(完整版)专题:二次根式重难点综合题型
初中数学实数(二次根式)重难点题型梳理归纳

实数章末重难点题型汇编【考点1 无理数的概念】【方法点拨】无限不循环小数又叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有三类:(135,2等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如13π等; (3)有特定结构的数,如0.1010010001…等; 【例1】(2019春•博兴县期中)在3.14、√12、227、−√5、√273、2π、0.2020020002这六个数中,无理数有( ) A .1个 B .2个C .3个D .4个【答案】解:3.14、227、√273、0.2020020002是有理数,√12、−√5、2π是无理数,无理数的个数是3,故选:C .【变式1-1】(2018春•新罗区校级期中)下列说法中 ①无限小数都是无理数 ②无理数都是无限小数③﹣2是4的平方根 ④带根号的数都是无理数.其中正确的说法有( ) A .3个B .2个C .1个D .0个【答案】①无限不循环小数都是无理数,故①错误;②无理数都是无限不循环小数,故②正确;③﹣2是4的平方根,故③正确;④带根号的数不一定都是无理数,故④错误;故选:B .【变式1-2】(2018秋•东台市期中)下列实数中,√12、√93、−17、π2、﹣3.14、√0.1、√−273、0、0.3232232223…(相邻两个3之间依次增加一个2),无理数的个数是( ) A .2个B .3个C .4个D .5个【答案】解:√12=2√3,√0.1=√1010,√−273=−3,则无理数有:√12、√93、π2、√0.1、0.3232232223…,共5个.故选:D .【变式1-3】(2019秋•安宁区校级期中)在下列各数中是无理数的有( )−√(−5)2、√36、17、0、﹣π、√113、3.1415、√15、2.010101…(相邻两个1之间有1个0).A .1个B .2个C .3个D .4个故选:C .【考点2 无理数的估算】【方法点拨】无理数的估算,关键掌握二次根式的性质,能对根式进行估算. 【例2】(2018春•巫山县期中)估计√13+12的值在( ) A .1到2之间 B .2到3之间 C .3到4之间 D .4到5之间【答案】解:∵3<√13<4,∴4<√13+1<5,∴√13+12的值在2到3之间.故选:B . 【点睛】此题主要考查了估算无理数的大小,正确得出√13的取值范是解题关键. 【变式2-1】(2019春•北流市期中)设n 为正整数,且n <√83<n +1,则n 的值为( )A .6B .7C .8D .9【答案】解:∵√81<√83<√100,∴9<√83<10,又∵n 为正整数,∴n =9.故选:D .【变式2-2】(2019春•嘉陵区)已知a ,b 分别是6−√13的整数部分和小数部分,则2a ﹣b 的值是( )A .√13−2B .2−√13C .√13D .9−√13【答案】解:∵3<√13<4,∴6−√13的整数部分是2,即a =2,6−√13的小数部分是6−√13−2=4−√13,即b =4−√13,∴2a ﹣b =4﹣4+√13=√13;故选:C . 【变式2-3】(2019春•郯城县期中)若a 是√10−1的整数部分,b 是5+√5的小数部分,则a (√5−b )的值为( ) A .6B .4C .9D .3√5【答案】解:∵2<√10−1<3,∴a =2,又∵7<5+√5<8,∴5+√5的整数部分为7∴b =5+√5−7=√5−2; ∴a (√5−b )=2×(√5−√5+2)=4.故选:B .【考点3 实数的大小比较】【方法点拨】实数大小比较常见方法有:倒数法、作差法、作商法、放缩法、两边平方法等等.【例3】(2019秋•河北期中)已知a =√7−√5,b =√5−√3,c =3−√7,则a 、b 、c 三个数的大小关系是( ) A .b >c >aB .b >a >cC .a >b >cD .c >a >b【答案】解:∵a =√7−√5,b =√5−√3,c =3−√7,∴1a=√7−√5=√7+√52, 1b=√5−√3=√5+√32,1c =3−√7=3+√72,∵√7>√3,∴1a >1b , ∵3>√5,∴1a<1c,∴1c>1a>1b,∴b >a >c .故选:B .【变式3-1】(2019春•洪山区期中)比较实数:2、√5、√73的大小,正确的是( )A .√73<2<√5 B .2<√73<√5 C .√5<√73<2D .2<√5<√73【答案】解:∵2=√4<√5,∴2<√5,∵√73<√83=2,∴√73<2,∴√73<2<√5.故选:A .【变式3-2】(2019春•淮北期中)比较√3−1与√32的大小,结果是( ) A .前者大 B .后者大C .一样大D .无法确定【答案】解:∵√3−1−√32=√32−1<√42−1=1﹣1=0,∴√3−1−√32<0,∴√3−1<√32,∴比较√3−1与√32的大小,结果是后者大.故选:B .【变式3-3】(2019秋•乐山校级期中)已知a =√2−1,b =√6−2,c =2√2−√6,那么a 、b 、c 的大小关系是( ) A .a <b <cB .c <b <aC ..b <a <cD ..c <a <b【答案】解:∵a ﹣c =√2−1﹣(2√2−√6)=√6−(1+√2)≈2.449﹣2.414>0,∴a >c ;∵a ﹣b =√2−1﹣(√6−2)=√2+1−√6≈2.414﹣2.449<0, ∴a <b ,∴c <a <b .故选:D .【考点4 二次根式相关概念】【方法点拨】(1a a ≥0)的式子叫做二次根式。
《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。
V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。
取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。
知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。
二次根式易错题和重点题

二次根式易错题和重点题摘要:一、二次根式的基本概念1.二次根式的定义2.二次根式的性质二、二次根式的运算1.二次根式的加减法2.二次根式的乘除法3.二次根式的指数运算三、二次根式的化简1.完全平方公式2.平方差公式3.分母有理化四、二次根式的应用1.求解二次方程2.计算几何图形的面积和周长3.应用二次根式的实际问题正文:二次根式是数学中常见的一种表达形式,它涉及到许多基本概念和运算。
首先,我们需要了解二次根式的定义和性质,这是解决二次根式问题的关键。
一、二次根式的基本概念二次根式,通常表示为√a,其中a是一个正实数。
它表示的是一个数的平方根,即a的算术平方根。
根据定义,我们可以知道二次根式的值必须是非负的。
此外,二次根式还有一些重要的性质,如:1.√a = a2.√a * √b = √(ab)3.(√a) = a二、二次根式的运算二次根式的运算主要包括加减法、乘除法和指数运算。
1.二次根式的加减法:对于两个二次根式√a和√b,它们的和与差分别为√(a + b)和√(a - b)。
2.二次根式的乘除法:二次根式的乘法可以简单地将根号下的数相乘,即√a * √b = √(ab)。
而除法运算则较为复杂,通常需要利用分母有理化来解决。
3.二次根式的指数运算:二次根式的指数运算可以表示为(√a),它的结果是a的1/2次方。
三、二次根式的化简二次根式的化简是解决二次根式问题的关键。
化简的方法主要包括完全平方公式、平方差公式和分母有理化。
1.完全平方公式:对于一个二次根式√(a + b),我们可以通过完全平方公式将其化简为√(a + b) = √a + √b。
2.平方差公式:对于一个二次根式√(a - b),我们可以通过平方差公式将其化简为√(a - b) = √a - √b。
3.分母有理化:在涉及到分数的二次根式中,我们可以通过分母有理化来化简。
例如,将√(a/b)化简为√(a/b) * √(b/b) = √(ab/b) = √(a/b)。
二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习知识点1:二次根式的概念1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.题型一:二次根式的判定【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). [练一练]:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、)0(≥a a2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______题型二:二次根式有意义【例2】若式子13x -有意义,则x 的取值范围是 .[练一练]:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x -+-有意义的x 的取值范围是3、如果代数式mn m 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限题型三:二次根式定义的运用[练一练]:A.-1 B.1 C.2 D.3题型四:二次根式的整数部分与小数知识点2:二次根式的性质常用到.注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.题型一:二次根式的双重非负性【例4】若()2240a c -+-=,则=+-c b a .[练一练]:1、若0)1(32=++-n m ,则m n +的值为 。
2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1 D .– 13、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______.4、若1a b -+互为相反数,则()2005_____________a b -=。
八年级数学二次根式章末重难点题型(举一反三)(沪科版)

专题1.1 二次根式章末重难点题型【沪科版】【考点1 二次根式相关概念】【方法点拨】1.二次根式:形如a (0 a )的代数式叫做二次根式. 2.最简二次根式:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式.3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,像这样的二次根式称为同类二次根式.【例1】(2019春•浉河区校级月考)在式子,,,(y ≤0),和(a <0,b <0)中,是二次根式的有( ) A .3个B .4个C .5个D .6个 【变式1-1】(2019春•莱芜期中)二次根式:①;②;③;④;⑤中最简二次根式是( ) A .①②B .③④⑤C .②③D .只有④ 【变式1-2】(2019春•左贡县期中)二次根式:①; ②; ③; ④中,与是同类二次根式的是()A.①和②B.①和③C.②和④D.③和④(2019春•海阳市期中)若两个最简二次根式和是同类二次根式,则n的值是()【变式1-3】A.﹣1B.4或﹣1C.1或﹣4D.4【考点2 二次根式有意义条件】【方法点拨】二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.【例2】(2019春•泰山区期中)式子在实数范围内有意义的条件是()A.x≥1B.x>1C.x<0D.x≤0【变式2-1】(2019春•西湖区校级期中)为使有意义,x的取值范围是()A.x≥﹣2且x≠2B.x>﹣2且x≠2C.x>2D.x>2或x≤﹣2【变式2-2】(2018春•西华县期中)使代数式有意义的整数x有()A.5个B.4个C.3个D.2个【变式2-3】(2019秋•安岳县校级期中)如果有意义,则x的取值范围()A.x≥3B.x≤3C.x>3D.x<3【考点3 利用二次根式性质化简符号】【方法点拨】二次根式的化简求值,掌握二次根式的性质和绝对值的性质是解题的关键.【例3】(2019春•海阳市期中)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣【变式3-1】(2019春•汉阳区期中)已知ab<0,则化简后为()A.a B.