x0)存在一个x0属于M,使p(x0)成立预习交流1(1)提示:不唯一.对于同一个全称命题或特称命题,由于自然语言的不同,可以有不同的表述方法,只要形式正确即可.例如:平行四边形的对角线互相平分,是省略全称量词的,实际应理解为:所有的平行四边形的对角线互相平分.(2)提示:①是全称命题,是假命题;②是特称命题,是真命题.2.∃x 0∈M,p(x0)∀x∈M,p(x)预习交流2(1)提示:因为全(特)称命题的否定,首先将其全称(存在)量词改为存在(全称)量词,然后把结论否定,所以全称命题的否定是特称命题,特称命题的否定是全称命题.(2)提示:①p:∃x 0∈R,x20+2<0,是假命题.这是因为对任意实数x,x2+2>0恒成立,即p为真命题,所以p是假命题.②q:∀x∈Z,x3+1≠0,是假命题.这是因为x=-1时,x3+1=0.课堂·合作探究【问题导学】活动与探究1(1)思路分析:分析命题中是否含有全称量词,从而判定是否是全称命题.D解析:①②含有全称量词,而命题④可以叙述为“每一个三角形的内角和都是180°”,故④是全称命题.(2)思路分析:分析命题中是否含有存在量词,从而判定是否是特称命题.C解析:①②③是特称命题,④可以叙述为“所有的圆内接四边形的对角互补”,是全称命题.迁移与应用1.①③④②⑤解析:①③含有全称量词,是全称命题;④可叙述为“所有的整数中,1最小”是全称命题;②⑤含有存在量词,是特称命题.2.解:(1)中含有存在量词,所以(1)是特称命题.(2)是疑问句,不是命题.(3)“圆外切四边形,其对角互补”的实质是“所有圆的外切四边形,其对角都互补”,所以该命题是全称命题.活动与探究2 (1)思路分析:首先判断命题中含有哪种量词,进而确定是哪种命题,然后正面推理证明或举反例说明命题的真假.C 解析:A 是特称命题,存在x =1时使lg x =0成立,所以A 为真命题;B 是特称命题,存在x =π4时,tan x =1成立,所以B 是真命题;C 是全称命题,存在x =-1,使x 3=-1<0,所以C 为假命题;D 是全称命题,当x ∈R 时,2x >0恒成立,所以D 为真命题.(2)思路分析:先判断命题p ,q 的真假,再判断所给结论中命题的真假.B 解析:∵∀x ∈R ,sin x ∈[-1,1],∴不存在x ,使sin x =52>1成立,∴p 为假命题. ∵x 2+x +1=⎝⎛⎭⎫x +122+34>0对x ∈R 恒成立,∴q 为真命题. ∴“p ∧q ”是假命题,“p ∧(q )”是假命题,“(p )∨q ”是真命题,“(p )∨(q )”是真命题.迁移与应用1.A 解析:∵m =0时,f (x )=x 2为偶函数,∴A 项为真命题.2.解:命题(1)为全称命题,根据指数函数的性质可知,该命题为真命题;命题(2)是全称命题,存在x 1=0,x 2=π,虽然x 1<x 2,但是tan x 1=tan x 2,故该命题为假命题;命题(3)是特称命题,存在T 0=π,使|sin(x +T 0)|=|sin x |,故该命题为真命题;命题(4)是特称命题,因为对任意的x ∈R ,都有x 2+1>0,故该命题为假命题.活动与探究3 思路分析:先分清是全称命题还是特称命题,对命题进行否定时既要改变量词,又要否定结论.解:(1)p :∃x ∈R ,x 2-x +14<0,假命题. (2)q :至少存在一个正方形不是矩形,假命题.(3)r :∀x ∈R ,x 2-2x +8≥0,真命题.迁移与应用 1.B 解析:该特称命题的否定为“任意一个无理数,它的平方不是有理数”.2.解:(1)p :存在一个实数m ,使方程x 2+mx -1=0没有实数根.因为该方程的判别式Δ=m2+4>0恒成立,故p为假命题.(2)p:对于任意的实数a,b,有|a-1|+|b+2|≠0,当a=1,b=-2时,|a-1|+|b+2|=0.故p为假命题.当堂检测1.下列命题是特称命题的是()A.偶函数的图象关于y轴对称B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线D.存在实数大于等于3答案:D解析:D中含有存在量词,故是特称命题.2.命题“存在实数x,使x>1”的否定..是()A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1答案:C解析:该命题为存在性命题,其否定为“对任意实数x,都有x≤1”.3.下列命题中,是真命题且是全称命题的是()A.对任意实数a,b,都有a2+b2-2a-2b+2<0B.梯形的对角线不相等x xC.∃x∈R,2=D.对数函数在定义域上是单调函数答案:D解析:A是全称命题,且a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,是假命题;B中隐含量词“所有的”,是全称命题,但等腰梯形的对角线相等,是假命题;C是特称命题;易知D是全称命题且是真命题.4.已知命题p:∃x∈R,ax2+2x+1≤0,若命题p是假命题,则实数a的取值范围是______.答案:(1,+∞)解析:∵p是假命题,∴p是真命题,即∀x∈R,ax2+2x+1>0是真命题,∴2>0,24<0,a a ⎧⎨-⎩解得a >1. 5.命题“存在实数x 0,y 0,使得x 0+y 0>1”,用符号表示为______________;此命题的否定是______________(用符号表示),是________(填“真”或“假”)命题.答案:∃x 0,y 0∈R ,x 0+y 0>1 ∀x ,y ∈R ,x +y ≤1 假。
《全称量词命题与存在量词命题》示范公开课教案【高中数学苏教版】
第2章常用逻辑用语2.3.1 全称量词命题与存在量词命题第1课时◆教学目标1.通过已知的数学实例,理解全称量词与存在量词的意义.2.掌握全称量词命题和特称量词命题的定义,并能判断它们的真假.3.能把一些简单命题表述成全称量词命题和特称量词命题.◆教学重难点◆教学重点:理解全称量词、存在量词的含义.教学难点:全称量词命题和特称量词命题的定义,并能判断它们的真假.◆课前准备PPT课件.◆教学过程一、新课导入问题1:“哥德巴赫猜想”大致可以分为两个猜想:(1)每个不小于6的偶数都可以表示为两个奇素数之和;(2)每个不小于9的奇数都可以表示为三个奇素数之和.虽然通过大量试验,这两个命题是正确的,但是还需要证明.从1920年布朗证明“9+9”到1966年陈景润攻下“1+2”,历经46年.自“陈氏定理”诞生至今的40多年里,人们对哥德巴赫猜想的进一步研究,均劳而无功.引语:要解决这个问题,就需要进一步学习全称量词命题和特称量词命题.(板书:全称量词命题和特称量词命题)【探究新知】问题2:阅读课本P34~35页,回答下列问题思考 1.观察下列命题:(1)所有的质数都是奇数;(2)每一个四边形都有外接圆;(3)任意实数x,x2≥0.以上三个命题有什么共同特征?2.观察下列命题:(1)有些矩形是正方形;(2)存在实数x,使x>5;(3)至少有一个实数x,使x2-2x+2<0.以上三个命题有什么共同特征?师生活动:学生阅读,给出答案.预设的答案:1.都使用了表示“全部”的量词,如“所有”、“每一个”、“任意”.2.都使用了表示“存在”的量词,如“有些”、“存在”、“至少有一个”.追问:全称量词与存在量词的意义、全称量词命题和特称量词命题的定义是什么?预设的答案:1.全称量词与全称量词命题2设计意图:阅读教材,梳理概念.【巩固练习】例1.判断下列命题是全称量词命题还是存在量词命题?(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除,又能被5整除;(3)负数的平方是正数;(4)有的实数是无限不循环小数;(5)有些三角形不是等腰三角形;(6)每个二次函数的图象都与x轴相交.师生活动:判断一个命题是全称量词命题还是存在量词命题,关键是两点:一是是否具有两类命题所要求的量词;二是根据命题的含义判断指的是全体,还是全体中的个别元素.对于没有量词的命题需要补全量词在进行判别.预设的答案:(1)中含有全称量词“都”,所以是全称量词命题.(2)中含有存在量词“至少有一个”,所以是存在量词命题.(3)中省略了全称量词“都”,所以是全称量词命题.(4)中含有存在量词“有的”,所以是存在量词命题.(5)中含有存在量词“有些”,所以是存在量词命题.(6)中含有全称量词“每个”,所以是全称量词命题.反思与感悟:判定命题是全称量词命题还是存在量词命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称量词命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.