﹣a C.a D.﹣a【变式3-2】(2018春•宜兴市期中)(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【变式3-3】(2019春•城区校级期中)化简﹣x,得()A.(x﹣1 )B.(1﹣x)C.﹣(x+1 )D.(x﹣1 )【考点4 利用二次根式的性质化简】【方法点拨】二次根式的性质:(1))()(02≥=a a a(2)⎪⎩⎪⎨⎧<-=>==)()()(00002a a a a a a a【例4】(2019春•庐阳区校级期中)实数a ,b 在数轴上的位置如图所示,则化简的结果是( )A .a ﹣b +3B .a +b ﹣1C .﹣a ﹣b +1D .﹣a +b +1 【变式4-1】(2019春•丰润区期中)若2<a <3,则=( ) A .5﹣2aB .1﹣2aC .2a ﹣1D .2a ﹣5【变式4-2】(2018秋•海淀区校级期中)实数a 、b 、C 在数轴上的位置所示,那么化简|c +a |+﹣的正确结果是( )A .2b ﹣cB .2b +cC .2a +cD .﹣2a ﹣c【变式4-3】(2018春•汉阳区期中)若0<x <1,则﹣等于( )A .B .﹣C .﹣2xD .2x【考点5 二次根式的乘除运算】 【方法点拨】掌握二次根式的乘除法则 (1)),(00≥≥=⋅b a ab b a(2)),(00>≥=b a b aba 【例5】(2019春•邗江区校级期中)计算: (1)÷ (2)÷3×【变式5-1】(2018秋•松江区期中)计算:•(﹣)÷(a>0)【变式5-2】(2019秋•闸北区期中)计算:【变式5-3】(2019春•新泰市期中)化简下列式子:•3.【考点6 利用二次根式性质求代数式的值】【例6】(2019春•萧山区期中)已知,,求下列式子的值:(1)a2b+ab2;(2)a2﹣30b+b2;(3)(a﹣2)(b﹣2).【变式6-1】(2019春•芜湖期中)已知,,分别求下列代数式的值;(1)x2+y2;(2).【变式6-2】(2019春•长白县期中)已知﹣=2,求的值.【变式6-3】(2018秋•通川区校级期中)已知x=,y=,求:(1)x2y﹣xy2的值;(2)x2﹣xy+y2的值.【考点7 二次根式的加减运算】【方法点拨】二次根式的运算法则:二次根式相加减,先把各个二次根式化成最简,再把同类二次根式合并.【例7】(2019春•武昌区期中)计算:(1)(2)【变式7-1】(2019春•萧山区期中)计算下列各式:(1);(2)+4﹣+.【变式7-2】(2018春•襄城区期中)计算:(1)﹣+﹣(2)﹣﹣+2【变式7-3】(2018春•罗山县期中)(1)(2)【考点8 二次根式的混合运算】【例8】(2019春•泰兴市校级期中)计算:(1)(2)3【变式8-1】(2019春•广东期中)计算(1)()÷(2)(3)2﹣()()【变式8-2】(2019春•杭锦后旗期中)计算:(1)﹣×+(2)(2﹣)2018(2+)2019﹣2×|﹣|﹣()0【变式8-3】(2019春•莱州市期中)计算:(1)(2)【考点9 分母有理化的应用】【例9】(2019春•西城区校级期中)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用其实,有一个类似的方法叫做“分子有理化”与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:﹣==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较﹣和﹣的大小可以先将它们分子有理化如下:﹣=﹣=因为﹣>+,所以﹣<﹣再例如:求y=﹣的最大值.做法如下:解:由x+2≥0,x﹣2≥0可知x≥2,而y=﹣=当x=2时,分母﹣有最小值2,所以y的最大值是2解决下述两题:(1)比较3﹣4和2的大小;(2)求y=+﹣的最大值和最小值.【变式9-1】(2019春•微山县期中)【阅读材料】材料一:把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的例如:化简解:材料二:化简的方法:如果能找到两个实数m,n,使m2+n2=a,并且mn=b,那么=m±n例如:化简解:+1【理解应用】(1)填空:化简的结果等于;(2)计算:①;②.【变式9-2】(2018秋•吴江区期中)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:,=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是,分母有理化得.(2)计算:①已知x=,求x2+y2的值;②.【变式9-3】(2019秋•唐河县期中)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.请任用其中一种方法化简:①;②.【考点10 二次根式的应用】【例10】(2018春•嘉祥县期中)阅读理解:对于任意正整数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立;结论:在a+b≥2 (a、b均为正实数)中,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:(1)若a+b=9,≤;(2)若m>0,当m为何值时,m+有最小值,最小值是多少?【变式10-1】(2019•太原一模)阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.【变式10-2】已知一个三角形的三边长分别为12,,.(1)求此三角形的周长P(结果化成最简二次根式);(2)请你给出一个适当的a的值,使P为整数,并求出此时P的值.【变式10-3】斐波那契(约1170﹣1250,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为[()n﹣()n].(1)计算第一个数a1;(2)计算第二个数a2;(3)证明连续三个数之间a n﹣1,a n,a n+1存在以下关系:a n+1﹣a n=a n﹣1(n≥2);(4)写出斐波那契数列中的前8个数.【考点1 二次根式相关概念】【方法点拨】1.二次根式:形如a (0 a )的代数式叫做二次根式. 2.最简二次根式:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式.3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,像这样的二次根式称为同类二次根式.【例1】(2019春•浉河区校级月考)在式子,,,(y ≤0),和(a <0,b <0)中,是二次根式的有( ) A .3个B .4个C .5个D .6个【分析】根据二次根式的定义:一般地,我们把形如(a ≥0)的式子叫做二次根式进行分析即可. 【答案】解:式子,,(y ≤0),(a <0,b <0)是二次根式,共4个,故选:B .【点睛】此题主要考查了二次根式定义,关键是注意被开方数为非负数. 【变式1-1】(2019春•莱芜期中)二次根式:①;②;③;④;⑤中最简二次根式是( ) A .①②B .③④⑤C .②③D .只有④【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是. 【答案】解:③==|a ﹣1|,被开方数含有开得尽方的因式,不是最简二次根式;④==,被开方数含有分母,不是最简二次根式; ⑤==,被开方数含有小数(分数),不是最简二次根式;因此只有①②符合最简二次根式的条件. 故选:A .【点睛】根据最简二次根式的定义,最简二次根式必须满足两个条件: (1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.【变式1-2】(2019春•左贡县期中)二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.①和③C.②和④D.③和④【分析】根据同类二次根式的定义解答即可.【答案】解:∵,,,∴与是同类二次根式的是①和③故选:B.【点睛】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.需要注意化简前,被开方数不同也可能是同类二次根式.(2019春•海阳市期中)若两个最简二次根式和是同类二次根式,则n的值是()【变式1-3】A.﹣1B.4或﹣1C.1或﹣4D.4【分析】根据最简二次根式以及同类二次根式即可求出答案.【答案】解:由题意可知:n2﹣2n=n+4,∴解得:n=4或n=﹣1,当n=4时,n+4=8>0,此时不是最简二次根式,不符合题意,当n=﹣1时,n+4=3>0,综上所述,n=﹣1故选:A.【点睛】本题考查二次根式,解题的关键是正确理解最简二次根式以及同类二次根式,本题属于基础题型.【考点2 二次根式有意义条件】【方法点拨】二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.【例2】(2019春•泰山区期中)式子在实数范围内有意义的条件是()A.x≥1B.x>1C.x<0D.x≤0【分析】直接利用二次根式有意义的条件分析得出答案.【答案】解:式子在实数范围内有意义的条件是:x﹣1>0,解得:x>1.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.【变式2-1】(2019春•西湖区校级期中)为使有意义,x的取值范围是()A.x≥﹣2且x≠2B.x>﹣2且x≠2C.x>2D.x>2或x≤﹣2【分析】根据二次根式有意义的条件题意可得2x+4≥0,再根据分式有意义的条件可得3x﹣6≠0,再解即可.【答案】解:由题意得:2x+4≥0,且3x﹣6≠0,解得:x≥﹣2且x≠2,故选:A.【点睛】此题主要考查了分式和二次根式有意义的条件,分式有意义,分母不为0;二次根式的被开方数是非负数.【变式2-2】(2018春•西华县期中)使代数式有意义的整数x有()A.5个B.4个C.3个D.2个【分析】直接利用二次根式的得出x的取值范围,进而得出整数x的值.【答案】解:∵代数式有意义,∴x+3>0,3﹣3x≥0,解得:x>﹣3,x≤1,则﹣3<x≤1,故代数式有意义的整数x有:﹣2,﹣1,0,1,共4个数.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确得出x的取值范围是解题关键.【变式2-3】(2019秋•安岳县校级期中)如果有意义,则x的取值范围()A.x≥3B.x≤3C.x>3D.x<3【分析】根据二次根式中的被开方数是非负数和分式分母不为零的条件可得3﹣x<0,再解即可.【答案】解:由题意得:3﹣x<0,解得:x>3,故选:C.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.【考点3 利用二次根式性质化简符号】【方法点拨】二次根式的化简求值,掌握二次根式的性质和绝对值的性质是解题的关键.【例3】(2019春•海阳市期中)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣【分析】根据二次根式的性质,可得答案.【答案】解:a根号外的因式移到根号内,化简的结果是﹣,故选:D.【点睛】本题考查了二次根式的性质,注意化简后不能改变原数的大小.【变式3-1】(2019春•汉阳区期中)已知ab<0,则化简后为()A.a B.﹣a C.a D.﹣a【分析】根据算术平方根和绝对值的性质=|a|,进行化简即可.【答案】解:∵a2≥0,ab<0,∴a<0,b>0,∴=|a|=﹣a,故选:B.【点睛】本题考查了二次根式的化简求值,掌握算术平方根和绝对值的性质是解题的关键.【变式3-2】(2018春•宜兴市期中)(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【分析】直接利用二次根式的性质化简得出答案.【答案】解:∵有意义,∴1﹣a>0,∴a﹣1<0,∴(a ﹣1)=﹣=﹣.故选:C .【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键. 【变式3-3】(2019春•城区校级期中)化简﹣x,得( )A .(x ﹣1 )B .(1﹣x )C .﹣(x +1 )D .(x ﹣1 )【分析】根据已知式子得出x <0,再根据二次根式的性质把根号内的因式移入根号外,最后合并即可. 