设计意图:加深对全称量词命题和存在量词命题概念的理解,并能正确运用.例2.判断下列命题的真假.(1)任意两个面积相等的三角形一定相似;(2)∃x,y为正实数,使x2+y2=0;(3)在平面直角坐标系中,任意有序实数对(x,y)都对应一点P;(4)∀x∈N,x2>0.师生活动:学生分析解题思路,给出答案.预设的答案:(1)因为面积相等的三角形不一定相似.故它是假命题.(2)因为当x2+y2=0时,x=y=0,所以不存在x,y为正实数,使x2+y2=0,故它是假命题.(3)由有序实数对与平面直角坐标系中的点的对应关系知,它是真命题.(4)因为0∈N,02=0,所以命题“∀x∈N,x2>0”是假命题.反思与感悟:要判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称量词命题就是假命题.要判定存在量词命题“∃x0∈M,p(x0)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个存在量词命题就是假命题.设计意图:掌握全称量词命题与存在量词命题真假的判断方法.例3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅,若命题p:“∀x ∈B,x∈A”是真命题,求m的取值范围.师生活动:学生分析解题思路,给出答案.预设的答案:由于命题p:“∀x∈B,x∈A”是真命题,所以B⊆A,B≠∅,所以121,12,215,m mmm+-⎧⎪+-⎨⎪-⎩≤≥≤解得2≤m≤3.设计意图:掌握与运用含量词命题的真假求参数的取值范围.反思与感悟:已知含量词命题的真假求参数的取值范围,实质上是对命题意义的考查.解决此类问题,一定要辨清参数,恰当选取主元,合理确定解题思路.【课堂小结】1.板书设计:2.3.1 全称量词命题与存在量词命题1.全称量词命题与存在量词命题的判断例12.全称量词命题与存在量词命题的真假的判断例23.由全称量词命题与存在量词命题的真假求参数的范围例32.总结概括:问题:(1)如何判断一个语句是全称量词命题或存在量词命题?(2)如何判断全称量词命题或存在量词命题的真假?师生活动:学生尝试总结,老师适当补充.预设的答案:(1)(2)要判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称量词命题就是假命题.要判定存在量词命题“∃x0∈M,p(x0)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个存在量词命题就是假命题.设计意图:通过梳理本节课的内容,能让学生更加明确全称量词命题、存在量词命题的概念,并能判断其真假.布置作业:【目标检测】1.以下量词“所有”“任何”“一切”“有的”“有些”“有一个”“至少”中是存在量词的有()A.2个B.3个C.4个D.5个设计意图:巩固全称量词还是存在量词概念.2.下列命题:①至少有一个x使x2+2x+1=0成立;②对任意的x都有x2+2x+1=0成立;③对任意的x都有x2+2x+1=0不成立;④存在x使得x2+2x+1=0成立.其中是全称量词命题的有()A.1个B.2个C.3个D.0个设计意图:巩固全称量词命题还是存在量词命题概念.3.四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∃x∈R,4x2>2x-1+3x2.其中真命题的个数为_____.设计意图:全称量词命题、存在量词命题的真假判断.4.用符号“∀”与“∃”表示下列含有量词的命题,并判断真假:(1)实数都能写成小数形式.(2)有的有理数没有倒数.(3)不论m取什么实数,方程x2+x-m=0必有实根.(4)存在一个实数x,使x2+x+4≤0.设计意图:全称量词命题、存在量词命题的真假判断.5.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅,若命题p:“∃x∈A,x∈B”,求m的取值范围.设计意图:握与运用含量词命题的真假求参数的取值范围.参考答案:1.“有的”“有些”“有一个”“至少”都是存在量词.故选C.2.②③含有全称量词,所以是全称量词命题.故选B.3.x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题,对∀x∈R,x2+1≠0,∴③为假命题,4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.4.(1)∀a∈R,a都能写成小数形式,此命题是真命题.(2)∃x∈Q,x没有倒数,有理数0没有倒数,故此命题是真命题.(3)∀m∈R,方程x2+x-m=0必有实根.当m=-1时,方程无实根,是假命题.(4)∃x∈R,使x2+x+4≤0.x2+x+4=212x⎛⎫+⎪⎝⎭+154>0恒成立,所以为假命题.5.p为真,则A∩B≠∅,因为B≠∅,所以m≥2.所以15,212,2,mmm+⎧⎪--⎨⎪⎩≤≥≥解得2≤m≤4.。
高中数学总结归纳 感悟“全称量词与存在量词”
感悟“全称量词与存在量词”全称量词与存在量词是《课程标准》中新增加的内容,是现实生活世界中经常使用的两类量词,它可以更好地帮助同学们学习与掌握数学逻辑知识。
但学习这部分知识有一定难度,需要同学们从生活和数学中的一些实例来进行理解与领悟,本文对该部分内容作一阐释,供参考。
一、要点点拨1.全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示。
(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示。
2.全称命题与存在性命题(1)全称命题:含有全称量词的命题。
“x Mp x”。
∀∈,()(2)存在性命题:含有存在量词的命题。
“x Mq x”。
∃∈,()3.同一个全称命题、存在性命题,由于自然语言的不同,可以有不同的表述方法,现列表如下,在应用中应灵活选择。
4.对于全称命题和存在性命题进行否定时,要仔细推敲。
从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题。
常见词语的否定如下:二、范例剖析例1 下列语句是不是全称或者存在性命题: (1)有一个实数a ,a 不能取对数; (2)所有不等式的解集A ,都有A R ⊆; (3)三角形都是周期函数吗? (4)有的向量方向不定。
分析:利用全称量词与存在量词的概念来判断。
解析:(1)存在性命题; (2)全称命题; (3)不是命题; (4)存在性命题。
评注:(3)由于不是命题,当然就不是全称或者存在性命题了。
例2 写出下列命题的否定,并判断其真假: (1)p :x R ∀∈,2104x x -+≥; (2)q :所有的正方形都是矩形; (3)r :x R ∃∈,2220x x ++≤。
分析:(1)、(2)是全称命题,其否定应为存在性命题;(3)是存在性命题,其否定应为全称命题。
解析:(1)p ⌝:x R ∃∈,2104x x -+<,假命题。
苏教版高中数学选修1-1全称量词与存在量词教案
全称量词与存在量词教学目标(1)通过生活和数学中的丰富实例,理解全称量词和存在量词的意义;(2)能准确地利用全称量词和存在量词叙述数学内容.教学重点,难点(1)理解全称量词与存在量词的含义;(2)判断全称命题和存在性命题真假的方法.教学过程一.问题情境1.情境:在日常生活和学习中,我们经常遇到这样的命题:(1)所有中国公民的合法权利都受到中华人民共和国宪法的保护.(2)对于任意实数x ,都有20x ≥.(3)存在有理数x ,使220x -=.2.问题:上述命题,有何不同?二.学生活动命题⑴表示——只要是“中国公民”,其合法权利都受到中华人民共和国宪法的保护.命题⑵表示——对每一个实数x ,必有“02≥x ”,即没有使“02≥x ”不成立的实数x 存在.命题⑶表示——至少可以找到一个有理数x ,使“022=-x ”成立.三.建构数学1.全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,通常用符号“x ∀”表示“对任意x ”.2.存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,通常用符号“x ∃”表示“存在x ”.3.全称命题与存在性命题:(1)定义含有全称量词的命题称为全称命题.含有存在量词的命题称为存在性命题.