【答案】解:∵要使和有意义,必须x <0,∴﹣x =﹣x﹣x •(﹣)=﹣x+=(1﹣x ), 故选:B .【点睛】本题考查了二次根式的性质和化简的应用,能把各个部分根式化成最简根式是解此题的关键. 【考点4 利用二次根式的性质化简】 【方法点拨】二次根式的性质:(1))()(02≥=a a a(2)⎪⎩⎪⎨⎧<-=>==)()()(00002a a a a a a a【例4】(2019春•庐阳区校级期中)实数a ,b 在数轴上的位置如图所示,则化简的结果是( )A .a ﹣b +3B .a +b ﹣1C .﹣a ﹣b +1D .﹣a +b +1【分析】根据二次根式的性质以及绝对值的性质即可求出答案. 【答案】解:由数轴可知:﹣1<a <0<2<b , ∴a +1>0,b ﹣2>0, ∴原式=|a +1|﹣|b ﹣2| =a +1﹣b +2=a﹣b+3,故选:A.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.【变式4-1】(2019春•丰润区期中)若2<a<3,则=()A.5﹣2a B.1﹣2a C.2a﹣1D.2a﹣5【分析】根据二次根式的性质解答即可.【答案】解:因为2<a<3,所以=a﹣2﹣(3﹣a)=a﹣2﹣3+a=2a﹣5,故选:D.【点睛】此题考查二次根式的性质,关键是根据二次根式的性质解答.【变式4-2】(2018秋•海淀区校级期中)实数a、b、C在数轴上的位置所示,那么化简|c+a|+﹣的正确结果是()A.2b﹣c B.2b+c C.2a+c D.﹣2a﹣c【分析】先由数轴知c<b<0<a,且|c|>|a|,据此得出c+a<0,a﹣b>0,再根据绝对值性质和二次根式的性质2化简可得.【答案】解:由数轴知c<b<0<a,且|c|>|a|,则c+a<0,a﹣b>0,∴原式=﹣c﹣a﹣b﹣(a﹣b)=﹣c﹣a﹣b﹣a+b=﹣2a﹣c,故选:D.【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质2:=|a|.【变式4-3】(2018春•汉阳区期中)若0<x<1,则﹣等于()A.B.﹣C.﹣2x D.2x【分析】首先利用完全平方公式化简,进而利用二次根式的性质求出即可.【答案】解:﹣=﹣=﹣=|x +|﹣|x ﹣| ∵0<x <1, ∴x ﹣<0,∴原式=x ++x ﹣=2x . 故选:D .【点睛】此题主要考查了二次根式的性质与化简,正确利用完全平方公式是解题关键. 【考点5 二次根式的乘除运算】 【方法点拨】掌握二次根式的乘除法则 (1)),(00≥≥=⋅b a ab b a(2)),(00>≥=b a b aba 【例5】(2019春•邗江区校级期中)计算: (1)÷ (2)÷3×【分析】(1)根据二次根式的性质把除式变形,根据二次根式的乘法法则计算; (2)根据二次根式的乘除法法则计算即可. 【答案】解:(1)÷=×= =;(2)÷3×=××==.【点睛】本题考查的是二次根式的乘除法、二次根式的性质,掌握二次根式的乘除法法则是解题的关键.【变式5-1】(2018秋•松江区期中)计算:•(﹣)÷(a>0)【分析】直接利用二次根式的性质化简进而得出答案.【答案】解:•(﹣)÷(a>0)=﹣•a2b÷=﹣9a2=﹣.【点睛】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.【变式5-2】(2019秋•闸北区期中)计算:【分析】利用除以一个数等于乘以这个数的倒数转化后利用二次根式的乘法运算法则进行计算即可.【答案】解:原式=(2×6)=12=4【点睛】本题考查了二次根式的乘除法运算,解题的关键是能够了解法则并能熟练的将除法转化为乘法进行运算.【变式5-3】(2019春•新泰市期中)化简下列式子:•3.【分析】直接利用二次根式的乘除运算法则化简得出答案.【答案】解:原式=2ab×3×(﹣2)=﹣12ab•a2=﹣12a3b.【点睛】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.【考点6 利用二次根式性质求代数式的值】【例6】(2019春•萧山区期中)已知,,求下列式子的值:(1)a2b+ab2;(2)a2﹣30b+b2;(3)(a﹣2)(b﹣2).【分析】(1)先分解因式,然后将a、b的值代入求值;(2)先变形,然后将a、b的值代入求值;(3)直接代入求值.【答案】解:(1)a2b+ab2=ab(a+b)=()=1×2;(2)a2﹣30b+b2=(a+b)2﹣2ab﹣30b=2﹣﹣30=(2)2﹣2﹣30+60=78﹣30;(3)(a﹣2)(b﹣2)=()()=()=5﹣4.【点睛】本题考查了根式的化简求值,适当对整式进行变形是解题的关键.【变式6-1】(2019春•芜湖期中)已知,,分别求下列代数式的值;(1)x2+y2;(2).【分析】(1)先将x、y进行分母有理化,得到x=﹣1,y=+1,再求出x﹣y与xy的值,然后根据完全平方公式得出x2+y2=(x﹣y)2+2xy,再整体代入即可;(2)将所求式子变形为,再整体代入即可.【答案】解:(1)∵=﹣1,=+1,∴x﹣y=﹣2,xy=2﹣1=1,∴x2+y2=(x﹣y)2+2xy=(﹣2)2+2×1=6;(2)∵x2+y2=6,xy=1,∴原式===6.【点睛】本题考查二次根式的化简求值,分母有理化,解题的关键是运用完全平方公式以及整体思想,本题属于基础题型.【变式6-2】(2019春•长白县期中)已知﹣=2,求的值.【分析】利用已知结合完全平方公式求出x2+=34,进而代入求出即可.【答案】解:∵﹣=2,∴(﹣)2=4,∴x+=6,∴(x+)2=36,∴x2+=34,∴==4.【点睛】此题主要考查了二次根式的化简求值,正确利用完全平方公式是解题关键.【变式6-3】(2018秋•通川区校级期中)已知x=,y=,求:(1)x2y﹣xy2的值;(2)x2﹣xy+y2的值.【分析】先将x和y的值分母有理化后,计算xy和x+y的值,再分别代入(1)和(2)问代入计算即可.【答案】解:∵x===3+2,y===3﹣2,∴xy==1,x+y=3+2+3﹣2=6,∴(1)x2y﹣xy2,=xy(x﹣y),=1×,=4;(2)x2﹣xy+y2,=(x+y)2﹣3xy,=62﹣3×1,=36﹣3,=33.【点睛】本题主要考查了二次根式的化简求值,在解答时应先化简x和y的值,并利用提公因式法和完全平方公式将所求式子进行变形是关键.【考点7 二次根式的加减运算】【方法点拨】二次根式的运算法则:二次根式相加减,先把各个二次根式化成最简,再把同类二次根式合并.【例7】(2019春•武昌区期中)计算:(1)(2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接化简二次根式进而合并得出答案.【答案】解:(1)原式=2+3﹣=0;(2)原式=×3+6×﹣5=2+3﹣5=0.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.【变式7-1】(2019春•萧山区期中)计算下列各式:(1);(2)+4﹣+.【分析】(1)首先化简二次根式,然后再合并同类二次根式;(2)首先化简二次根式,然后再合并同类二次根式.【答案】解:(1)原式=2++2﹣=+2;(2)原式=3+2﹣4+=5﹣.【点睛】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.【变式7-2】(2018春•襄城区期中)计算:(1)﹣+﹣(2)﹣﹣+2【分析】(1)首先化简二次根式进而合并得出答案;(2)首先化简二次根式进而合并得出答案.【答案】解:(1)原式=6﹣4+3﹣5=﹣;(2)原式=﹣﹣+10=9.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.【变式7-3】(2018春•罗山县期中)(1)(2)【分析】(1)先进行二次根式、三次根式的化简,然后进行加减合并.(2)先去绝对值符号,然后化简二次根式,最后进行合并运算.【答案】解:(1)原式=9﹣3+=;(2)原式=﹣+﹣1﹣3+=2﹣4.【点睛】本题主要考查了二次根式的加减运算,要先进行二次根式的化简,然后再进行合并运算.【考点8 二次根式的混合运算】【例8】(2019春•泰兴市校级期中)计算:(1)(2)3【分析】(1)先化简各二次根式,再进一步计算可得;(2)先化简各二次根式、除法转化为乘法,再进一步计算可得.【答案】解:(1)原式=(2﹣)﹣3(+)=2﹣﹣﹣3=﹣﹣;(2)原式=••(﹣)=﹣2.【点睛】本题主要考查二次根式混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.【变式8-1】(2019春•广东期中)计算(1)()÷(2)(3)2﹣()()【分析】(1)先化简各二次根式,再计算括号内的加减,最后计算除法即可得;(2)利用完全平方公式和平方差公式计算可得.【答案】解:(1)原式=(5+4﹣3)÷2=6÷2=3;(2)原式=19﹣6﹣3+4=20﹣6.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.【变式8-2】(2019春•杭锦后旗期中)计算:(1)﹣×+(2)(2﹣)2018(2+)2019﹣2×|﹣|﹣()0【分析】(1)根据二次根式的乘除法则运算;(2)根据积的乘方和零指数幂的意义计算.【答案】解:(1)原式=﹣+2=4﹣+2=4+;(2)原式=[(2﹣)(2+)]2018•(2+)﹣2×﹣1=(4﹣3)2018•(2+)﹣﹣1=2+﹣﹣1=1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式8-3】(2019春•莱州市期中)计算:(1)(2)【分析】(1)根据二次根式的加减法和除法可以解答本题;(2)根据平方差公式和完全平方公式可以解答本题.【答案】解:(1)=(9﹣2+)÷4=8÷4=2;(2)=[()+3][()﹣3]=()2﹣18=3﹣6+6﹣18=﹣9﹣6.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.【考点9 分母有理化的应用】【例9】(2019春•西城区校级期中)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用其实,有一个类似的方法叫做“分子有理化”与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:﹣==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较﹣和﹣的大小可以先将它们分子有理化如下:﹣=﹣=因为﹣>+,所以﹣<﹣再例如:求y=﹣的最大值.做法如下:解:由x+2≥0,x﹣2≥0可知x≥2,而y=﹣=当x=2时,分母﹣有最小值2,所以y的最大值是2解决下述两题:(1)比较3﹣4和2的大小;(2)求y=+﹣的最大值和最小值.【分析】(1)利用分子有理化得到3﹣4=,2﹣=,然后比较3+4和2+的大小即可得到3﹣4与2﹣的大小;(2)利用二次根式有意义的条件得到0≤x≤1,而y=+,利用当x=0时,有最大值1,有最大值1得到所以y的最大值;利用当x=1时,有最小值﹣1,有最下值0得到y的最小值.【答案】解:(1)3﹣4==,2﹣==,而3>2,4>,∴3+4>2+,∴3﹣4<2﹣;(2)由1﹣x≥0,1+x≥0,x≥0得0≤x≤1,y=+,当x=0时,+有最小值,则有最大值1,此时有最大值1,所以y的最大值为2;当x=1时,+有最大值,则有最小值﹣1,此时有最下值0,所以y的最小值为﹣1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式9-1】(2019春•微山县期中)【阅读材料】材料一:把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的例如:化简解:材料二:化简的方法:如果能找到两个实数m,n,使m2+n2=a,并且mn=b,那么=m±n例如:化简解:+1【理解应用】(1)填空:化简的结果等于;(2)计算:①;②.【分析】(1)根据分母有理化法则计算;(2)①根据完全平方公式、二次根式的性质化简;②先把原式分母有理化,再合并同类二次根式即可.【答案】解:(1)原式===4+,故答案为:4+;(2)①===﹣;②原式=﹣1+﹣+4﹣+…+﹣=﹣1.【点睛】本题考查的是分母有理化、二次根式的化简,掌握分母有理化法则、二次根式的性质是解题的关键.【变式9-2】(2018秋•吴江区期中)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:,=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是,分母有理化得.(2)计算:①已知x=,求x2+y2的值;②.【分析】(1)找出各式的分母有理化因式即可;(2)①将x与y分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【答案】解:(1)4﹣的有理化因式可以是4+,==,故答案为:4+,;(2)①当x====2+,y====2﹣时,x2+y2=(x+y)2﹣2xy=(2++2﹣)2﹣2×(2+)×(2﹣)=16﹣2×1=14.②原式=﹣1+﹣+﹣+…+﹣=﹣1.【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.【变式9-3】(2019秋•唐河县期中)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.请任用其中一种方法化简:①;②.【分析】①根据平方差公式分母有理化即可求解;②把分子5变为12﹣7,再根据平方差公式分解因式,再约分计算即可求解.【答案】解:①==;②===2﹣.【点睛】本题主要考查了分母有理化,解题的关键是找准有理化因式.【考点10 二次根式的应用】【例10】(2018春•嘉祥县期中)阅读理解:对于任意正整数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立;结论:在a+b≥2 (a、b均为正实数)中,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:(1)若a+b=9,≤;(2)若m>0,当m为何值时,m+有最小值,最小值是多少?【分析】(1)根据a+b≥2 (a、b均为正实数),进而得出即可;(2)根据a+b≥2 (a、b均为正实数),进而得出即可.【答案】解:(1)∵a+b≥2 (a、b均为正实数),∴a+b=9,则a+b≥2,即≤;故答案为:;(2)由(1)得:m+≥2,即m+≥2,当m=时,m=1(负数舍去),故m+有最小值,最小值是2.【点睛】此题主要考查了二次根式的应用,根据题意结合a+b≥2 (a、b均为正实数)求出是解题关键.【变式10-1】(2019•太原一模)阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果。
二次根式综合题型

一、逆用 ( a ) 2 a(a 0) 进行因式分解 3、在实数范围内因式分解
1
(1)x -3;
2
(2) x 6 x 9
4 2
二、利用二次根式的性质进行化简、计算 4、根据下列条件,求字母 x 的取值范围:
2 (1) ( x 3) x 3 ; (2) x 2 2x x ; (3) x 2 2 x 1 =1-x ;
14. 分析: 第一个二次根式的被开方数的分子与分母都可以分解因式. 把它们分别分解因式 后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件 3-a≥0 和
1-a>0。
3
3和 3 A. 3 和 18 B. C. a b和 ab 知识点四:二次根式有意义的条件 2、x 是怎样的实数时,下列各式在实数范围内有意义?
(1) x 2 - 3 2 x ; (2) x - 知识点五:二次根式的性质 ① a 0(a 0) 双重非负性; ③ ② ( a ) 2 a(a 0) ;
c 3 3 c ,求 abc 的值。
分析:
c3 3c
}有意义
被开方数非负
c 3 0 c 3 3 c 0
b 2a 3 a b 2 0
b 2a 3 0 a b 2 0
知识点六、分母有理化 把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,若它们的积 不含二次根式,则称这两个代数式互为有理化因式。 常用的有理化因式:
1, 1.5 , 2
n , m m , 等都不是最简二次根式。 a
。如:
ab3 ,
x3 x 2 ,
2 2 问: x y 是最简二次根式吗?
专题02 二次根式综合(压轴33题10个考点)(解析版)

专题02二次根式综合(压轴33题10个考点)一.二次根式的定义(共1小题)1.若是整数,则正整数n的最小值是51.【答案】51.【解答】解:∵204=4×51,∴,∴,∵是整数,且n是整数,∴n的最小值为:51.故答案为:51.二.二次根式有意义的条件(共3小题)2.使式子有意义的x的取值范围是()A.x≥﹣1B.﹣1≤x≤2C.x≤2D.﹣1<x<2【答案】B【解答】解:根据题意,得,解得,﹣1≤x≤2;故选:B.3.已知|2004﹣a|+=a,则a﹣20042=2005.【答案】2005.【解答】解:∵有意义,∴a﹣2005≥0,解得:a≥2005,∴|2004﹣a|+=a﹣2004+=a,故=2004,∴a﹣2005=20042,∴a﹣20042=a﹣(a﹣2005)=a﹣a+2005=2005.故答案为:2005.4.已知,则x2022y2023=﹣.【答案】.【解答】解:∵,即,解得:,∴x=2,∴,∵x2022y2023=(xy)2022•y,将x=2,代入,∴x2022y2023=(xy)2022•y=[2×(﹣)]2022×(﹣)=(﹣1)2022×(﹣)=﹣.故答案为:.三.二次根式的性质与化简(共8小题)5.已知x<1,则化简的结果是()A.x﹣1B.x+1C.﹣x﹣1D.1﹣x【答案】D【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.6.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.8.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.9.已知a≠0,b≠0且a<b,化简的结果是﹣a.【答案】﹣a.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|=﹣a,故答案为:﹣a.10.已知|x+2|+|1﹣x|=9﹣﹣,则x+y的最小值为﹣3.【答案】﹣3.【解答】解:∵|x+2|+|1﹣x|=9﹣﹣,∴|x+2|+|x﹣1|+|y+1|+|y﹣5|=9,∵|x+2|+|x﹣1|可理解为在数轴上,数x的对应的点到﹣2和1两点的距离之和;|y+1|+|y ﹣5|可理解为在数轴上,数y的对应的点到﹣1和5两点的距离之和,∴当﹣2≤x≤1,|x+2|+|x﹣1|的最小值为3;当﹣1≤y≤5时,|y+1|+|y﹣5|的最小值为6,∴x的范围为﹣2≤x≤1,y的范围为﹣1≤y≤5,当x=﹣2,y=﹣1时,x+y的值最小,最小值为﹣3.故答案为﹣3.11.若,则m的取值范围是m≤4.【答案】见试题解答内容【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.12.若x<2,化简|﹣x|的正确结果是2x+2或﹣4x+2.【答案】2x+2或﹣4x+2.【解答】解:当0≤x<2时,原式=|x﹣2|+3x=2﹣x+3x=2x+2;当x<0时,原式=|x﹣2|﹣3x=2﹣x﹣3x=﹣4x+2.故答案为:2x+2或﹣4x+2.四.二次根式的乘除法(共4小题)13.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【答案】B【解答】解:由题意得:,解得:a>5.故选:B.14.“分母有理化”是我们常用的一种化简的方法,如:==7+ 4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【答案】D【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.15.若a,b为有理数且满足,则a+b=4.【答案】1.【解答】解:∵,∴=.∴a=3,b=1.∴a+b=3+1=4.故答案为:4.16.阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简:.解:隐含条件1﹣3x≥0,解得:.∴1﹣x>0.∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x.【启发应用】(1)按照上面的解法,试化简.【类比迁移】(2)实数a,b在数轴上的位置如图所示,化简:.(3)已知a,b,c为A B C的三边长.化简:.【答案】(1)1;(2)﹣a﹣2b;(3)2a+2b+2c.【解答】解:(1)隐含条件2﹣x≥0,解得:x≤2,∴x﹣3<0,∴原式=(3﹣x)﹣(2﹣x)=3﹣x﹣2+x=1;(2)观察数轴得隐含条件:a<0,b>0,|a|>|b|,∴a+b<0,b﹣a>0,∴原式=﹣a﹣a﹣b﹣b+a=﹣a﹣2b;(3)由三角形的三边关系可得隐含条件:a+b+c>0,a﹣b<c,b﹣a<c,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,∴原式=(a+b+c)+(﹣a+b+c)+(﹣b+a+c)+(﹣c+b+a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c.五.分母有理化(共1小题)17.阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+()2=6,1×=,所以:===1+;(2)首先把化为,这里m=13,n=40,由于5+8=13,5×8=40,即()2+()2=13,×=,所以====﹣=2﹣;(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,所以,.六.同类二次根式(共1小题)18.已知最简二次根式与是同类二次根式,则a的值为()A.16B.0C.2D.不确定【答案】B【解答】解:∵=3,而最简二次根式与是同类二次根式,∴a+2=2,解得a=0.故选:B.七.二次根式的加减法(共1小题)19.若,则x﹣x2的值为﹣6.【答案】﹣6.【解答】解:由题意得,x﹣2≥0.∴x≥2.∴1﹣x<0.∴.∴x﹣1+=x.∴.∴x=3.∴x﹣x2=3﹣9=﹣6.故答案为:﹣6.八.二次根式的混合运算(共4小题)20.已知,,则2y﹣3x的平方根为±4.【答案】±4.【解答】解:∵,∴96﹣x≥0,∴x≤96,∴100﹣x+96﹣x=200,解得x=﹣2,∵,∴m+23≥0,m﹣2≥0,2﹣m≥0,解得m=2,∴y=5,∴±=±=±4,故答案为:±4.21.计算的结果是+.【答案】+.【解答】解:原式=[(﹣)(+)]2022×(+)=(2﹣3)2022×(+)=+.故答案为:+.22.已知a=,b=.(1)求a+b的值;(2)设m是a小数部分,n是b整数部分,求代数式4m2+4mn+n2的值.【答案】(1)2;(2)20.【解答】解:(1)a===﹣2,b===+2.a+b=﹣2++2=2,(2)∵2<<3,∴0<﹣2<1,4<+2<5,∴m=﹣2,n=4,∴4m2+4mn+n2=(2m+n)2=(2﹣4+4)2=20.23.先阅读下面的材料,再解答下列问题.∵,∴.特别地,,∴.这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1);(2).【答案】(1)2020;(2)1.【解答】解:(1)===2021﹣1=2020;(2)====1.九.二次根式的化简求值(共8小题)24.已知,则代数式x2﹣2x﹣6的值是()A.B.﹣10C.﹣2D.【答案】C【解答】解:∵,∴x﹣1=,∴x2﹣2x﹣6=(x﹣1)2﹣7=()2﹣7=5﹣7=﹣2,故选:C.25.已知,,则a与b的关系是()A.a=b B.ab=1C.ab=﹣1D.a+b=0【答案】D【解答】解:a===3﹣=﹣(﹣3),A.a=﹣b,故本选项不符合题意;B.ab=(3﹣)×(﹣3)=﹣(﹣3)2=﹣(5﹣6+3)=﹣5+6﹣3=﹣8+6,故本选项不符合题意;C.ab=﹣8+6,故本选项不符合题意;D.a+b=3﹣+﹣3=0,故本选项符合题意.故选:D.26.若x2+y2=1,则++的值为()A.0B.1C.2D.3【答案】D【解答】解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.27.