(2)全称命题与存在性命题的一般形式:全称命题:,()x M p x ∀∈存在性命题:,()x M p x ∃∈其中M 为给定的集合,()p x 是一个关于x 的命题.四.数学运用1.例题:例1.判断下列语句是否是全称命题或存在性命题.(1)有一个实数a ,a 不能取对数;(2)所有不等式的解集A ,都有A R ⊆;(3)三角函数都是周期函数吗?(4)有的向量方向不定;(5)自然数的平方是正数.解:(1)存在性命题;(2)全称命题;(3)不是命题;(4)存在性命题;(5)全称命题.说明:(1)判断一个语句是全称命题还是存在性命题,应先判断它是否为命题;(2)判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词和存在量词,要注意的是有些全称命题中并不含有全称量词,这时我们就要根据命题涉及的意义去判断.例2.判断下列命题的真假:(1)2,x R x x ∃∈>; (2)2,x R x x ∀∈>; (3)2,80x Q x ∃∈-=; (4)2,20x R x ∀∈+>. 解:(1)因为2x =时,2x x >成立,所以,“2,x R x x ∃∈>”是真命题.(2)因为0x =时,2x x >不成立,所以,“2,x R x x ∀∈>”是假命题.(3)因为使280x -=成立的数只有x =x =-所以“2,80x Q x ∃∈-=”是假命题. (4)因为对于任意实数x ,都有220x +>成立,所以,“2,20x R x ∀∈+>”是真命题.说明:①要判定一个存在性命题为真,只要在给定的集合中,找到一个元素x ,使命题()p x 为真;否则命题为假.②要判定一个全称命题为真,必须对给定的集合的每一个元素x ,()p x 都为真;但要判字一个全称命题为假,只要在给定的集合内找出一个0x ,0()p x 为假. 例3.用量词符号“∀”“∃”表达下列命题:(1)实数都能写成小数形式;(2)凸n 边形的外角和等于2π;(3)任一个实数乘以1-都等于它的相反数;(4)对任意的实数x ,都有32x x >;(5)对任意角α,都有22sin cos 1αα+=.解:(1),x R x ∀∈能写成小数形式;(2){|},x x x x ∀∈是凸n边形的外角和等于2π;(3),(1)x R x x ∀∈-=-;(4)32,x R x x ∀∈>;(5)α∀∈{角},22sin cos 1αα+=.2.练习:五.回顾小结:1.全称命题和存在性命题的含义;2.判断全称命题和存在性命题的真假的方法.。
数学知识点:全称量词与存在性量词_知识点总结
数学知识点:全称量词与存在性量词_知识点总结
①全称量词:短语“对所有的”,“对任意的”在陈述中表示整体或全部的含义,逻辑中通常叫做全称量词,并用符号“”表示;
②全称命题:含有全称量词的命题,叫做全称命题
③全称命题的格式:“对M中任意一个x,有p(x)成立”的命题,记为?x∈M,p(x),读作“对任意x属于M,有p(x)成立”。
2、存在量词与特称命题:
①存在量词:短语“存在一个”,“至少有一个”在陈述中表示个别或者一部分的含义,在逻辑中通常叫做存在量词,并用符号“”表示。
②特称命题:含有存在量词的命题,叫做特称命题;
③“存在M中的一个x0,使p(x0)成立”的命题,记为?x0∈M,p(x0),读作“存在一个x0属于M,高考英语,使p(x0)成立”。
3、全称命题的否定:
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题p:,它的否命题
4、特称命题的否定:
一般地,对于含有一个量词的特称命题的否定,有下面的结论:
特称命题p:,其否定命题。
高中数学选修2-1-全称量词与存在量词