若a=2+,b=2﹣,则=8.【答案】8.【解答】解:∵a=2+,b=2﹣,∴a2=(2+√5)2=4+4+5=9+4,b2=(2﹣)2=4﹣4+5=9﹣4,ab=(2+)(2﹣)=4﹣5=﹣1.﹣===8.故答案为:8.28.若m=,则m3﹣m2﹣2017m+2015=4030.【答案】见试题解答内容【解答】解:∵m====,∴原式=m2(m﹣1)﹣2017m+2015=(+1)2×﹣2017(+1)+2015=(2017+2)﹣2017﹣2017+2015=2017+2×2016﹣2017﹣2017+2015=4032﹣2=403029.已知a=2+,b=,则a2﹣3ab+b2的值为11.【答案】11.【解答】解:当a=2+,b=时,a2﹣3ab+b2,=﹣+,=,=,=11.30.某同学在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与求解的:先将a进行分母有理化,过程如下,,∴,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据上述分析过程,解决如下问题:(1)若,请将a进行分母有理化;(2)在(1)的条件下,求a2﹣2a的值;(3)在(1)的条件下,求2a3﹣4a2﹣1的值.【答案】(1);(2)1;(3).【解答】解:(1)a===;(2)∵,∴(a﹣1)2=2,(a﹣1)2=a2﹣2a+1,∴a2﹣2a+1=2,∴a2﹣2a=1;(3)根据(2)可知,a2﹣2a=1,∴2a3﹣4a2﹣1=2a(a2﹣2a)﹣1=2a﹣1,当a=时,原式=2()﹣1=2.31.小芳在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:a==2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:.(2)若a=.①化简a,求4a2﹣8a﹣1的值;②求a3﹣3a2+a+1的值.【答案】(1)9;(2)①a=+1,4a2﹣8a﹣1的值是3;②0.【解答】解:(1)=﹣1+++…+=﹣1+=﹣1+10=9;(2)①a====+1,∴a=+1,∴(a﹣1)2=()2=2,∴a2﹣2a+1=2,∴a2﹣2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1﹣1=4﹣1=3;②由①知a2﹣2a=1,∴a3﹣3a2+a+1=a(a2﹣2a)﹣(a2﹣2a)﹣a+1=a×1﹣1﹣a+1=a﹣1﹣a+1=0.十.二次根式的应用(共2小题)32.俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞霞说:“有一个等腰三角形的腰长是1”;俊俊说:“有一个等腰三角形的腰长是﹣1”;那么另外两个等腰三角形的腰长可能是1或或2﹣.【答案】1或或2﹣.【解答】解:如图1方式裁剪,另两个等腰三角形腰长是或;如图2方式裁剪,另两个等腰三角形腰长都是1.故答案为:1或或2﹣.33.古希腊几何学家海伦通过证明发现:如果一个三角形的三边长分别为a,b,c.记,那么三角形的面积为,俗称海伦公式,若在△ABC中,AB=3,BC=6,AC=7,则用海伦公式求得△ABC的面积为.【答案】【解答】解:由题意可得:a=6,b=7,c=3,∴,∴===,故答案为:.。
二次根式知识点归纳及题型总结-精华版

二次根式知识点归纳与题型归类一、知识框图二、知识要点梳理知识点一、二次根式得主要性质:1、; 2、; 3、;ﻫ4、积得算术平方根得性质:;ﻫ5、商得算术平方根得性质:、6、若,则、知识点二、二次根式得运算1.二次根式得乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号、(2)注意每一步运算得算理;2.二次根式得加减运算先化简,再运算, ﻫ3.二次根式得混合运算(1)明确运算得顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;ﻫ(2)整式、分式中得运算律、运算法则及乘法公式在二次根式得混合运算中也同样适用、一、利用二次根式得双重非负性来解题((a≥0),即一个非负数得算术平方根就是一个非负数。
)1、下列各式中一定就是二次根式得就是()。
A、; B、;C、; D、2.等式=1-x成立得条件就是_____________.3.当x____________时,二次根式有意义.4、x取何值时,下列各式在实数范围内有意义。
(1) (2) (3) ﻫ(4)若,则x得取值范围就是(5)若,则x得取值范围就是。
6、若有意义,则m能取得最小整数值就是 ;若就是一个正整数,则正整数m得最小值就是________.7、当x为何整数时,有最小整数值,这个最小整数值为。
8、若,则=_____________;若,则9.设m、n满足,则=。
10、若三角形得三边a、b、c满足=0,则第三边c得取值范围就是11、若,且时,则( ) A、B、ﻩC、D、二.利用二次根式得性质=|a|=(即一个数得平方得算术平方根等于这个数得绝对值)来解题1、已知=-x,则( ) A、x≤0 B、x≤-3 C、x≥-3 D、-3≤x≤02、.已知a<b,化简二次根式得正确结果就是()A. B. C.D.3、若化简|1-x|-得结果为2x-5则( ) A、x为任意实数B、1≤x≤4 C、x≥1 D、x≤44、已知a,b,c为三角形得三边,则=5、当-3<x<5时,化简= 。
专题01 二次根式重难点题型分类(解析版)八年级数学下册重难点题型分类高分必刷题(人教版)

专题01二次根式重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《二次根式》这一章的四类重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含四类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一二次根式的双重非负性第一层非负性:被开方数0≥1.(2022春·a 的取值范围是()A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2【详解】解:由题意得,a 10,a 2+≥≠,解得,a ≥-1且a ≠2,故答案为:C.2.(2019·1有意义时,x 应满足的条件是______.3.(青竹湖)函数x x y 2-=中,自变量x 的取值范围是.【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(2022秋·山东济南)若a ,b 都是实数,b ﹣2,则a b的值为_____.5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是.【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11,①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6.(2022春·21a -,那么()A .12a <B .12a ≤C .12a >D .12a ≥7.(2018·广东广州)如图,数轴上点A 表示的数为a ,化简:a=_____.8.(2021·湖南娄底)2,5,m )A .210m -B .102m -C .10D .49.(2020·四川攀枝花)实数a 、b +-().A .2-B .0C .2a -D .2b10.(2021春·山东淄博)已知实数a ,b ,c 在数轴上的位置如图所示,化简:||a【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.则原式()a a c c a b a b =-++---=-.11.(2021春·全国)探究题:=_,=,=,=,=,=,根据计算结果,回答:(1a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:①若x<2=;=;(3)若a,b,c题型二二次根式的乘除12.(2021春·=____.14.(2022春·=____._____.15.(2022春·16.(2023春·()B C D.A19.(2021秋·八年级课时练习)计算:-⋅;(1(-,(2(15)(20.(2022秋·八年级课时练习)计算:21.(2021秋·上海虹口)计算:(1(;(2)0,0)a b ÷>>题型三最简二次根式22.(2022春·天津)下列二次根式中,最简二次根式是()A .2个B .3个C .4个D .5个不是最简二次根式,不符合题意,综上,是最简二次根式的有24.(2022秋·a的值是()A.2B.3C.4D.5m=__________.25.(2020秋·题型四二次根式的混合运算26.(2021春·全国)计算:(1)1|3|-+---(2)27.(2021春·新疆乌鲁木齐)计算:28.(2021春·全国)(1)﹣529.(2022秋·陕西西安)已知a =2b =2(1)a 2﹣3ab +b 2;(2)(a +1)(b +1).30.(2021秋·上海)已知3x =+求:2267x x x x ++++的值.31.(雅实)已知a =b =,求值:(1)a b +;(2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b ab ab ab++-==(2)原式=(a b)2ab +=⨯=32.(广益)先化简,再求值:322222222a b a b a ab a ab b a b +-÷++-,其中2a =-2b =+。
专题1.1 二次根式章末重难点题型(举一反三)(人教版)(原卷版)

专题1.1 二次根式章末重难点题型【人教版】【考点1 二次根式相关概念】【方法点拨】1.二次根式:形如a (0 a )的代数式叫做二次根式. 2.最简二次根式:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式.3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,像这样的二次根式称为同类二次根式.【例1】(2019春•浉河区校级月考)在式子,,,(y ≤0),和(a <0,b <0)中,是二次根式的有( ) A .3个B .4个C .5个D .6个 【变式1-1】(2019春•莱芜期中)二次根式:①;②;③;④;⑤中最简二次根式是( ) A .①②B .③④⑤C .②③D .只有④ 【变式1-2】(2019春•左贡县期中)二次根式:①; ②; ③; ④中,与是同类二次根式的是()A.①和②B.①和③C.②和④D.③和④(2019春•海阳市期中)若两个最简二次根式和是同类二次根式,则n的值是()【变式1-3】A.﹣1B.4或﹣1C.1或﹣4D.4【考点2 二次根式有意义条件】【方法点拨】二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.【例2】(2019春•泰山区期中)式子在实数范围内有意义的条件是()A.x≥1B.x>1C.x<0D.x≤0【变式2-1】(2019春•西湖区校级期中)为使有意义,x的取值范围是()A.x≥﹣2且x≠2B.x>﹣2且x≠2C.x>2D.x>2或x≤﹣2【变式2-2】(2018春•西华县期中)使代数式有意义的整数x有()A.5个B.4个C.3个D.2个【变式2-3】(2019秋•安岳县校级期中)如果有意义,则x的取值范围()A.x≥3B.x≤3C.x>3D.x<3【考点3 利用二次根式性质化简符号】【方法点拨】二次根式的化简求值,掌握二次根式的性质和绝对值的性质是解题的关键.【例3】(2019春•海阳市期中)把a根号外的因式移入根号内,运算结果是()A.B.C.﹣D.﹣【变式3-1】(2019春•汉阳区期中)已知ab<0,则化简后为()A.a B.﹣a C.a D.﹣a【变式3-2】(2018春•宜兴市期中)(a﹣1)变形正确的是()A.﹣1B.C.﹣D.﹣【变式3-3】(2019春•城区校级期中)化简﹣x,得()A.(x﹣1 )B.(1﹣x)C.﹣(x+1 )D.(x﹣1 )【考点4 利用二次根式的性质化简】【方法点拨】二次根式的性质:(1))()(02≥=a a a(2)⎪⎩⎪⎨⎧<-=>==)()()(00002a a a a a a a【例4】(2019春•庐阳区校级期中)实数a ,b 在数轴上的位置如图所示,则化简的结果是( )A .a ﹣b +3B .a +b ﹣1C .﹣a ﹣b +1D .﹣a +b +1 【变式4-1】(2019春•丰润区期中)若2<a <3,则=( ) A .5﹣2aB .1﹣2aC .2a ﹣1D .2a ﹣5【变式4-2】(2018秋•海淀区校级期中)实数a 、b 、C 在数轴上的位置所示,那么化简|c +a |+﹣的正确结果是( )A .2b ﹣cB .2b +cC .2a +cD .﹣2a ﹣c【变式4-3】(2018春•汉阳区期中)若0<x <1,则﹣等于( )A .B .﹣C .﹣2xD .2x【考点5 二次根式的乘除运算】 【方法点拨】掌握二次根式的乘除法则 (1)),(00≥≥=⋅b a ab b a(2)),(00>≥=b a b aba 【例5】(2019春•邗江区校级期中)计算: (1)÷ (2)÷3×【变式5-1】(2018秋•松江区期中)计算:•(﹣)÷(a >0)【变式5-2】(2019秋•闸北区期中)计算:【变式5-3】(2019春•新泰市期中)化简下列式子:•3.【考点6 利用二次根式性质求代数式的值】【例6】(2019春•萧山区期中)已知,,求下列式子的值:(1)a2b+ab2;(2)a2﹣30b+b2;(3)(a﹣2)(b﹣2).【变式6-1】(2019春•芜湖期中)已知,,分别求下列代数式的值;(1)x2+y2;(2).【变式6-2】(2019春•长白县期中)已知﹣=2,求的值.【变式6-3】(2018秋•通川区校级期中)已知x=,y=,求:(1)x2y﹣xy2的值;(2)x2﹣xy+y2的值.【考点7 二次根式的加减运算】【方法点拨】二次根式的运算法则:二次根式相加减,先把各个二次根式化成最简,再把同类二次根式合并.【例7】(2019春•武昌区期中)计算:(1)(2)【变式7-1】(2019春•萧山区期中)计算下列各式:(1);(2)+4﹣+.【变式7-2】(2018春•襄城区期中)计算:(1)﹣+﹣(2)﹣﹣+2【变式7-3】(2018春•罗山县期中)(1)(2)【考点8 二次根式的混合运算】【例8】(2019春•泰兴市校级期中)计算:(1)(2)3【变式8-1】(2019春•广东期中)计算(1)()÷(2)(3)2﹣()()【变式8-2】(2019春•杭锦后旗期中)计算:(1)﹣×+(2)(2﹣)2018(2+)2019﹣2×|﹣|﹣()0【变式8-3】(2019春•莱州市期中)计算:(1)(2)【考点9 分母有理化的应用】【例9】(2019春•西城区校级期中)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用其实,有一个类似的方法叫做“分子有理化”与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:﹣==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较﹣和﹣的大小可以先将它们分子有理化如下:﹣=﹣=因为﹣>+,所以﹣<﹣再例如:求y=﹣的最大值.做法如下:解:由x+2≥0,x﹣2≥0可知x≥2,而y=﹣=当x=2时,分母﹣有最小值2,所以y的最大值是2解决下述两题:(1)比较3﹣4和2的大小;(2)求y=+﹣的最大值和最小值.【变式9-1】(2019春•微山县期中)【阅读材料】材料一:把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的例如:化简解:材料二:化简的方法:如果能找到两个实数m,n,使m2+n2=a,并且mn=b,那么=m±n例如:化简解:+1【理解应用】(1)填空:化简的结果等于;(2)计算:①;②.【变式9-2】(2018秋•吴江区期中)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:,=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是,分母有理化得.(2)计算:①已知x=,求x2+y2的值;②.【变式9-3】(2019秋•唐河县期中)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.请任用其中一种方法化简:①;②.【考点10 二次根式的应用】【例10】(2018春•嘉祥县期中)阅读理解:对于任意正整数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立;结论:在a+b≥2 (a、b均为正实数)中,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:(1)若a+b=9,≤;(2)若m>0,当m为何值时,m+有最小值,最小值是多少?【变式10-1】(2019•太原一模)阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.【变式10-2】已知一个三角形的三边长分别为12,,.(1)求此三角形的周长P(结果化成最简二次根式);(2)请你给出一个适当的a的值,使P为整数,并求出此时P的值.【变式10-3】斐波那契(约1170﹣1250,意大利数学家)数列是按某种规律排列的一列数,他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为[()n﹣()n].(1)计算第一个数a1;(2)计算第二个数a2;(3)证明连续三个数之间a n﹣1,a n,a n+1存在以下关系:a n+1﹣a n=a n﹣1(n≥2);(4)写出斐波那契数列中的前8个数.。
专题11 二次根式重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题11 二次根式重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含《二次根式》这一章的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含五类题型:二次根式的双重非负性、二次根式的乘除、最简二次根式、二次根式的混合运算、二次根式的压轴题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一 二次根式的双重非负性第一层非负性:被开方数0≥1.(南雅)在函数y 中,自变量x 的取值范围是( ) A. 1x ≥-B. 1x >-且12x ≠C. 1x ≥-且12x ≠D. 1x >- 【解答】解:由题意得,x +1≥0且2x ﹣1≠0,解得x ≥﹣1且x ≠.故选:C .2.x 的取值范围是 . 【解答】解:x +1≥0,x ≠0,解得,x ≥﹣1且x ≠0,则式子有意义,则x 的取值范围是x ≥﹣1且x ≠0.3.(青竹湖)函数xx y 2-=中,自变量x 的取值范围是 . 【解答】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.4.(青竹湖)已知3y =,则yx的值为( ) 【解答】解:由题意可得:x =4,则y =3,则的值为:.故选:C .5.(雅礼)已知实数x 、y 满足0115=-+-y x ,则以x 、y 的值为两边长的等腰三角形的周长是 .【解答】解:根据题意得,x ﹣5=0,y ﹣11=0,解得x =5,y =11, ①5是腰长时,三角形的三边分别为5、5、11,不能组成三角形.②5是底边时,三角形的三边分别为5、11、11,能组成三角形,5+11+11=27;所以,三角形的周长为:27;故答案为27.第二层非负性:二次根式的计算结果为非负数,0,0a a a a a ≥⎧⇒==⎨-<⎩6. (长郡)如果()a a 21122-=-,则( ) A. 21<aB. 21≤aC. 21>aD. 21≥a 【解答】解:∵,∴1﹣2a ≥0,解得a ≤.故选:B .7.(广益)若13x <<,则4x -的值为( ) A.25x -B.3-C.52x -D.3【解答】解:由题意可知:x ﹣4<0,x ﹣1>0,∴原式=﹣(x ﹣4)+(x ﹣1)=3,故选:D .8. (长梅)已知实数a ,b 的结果是( )A.1a -B.1a --C.1a -D.1a +【解答】解:由数轴可得:﹣1<a <0,0<b <1,则﹣﹣=﹣a ﹣b ﹣(1﹣b )=﹣a ﹣1.故选:B .9.(长郡)已知a 、b 、c 是ABC ∆a b c +-的值为( )A.2aB.2bC.2cD.()2a c -【解答】解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a ﹣b ﹣c <0,a +b ﹣c >0 ∴+|a +b ﹣c |=b +c ﹣a +a +b ﹣c =2b .故选:B .10.(青竹湖)实践与探索(1 ,= ;(2)观察第(1)的结果填空:当0a ≥= ,当0a <= ;(3,其中23x <<.【解答】解:(1)=3;=5;故答案为:3,5;(2)当a ≥0时=a ;当a <0时,=﹣a ;故答案为:a ,﹣a ;(3)∵2<x <3,∴x ﹣2>0、x ﹣3<0,原式=(x ﹣2 )﹣(x ﹣3)=1.题型二 二次根式的乘除11.(长梅)计算:= .【解答】解:原式=12.==12. (青竹湖) = .【解答】解:原式12.=13.(青竹湖)下列各数中,与2 )A .2B .2C .2-D 【解答】解:∵(2+)×(2﹣)=22﹣=1,∴2+与2﹣互为有理化因式.故选:B .14.0)x ≠的结果是( )A. B.- C.- D.【解答】解:由﹣x 3≥0知x ≤0,则原式=|x |=﹣x ,故选:D .15.(郡维)把根号外的因式移入根号内得( )C.D.【解答】解:∵成立,∴﹣>0,即m <0,∴原式=﹣=﹣.故选:D .题型三 最简二次根式16.(雅礼)下列根式中,不是最简二次根式的是( ) A. 7B. 3C.21D. 2【解答】解:C 、∵==;∴它不是最简二次根式故选:C .17.(青竹湖)下列根式中是最简二次根式的是( ))0a >【解答】解:(A )原式=,故A 不是最简二次根式;(C )原式=a,故C 不是最简二次根式; (D )原式=2,故D 不是最简二次根式;故选:B .18.(郡维)最简二次根式有( ) A.2个B.3个C.4个D.5个【解答】解:最简二次根式有;;,故选:B .19.)ABCD【解答】解:的被开方数是3,而、=2、的被开方数分别是5、2、2,所以它们不是同类二次根式,不能合并,即选项A 、B 、D 都不符合题意.=2的被开方数是3,与是同类二次根式,能合并,即选项C 符合题意.故选:C .20.a =________. 【解答】解:∵=2,∴a +1=2,∴a =1;故答案为:1.题型四 二次根式的混合运算21.(广益)已知1m =,1n =223m n mn ++= . 【解答】解:原式=22()2(1) 2.m n mn ++=+=22.(雅礼)(1)1213212-⎪⎭⎫ ⎝⎛--+(2)348312123÷⎪⎪⎭⎫ ⎝⎛+-. 【解答】解:(1)原式=;323232=--+(2)原式=(3×2﹣2×+4)÷=(6﹣+4)÷=(6﹣+4)÷=.23.0((3)π+- 【解答】解:原式=110.+=24.(广益)计算: ()220160112π-⎛⎫+-- ⎪⎝⎭【解答】解:原式=14225+-+=-25.(雅境)计算:(1)(2)计算:)21+.【解答】解:(1)原式=3=((2)原式=52317-+-=-26.(雅实)已知a =b =求值:(1)b aa b+; (2)22a b ab +.【解答】解:(1)原式=222(a b)212;a b abab ab++-==(2)原式=(a b)2ab +=⨯=27.(广益)先化简,再求值:322222222a b a b a aba ab b a b +-÷++-,其中2a =2b =。
二次根式知识点归纳及题型总结-精华版72763

5.已知,则x等于( ) A.4 B.±2 C.2 D.±4
6.+++…+
(二)先化简,后求值:
1。直接代入法:已知求(1)(2)
2.变形代入法:
(1)变条件:①已知:,求的值.②。已知:x=,求3x2-5xy+3y2的值
(2)变结论:
①设 =a, =b,则 =。
③。已知,求。
⑤已知,,(1)求的值(2)求的值
1。下列各式中一定是二次根式的是()。A、;B、; C、;D、
2。x取何值时,下列各式在实数范围内有意义.