全称量词与存在量词知识集结知识元全称量词与全称命题知识讲解1.全称量词和全称命题【全称量词】:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词.符号:∀应熟练掌握全称命题与特称命题的判定方法1.全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示.(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示.【全称命题】含有全称量词的命题.“对xM,有p(x)成立”简记成“xM,p(x)”.同一个全称命题、特称命题,由于自然语言的不同,可以有不同的表述方法,现列表如下命题全称命题xM,p(x)特称命题xM,p(x)表述方法①所有的xM,使p(x)成立①存在xM,使p(x)成立②对一切xM,使p(x)成立②至少有一个xM,使p(x)成立③对每一个xM,使p(x)成立③对有些xM,使p(x)成立④任给一个xM,使p(x)成立④对某个xM,使p(x)成立⑤若xM,则p(x)成立⑤有一个xM,使p(x)成立解题方法点拨:该部分内容是《课程标准》新增加的内容,要求我们会判断含有一个量词的全称命题和一个量词的特称命题的真假;正确理解含有一个量词的全称命题的否定是特称命题和含有一个量词的特称命题的否定是全称命题,并能利用数学符号加以表示.应熟练掌握全称命题与特称命题的判定方法.命题方向:该部分内容是《课程标准》新增加的内容,几乎年年都考,涉及知识点多而且全,多以小题形式出现.例题精讲全称量词与全称命题例1.存在x>0,3x(x-a)<2,则a的取值范围为()A.(-3,+∞)B.(-2,+∞)C.(-1,+∞)D.(0,+∞)例2.已知函数f(x)=x3+ax2+bx+c,下列命题错误的是()A.∃x0∈R,f(x0)=0B.函数f(x)的图象是中心对称图形C.若x0是函数f(x)的极大值点,则f(x)在(x0,+∞)上是增函数D.函数f(x)可能是R上的增函数例3.若a、b不全为0,必须且只需()A.ab≠0B.a、b中至多有一个不为0C.a、b中只有一个为0D.a、b中至少有一个不为0存在量词与特称命题知识讲解1.存在量词和特称命题【存在量词】:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词.符号:∃特称命题:含有存在量词的命题.符号:“∃”.存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示.【特称命题】含有存在量词的命题.“∃x 0∈M ,有p (x 0)成立”简记成“∃x 0∈M ,p (x 0)”.“存在一个”,“至少有一个”叫做存在量词.命题全称命题x ∈M ,p (x )特称命题x 0∈M ,p (x 0)表述方法①所有的x ∈M ,使p (x )成立①存在∃x 0∈M ,使p (x 0)成立②对一切x ∈M ,使p (x )成立②至少有一个x 0∈M ,使p (x 0)成立③对每一个x ∈M ,使p (x )成立③某些x ∈M ,使p (x )成立④对任给一个x ∈M ,使p (x )成立④存在某一个x 0∈M ,使p (x 0)成立⑤若x ∈M ,则p (x )成立⑤有一个x 0∈M ,使p (x 0)成立解题方法点拨:由于全称量词的否定是存在量词,而存在量词的否定又是全称量词;因此,全称命题的否定一定是特称命题;特称命题的否定一定是全称命题.命题的“否定”与一个命题的“否命题”是两个不同的概念,对命题的否定是否定命题所作的判断,而否命题是对“若p 则q ”形式的命题而言,既要否定条件,也要否定结论.常见词语的否定如下表所示:词语是一定是都是大于小于词语的否定不是一定不是不都是小于或等于大于或等于词语且必有一个至少有n个至多有一个所有x成立词语的否定或一个也没有至多有n﹣1个至少有两个存在一个x不成立命题方向:本考点通常与全称命题的否定,多以小题出现在填空题,选择题中.例题精讲存在量词与特称命题例1.已知函数.f(x)=ax2+2x-e x,若对∀m,n∈(0,+∞),m>n,都有成立,则a的取值范围是()A.B.(-∞,1]C.D.(-∞,e]例2.已知命题“∃x0∈[-1,1],-x02+3x0+a>0”为真命题,则实数a的取值范围是()A.(-,+∞)B.(4,+∞)C.(-2,4)D.(-2,+∞)例3.函数f(x)满足f'(x)=f(x)+,x∈[,+∞),f(1)=-e,若存在a∈[-2,1],使得f (2-)≤a3-3a-2-e成立,则m的取值范围是()A.[,1]B.[,+∞)C.[1,+∞)D.[,]当堂练习单选题练习1.下列命题中是真命题的是()A.∃x0∈R,B.∀x∈R,lg(x2+1)≥0C.若x2>x,则x>0”的逆命题D.若x<y,则x2<y2”的逆否命题练习2.下列“非p”形式的命题中,假命题是()A.不是有理数B.π≠3.14C.方程2x2+3x+21=0没有实根D.等腰三角形不可能有120°的角练习3.下列四个命题:p1:任意x∈R,2x>0;p2:存在x∈R,x2+x+1<0,p3:任意x∈R,sin x<2x;p4:存在x∈R,cos x>x2+x+1。