(1)(2)(3)(6).
(7)若,则x的取值范围是(8)若,则x的取值范围是。
3。若有意义,则m能取的最小整数值是;若是一个正整数,则正整数m的最小值是________.
4.当x为何整数时,有最小整数值,这个最小整数值为。
五.关于求二次根式的整数部分与小数部分的问题
1。估算 -2的值在哪两个数之间( )A.1~2 B。2~3 C. 3~4 D。4~5
2.若的整数部分是a,小数部分是b,则
3.已知9+的小数部分分别是a和b,求ab-3a+4b+8的值
4。若a,b为有理数,且++=a+b,则b=。
六.二次根式的比较大小(1)(2)-5(3)
8、化简的结果为()A、;B、;C、D、
三.二次根式的化简与计算(主要依据是二次根式的性质:()2=a(a≥0),即以及混合运算法则)
(一)化简与求值
1。把下列各式化成最简二次根式:(1)(2)(3)(4)
2。下列哪些是同类二次根式:(1),,,,,,;(2),,a
3.计算下列各题:
(1)6(2);(3)(4)(5)-(6)
八下数学【二次根式的乘除】6大重难点题型

八下数学重难点题型二次根式的乘除6大重难点题型1【求字母的取值范围】【例题】使√x-2/x-3=√x-2/√x-3成立的x的取值范围是(B)A.x≠3 B.x>3 C.x≥2且x≠3 D.x≥3【分析】根据被开方数大于或等于0,分母不等于0列出不等式组,解不等式组即可.解:根据题意得:,x-2≥0,x-3>0,解得:x>3,【点评】本题考查了二次根式有意义的条件,分式有意义的条件,解题的关键是根据被开方数大于或等于0,分母不等于0列出不等式组.题型2【二次根式乘除的运算】【例题】计算:√5÷√2•2√2÷2√5.解:原式=√5•1/√2•2√2•1/2√5=1.【点评】本题考查了二次根式的乘除法:先把各二次根式化为最简二次根式,再把除法运算转化为乘法运算,然后约分.题型3【二次根式的符号化简】【例题】把x√-x根号外的因式移到根号内,得(D)A.√x³B.√-x³C.-√x³D.-√-x³解:∵√-x有意义,∴﹣x≥0,∴x≤0,∴原式=√-x²•x=-√-x³.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.题型4【最简二次根式的概念】【例题】在下列根式:5√2,√2a5,√8x,√7中,最简二次根式有(B)A.1个B.2个C.3个D.4个解:在5√2,√2a5,√8x,√7中,最简二次根式有5√2和√7,共2个.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.题型5【分母有理化】【例题】实数1/3-√7的整数部分a=2 ,小数部分b=√7-1/2 .解:1/3-√7=3+√7/(3+√7)(3-√7)=3+√7/2,∵4<7<9,∴2<√7<3,∴5/2<3+√7/2<3,即实数1/3-√7的整数部分a=2,则小数部分为3+√7/2-2=√7-1/2.【点评】此题考查了分母有理化,以及估算无理数的大小,是一道中档题.题型6【分母有理化的应用】【例题】像√2•√2=2;(√3+1)(√3-1)=2;(√5+√2)(√5-√2)=3...两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式.爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号.(1)1/2√3=√3/2√3•√3=•3/6;(2)√2+1/√2-1=(√2+1)²/(√2-1)(√2+1)=2+2√2+1/2-1=3+2√2.勤奋好学的小明发现:可以用平方之后再开方的方式来化简一些有特点的无理数.(3)化简:√(3+√5)-√(3-√5).解:设x=√(3+√5)-√(3-√5),易知√(3+√5)>√(3-√5)∴x>0.由:x2=3+√5+3-√5-2√(3+√5)(3-√5)=6-2√4=2.解得x=√2.即√(3+√5)-√(3-√5)=√2.请你解决下列问题:(1)2√3-3√5的有理化因式是2√3+3√5;解:2√3-3√5的有理化因式是2√3+3√5;(2)化简:3/√3+1/√2-1+1/2+√3;解:原式=√3+√2+1+2-√3=√2+3;(3)化简:√(6-3√3)-√(6+3√3).解:设x=√(6-3√3)-√(6+3√3),可得√6-3√3<√6+3√3,即x<0,由题意得:x2=6﹣3√3+6+3√3-2√(6-3√3)(6+3√3)=12﹣6=6,解得:x=-√6,则原式=-√6.【点评】此题考查了分母有理化,无理数,平方差公式,以及二次根式的性质与化简,熟练掌握运算法则是解本题的关键.。
(完整版)初二二次根式所有知识点总结和常考题提高难题压轴题练习(含标准答案解析)

初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥•=b a b a ab(4)除法公式)0,0(φb a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( ) A . B . C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B. C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+=.16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|=.18.如果最简二次根式与是同类二次根式,则a=.19.定义运算“@”的运算法则为:x@y=,则(2@6)@8=.20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣=.22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a=.24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简=.26.计算:=.27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;‚参照(四)式得=.(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解读)参考答案与试卷解读一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A. B. C.D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C. D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B. C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+=1.【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|=﹣6.【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8=6.【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣=﹣2.【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a=1.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2.(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1.【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:=2.【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;‚参照(四)式得=.(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn;(2)利用所探索的结论,找一组正整数a、b、m、n填空:4+ 2=(1 + 1)2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
16章二次根式 章末重难点题型训练【2021-2022人教八下数学新课寒假预习精讲精练(自学自练)】

16章 二次根式 章末重难点题型训练【题型归纳】1.求二次根式的参数2.二次根式有意义的条件3.利用二次根式的性质化简4、二次根式的乘除混合运算5、已知最简二次根式求参数6、同类二次根式7、二次根式的混合运算8、分母有理化9、二次根式的应用【重难点题型】题型一、求二次根式的参数例题1:(2020·山东定陶·八年级期末)当 x =-3 )A .3B .-3C .±3D 【答案】A【分析】把x =-3代入二次根式进行化简即可求解.【详解】解:当x =-33==.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.【变式1-1】(2020·北京·一模)如果31a ,那么代数式21(1)11aa a +÷--的值为()A .3BCD 2【答案】B【分析】先根据分式的混合运算法则化简原式,再把a 的值代入化简后的式子计算即可.【详解】解:原式=()()111a a a a a ÷--+=()()1111a a a a a a -+⨯=+-;当31a 时,原式11+=故选:B .【点睛】本题考查了分式的化简求值,属于常考题型,熟练掌握分式的混合运算法则是解题关键.【变式1-2】(2020·四川·21x =-,则x =__________. 【答案】12或1【分析】由于算术平方根等于本身的数有0和1,所以2x-1=0或2x-1=1,解方程即可.【详解】解:21x =-,∴2x-1=0或2x-1=1, 解得:x =12或x =1. 故答案为12或1.【点睛】本题考查了算术平方根等于本身的数,理解题意列出方程是解题的关键.【变式1-3】(2021·湖南宁乡·是整数的正整数m 的最小值为___________. 【答案】3【分析】把12分解质因数,然后根据二次根式的性质解答.【详解】解:∵12=4×3,m 的最小值是3.故答案为:3.【点睛】本题考查了二次根式的定义,把12分解成平方数与另一个因数相乘的形式是解题的关键.【变式1-4】(2019·河南·南阳市第三中学八年级阶段练习)如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,再直爬向点C 停止,已知点A 表示2-,点C 表示2,设点B 所表示的数为m .(1)求m 的值(2)求21(1)m m 的值(3)直接写出蚂蚁从点A 到点C 所经过的整数中,非负整数有 个【答案】(1)22m =(2)622-(3)3【分析】 (1)根据数轴两点间的距离公式得到22m ,然后解方程即可得到m 的值;(2)把m 的值代入21(1)m m ,然后根据绝对值的意义和二次根式的意义计算;(3)先找出点A 到点C 所有整数和非负整数,然后根据概率公式求解.