高中数学选修1-1知识点及课本例题
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
苏教版高中数学选修1-1知识讲解_全称量词与存在量词_基础
全称量词与存在量词: :【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。
苏教版高中数学(选修1-1)1.3《全称量词与存在量词》(量词)word教案
1.3.1量词(三)教学过程学生探究过程:1.思考、分析下列语句是命题吗?假如是命题你能判断它的真假吗?(1)2x +1是整数;(2) x >3;(3) 如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A 版的教科书;(6)所有有中国国籍的人都是黄种人;(7)对所有的x ∈R, x >3;(8)对任意一个x ∈Z,2x +1是整数。
1. 推理、判断(让学生自己表述)(1)、(2)不能判断真假,不是命题。
(3)、(4)是命题且是真命题。
(5)-(8)如果是假,我们只要举出一个反例就行。
注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。
因为这些命题的反例涉及到“存在量词”“特称命题”“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A 版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人. 命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x =2), x <3. (至少有一个x ∈R, x ≤3)命题(8)是真命题。
事实上不存在某个x ∈Z,使2x +1不是整数。
也可以说命题:存在某个x ∈Z使2x +1不是整数,是假命题.3.发现、归纳命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。
命题(5)-(8)都是全称命题。
通常将含有变量x 的语句用p (x ),q (x ),r (x ),……表示,变量x 的取值范围用M 表示。
那么全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为:∀x ∈M , p (x ),读做“对任意x 属于M ,有p (x )成立”。
苏教版高中数学选修2-1第1章 1.3 全称量词与存在量词 课件
∴a 的取值范围为(1,+∞).
易错警示
对量词的否定不当致误
(2012·高考安徽卷改编)命题“存在实数x,使x>1”
的否定是_对__任__意__实___数__x_,__都__有___x_≤__1___________.
[解析] “存在实数x,使x>1”的否定是“对任意实数x,都 有x≤1”.
[错因与防范] (1)本题易误把“存在”否定为“不存在”, 而“存在”的否定其实是“任意”.
(2)忽略x>1的否定.
(3)解决对含有一个量词的命题进行否定的问题时,有以下几 点请注意: ①正确理解含有一个量词的命题的否定的含义,从整体上把 握,明确其否定的实质. ②记住一些常用的词语的否定形式及其规律.
(5)虽然不含逻辑联结词,其实“指数函数都是单调函数”中
省略了“所有的”,所以该命题是全称命题且为真命题.
[方法归纳] 判定一个语句是全称命题还是存在性命题可分三个步骤: (1)首先判定语句是否为命题,若不是命题,就当然不是全称 命题或存在性命题. (2)若是命题,再分析命题中所含的量词,含有全称量词的命 题是全称命题,含有存在量词的命题是存在性命题. (3)当命题中不含量词时,要注意理解命题含义的实质.
2.(2012·高考辽宁卷改编)已知命题p:∀x1,x2∈R,
(f(x2)-f(x1))(x2-x1)≥0,则﹃p是_③_______.
①∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0; ②∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0; ③∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0; ④∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0. 解析:全称命题的否定为存在性命题.故﹃p为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1量词
(三)教学过程
学生探究过程:1.思考、分析
下列语句是命题吗?假如是命题你能判断它的真假吗?
(1)2x +1是整数;
(2) x >3;
(3) 如果两个三角形全等,那么它们的对应边相等;
(4)平行于同一条直线的两条直线互相平行;
(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A 版的教科书;
(6)所有有中国国籍的人都是黄种人;
(7)对所有的x ∈R, x >3;
(8)对任意一个x ∈Z,2x +1是整数。
1. 推理、判断
(让学生自己表述)
(1)、(2)不能判断真假,不是命题。
(3)、(4)是命题且是真命题。
(5)-(8)如果是假,我们只要举出一个反例就行。
注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。
因为这些命题的反例涉及
到“存在量词”“特称命题”“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A 版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;
命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人.
命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x =2), x <3.
(至少有一个x ∈R, x ≤3)
命题(8)是真命题。
事实上不存在某个x ∈Z,使2x +1不是整数。
也可以说命题:存在某个x ∈Z使2x +1不是整数,是假命题.
3.发现、归纳
命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的
词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“∀”表示,含有全称量词的命题,叫做全称命题。
命题(5)-(8)都是全称命题。
通常将含有变量x 的语句用p (x ),q (x ),r (x ),……表示,变量x 的取值范围用M 表示。
那么全称命题“对M 中任意一个x ,有p (x )成立”可用符号简记为:∀x M , p (x ),读做“对任意x 属于M ,有p (x )成立”。
刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题:
(5),存在个别高一学生数学课本不是采用人民教育出版社A 版的教科书;
(6),存在一个(个别、部分)有中国国籍的人不是黄种人.
(7), 存在一个(个别、某些)实数x (如x =2),使x ≤3.(至少有一个x ∈R, x ≤3)
(8),不存在某个x ∈Z使2x +1不是整数.
这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的
词叫做存在量词。
并用符号“∃”表示。
含有存在量词的命题叫做特称命题(或存在命题)命题
(5),-(8),都是特称命题(存在命题).
特称命题:“存在M 中一个x ,使p (x )成立”可以用符号简记为:,()x M p x ∃∈。
读做
“存在一个x 属于M ,使p (x )成立”.
全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于
日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等.
4.巩固练习
(1)下列全称命题中,真命题是:
A. 所有的素数是奇数;
B.
2,(1)0x R x ∀∈-; C.1,2x R x x ∀∈+≥ D.1(0,),sin 22sin x x x π∀∈+≥ (2)下列特称命题中,假命题是:
A.
2,230x R x x ∃∈--= B.至少有一个,x Z x ∈能被2和3整除
C. 存在两个相交平面垂直于同一直线
D.{|x x x ∃∈是无理数},x 2是有理数.
(3)已知:对1,x R a x x
+∀∈+恒成立,则a 的取值范围是 ; 变式:已知:对2,10x R x ax +∀∈-+恒成立,则a 的取值范围是 ;
(4)求函数2()cos sin 3f x x x =--+的值域;
变式:已知:对,x R ∀∈方程2cos sin 30x x a +-+=有解,求a 的取值范围. 5.课外作业P 29习题1.4A 组1、2题:
6.教学反思:
(1)判断下列全称命题的真假:
①末位是o 的整数,可以被5整除;
②线段的垂直平分线上的点到这条线段两个端点的距离相等;
③负数的平方是正数;
④梯形的对角线相等。
(2)判断下列特称命题的真假:
①有些实数是无限不循环小数;
②有些三角形不是等腰三角形;
③有些菱形是正方形。
(3)探究:
①请课后探究命题(5),-(8),跟命题(5)-(8)分别有什么关系?
②请你自己写出几个全称命题,并试着写出它们的否命题.写出几个特称命题,并试着写出
它们的否命题。