【详解】 解:(1)由题意可得22m ,所以22m =(2)把22m =21(1)m m2|221|221 3232622=-(3)从点A 到点C 所经过的整数有1-,0,1,2,其中非负整数有0,1,2,所以蚂蚁从点A 到点C 所经过的整数中,非负整数有3个.【点睛】本题考查了实数与数轴,绝对值的意义和二次根式的意义,熟悉相关性质是解题的关键.题型二、二次根式有意义的条件 例题2:(2021·山东博兴·七年级期中)若有理数x 、y 满足221y x x --,则x y -的值是( )A .±1B .1C .-1D .3或1【答案】D【分析】根据二次根式有意义的条件可求出x 的值,根据绝对值的性质可求出y 值,进而可得答案.【详解】∵1y 有意义,∴2020x x -≥⎧⎨-≥⎩, ∴2x =,∴1y =1,∴1y =±,∴2(1)3x y -=--=或211x y -=-=,故选:D .【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;利用二次根式有意义的条件求出x 的值是解题关键.【变式2-1】(2021·重庆巴南·八年级期中)若关于a a 为整数,若关于x 的分式方程1122x a x x +-=---的解为正数,则满足条件的所有a 的值的和为( ) A .﹣7 B .﹣10 C .﹣12 D .﹣15【答案】C【分析】50a -≤<,再根据分式的解12a x -=为正数,可得1a >,确定a 的取值范围,当2x =时的情形除外,求得所有正数解a ,再求其和即可【详解】①.500a a +≥⎧∴⎨->⎩50a ∴-≤< ②1122x a x x+-=--- 12x a x ++=-+解得 12a x -= 102a -> 1a ∴<2x ≠122a -∴≠ 3a ≠-综合①②:50,3a a -≤<≠-50,3a a -≤<≠-,a 为整数5,4,2,1a ∴=----,其和为542112----=-故选C .【点睛】本题考查了二次根式的性质,分式方程的解法,不等式的整数解,综合运用以上知识是解题的关键.【变式2-2】 (2021·海南海口·八年级期中)若实数x ,y 满足|x ﹣3|0,则(x +y )2的平方根为_______.【答案】±4 【分析】利用绝对值和二次根式的性质求出x ,y 的值,再利用平方根的定义解答即可.【详解】解:根据题意得x ﹣3=0,y ﹣1=0,解得:x =3,y =1,则(x +y )2=(3+1)2=16,所以(x +y )2的平方根为±4. 故填:±4.【点睛】本题主要考查了绝对值和二次根式的性质以及平方根的定义,根据绝对值和二次根式的性质求出x ,y 的值成为解答本题的关键.【变式2-3】(2021·湖南·雨花新华都学校八年级阶段练习)若2020m m -=,则22020m -=_________.【答案】2021【分析】先根据二次根式有意义的条件得到2021m ≥2020=,即可得到220202021m -=.【详解】解:∵2020m m -=,∴20210m -≥,∴2021m ≥,∴20202020m m m -==-2020=∴220212020m -=,∴220202021m -=,故答案为:2021.【点睛】本题主要考查了绝对值的化简,二次根式有意义的条件,代数式求值,解题的关键在于能够熟练掌握相关知识进行求解.【变式2-4】(2021·江苏·无锡市天一实验学校八年级期中)(1)已知2a ﹣1的平方根是±3,3a +b ﹣1的平方根是±4,求a +2b 的平方根;(2)若x ,y 都是实数,且y =,求x +3y 的立方根.【答案】(1)3±;(2)3【分析】(1)由2a ﹣1的平方根是±3,3a +b ﹣1的平方根是±4,列方程组2193116a a b -=⎧⎨+-=⎩,再解方程组,求解2+a b ,从而可得答案;(2)先根据二次根式有意义的条件求解3,x = 再求解8,y = 再求解3x y +的立方根即可.【详解】解:(1) 2a ﹣1的平方根是±3,3a +b ﹣1的平方根是±4, 2193116a a b -=⎧∴⎨+-=⎩①② 由①得:5,a =把5a =代入②得:2,b =52a b =⎧∴⎨=⎩25229,a b ∴+=+⨯= 而9的平方根是3,±+2a b ∴的平方根是 3.±(2) y =8+3x -+3x -,3030x x -≥⎧∴⎨-≥⎩ 解得:3,x =8008,y ∴=++=333827,x y ∴+=+⨯= 而27的立方根是3,3x y ∴+的立方根是3.【点睛】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,平方根,算术平方根,立方根的含义,二次根式有意义的条件,掌握以上基础知识是解题的关键.题型三:利用二次根式的性质化简例题3:(2021·四川西区·九年级期中)实数a ,b 在数轴上的对应点如图所示,化简2244||a ab b a b -+++的结果为( )A .2a -bB .-3bC .b -2aD .3b【答案】B【分析】 根据数轴上点的坐标特点,判断出可知b <a <0,且|b |>|a|,所以a -2b >0,a +b <0,再把二次根式化简即可.【详解】解:根据数轴可知b <a <0,且|b |>|a |,所以a -2b >0,a +b <0,||a b +a b +(a +b )=a -2b -a -b=-3b .故选:B .【点睛】a ≥0a ;当a <0a ,解题关键是先判断所求的代数式的正负性.【变式3-1】(2021·江苏梁溪·“配方法”进行化简:3( )A .3B .3C .5D .5 【答案】B 【分析】3-)21-,6+可以化为(22+,11-(23,开方即可求解. 【详解】=3故选B .【点睛】本题考查了二次根式的性质和化简,能够把被开方数配成完全平方的形式是解决本题的关键.【变式3-2】(2021·江西婺源·八年级阶段练习)化简:(1a -=___.【答案】【分析】根据二次根式的被开方数是非负数,把(1-a )移到根号内,然后进行化简.【详解】∵101a -≥-, ∴10a -<,∴((11a a -=--==故答案为: 【点睛】本题考查了二次根式的性质与化简,根据二次根式的定义确定含字母的代数式的正负是解题的关键.【变式3-3】(2021·江苏·张家港市梁丰初级中学八年级阶段练习)若化简|1|x -25x -,则x 的取值范围是___________【答案】1≤x ≤4【分析】根据125x x --可以得到1425x x x ---=-,然后根据x 的取值范围去绝对值即可求解.【详解】解:由题意可知:125x x --∴125x x --∴1425x x x ---=-,∴当1x <时原式143x x =-+-=-不合题意;∴当4x >时,原式143x x =--+=不合题意;∴当14x ≤≤时,原式1425x x x =-+-=-符合题意;∴x 的取值范围为:14x ≤≤,故答案为:14x ≤≤.【点睛】本题主要考查了绝对值的性质,二次根式的性质,解题的关键在于能够熟练掌握相关知识进行求解.【变式3-4】(2021·四川省巴中中学八年级期中)先化简,再求值:a 2020a =.如图是小亮和小芳的解答过程.小亮:解:11a a a =+-=原式小芳:解:1214039a a a a ==+-=-=原式 (1)______的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:______;(2)先化简,再求值:a +2a =-;(3)有理数a 、b 、c【答案】(12a a ;(2)23a a +-,8;(3)a 【分析】(1)根据二次根式的性质判断即可;(2)根据二次根式的性质把原式化简,把a =-2代入计算即可. (3)由数轴可得:c <b <0<a ,再根据二次根式的化简法则计算即可. 【详解】解:(1)小亮的解法是错误的,2a a ; (2)原式=()223a a +-23a a +-,∵a =-2<3,∴原式=a +2(3-a )=a +6-2a =6-a =8. (3)由图可知:c <b <0<a , ∴a -b >0,a -c >0, ()()22222a b c a b a c --=a b c a b a c +---+- =a -b +c -(a -b )+a -c =a -b +c -a +b +a -c =a . 【点睛】2a a 是解题的关键.题型四:二次根式的乘除混合运算例题4:(2021·黑龙江集贤·八年级期末)下列各式中,计算正确的是( ) A x y x y =+B x y xy C 16222a a D x xy xy =【答案】C【分析】根据二次根式的运算法则逐一计算即可完成求解. 【详解】=故选:C . 【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.【变式4-1】(2020·福建·,则x ( ) A .0x B .3x ≥C . 03xD .x 取任意数【答案】B 【分析】根据二次根式有意义:被开方数为非负数,即可得出x 的取值范围. 【详解】由题意可得:030x x ≥⎧⎨-≥⎩ , 解得:x≥3, 故选B. 【点睛】此题考查二次根式的乘除法,解题关键在于掌握运算法则.【变式4-2】(2021·浙江杭州·a =b =,用含,a b ,结果为________. 【答案】310ab 【分析】化简后,代入a ,b 即可. 【详解】a =b =,301ab 故答案为:310ab. 【点睛】化简变形,本题属于中等题型.【变式4-3】(2020·四川·渠县文崇中学八年级阶段练习)化简-15827102÷31225a =___________. 当1<x <4时,|x -=____________.【答案】2- 25x -+. 【分析】由二次根式的性质进行化简,然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案. 【详解】 解:-15827102÷31225a=158-=158-=2=2- ∵14x <<,∴40x -<,10x ->,∴44x x --∴44(1)25x x x x -=---=-+;故答案为:2-25x -+. 【点睛】本题考查了二次根式的乘除运算,二次根式的性质,绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行解题.【变式4-4】(2021·江苏建湖·八年级期中)已知x,y =3﹣,求yxx y +的值. 【答案】34 【分析】先算分式的加法,再利用完全平方公式和平方差公式变形后,代入求值即可. 【详解】解:∵xy =3﹣∴y x x y +=22x y xy+ =()22x y xyxy+-233233+--+-=36213498-⨯=-. 【点睛】本题主要考查分式的加法运算,二次根式的混合运算,掌握完全平方公式和通分,是解题的关键.题型五:已知最简二次根式求参数例题5:(2021·安徽合肥·式有( )个. A .0个 B .1个C .2个D .3【答案】B 【分析】根据最简二次根式的定义逐个判断即可. 【详解】|a则最简二次根式是①,共1个. 故选:B . 【点睛】本题考查的是最简二次根式的定义,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.【变式5-1】(2020·重庆一中八年级阶段练习)已知2x =2y =2y xx y+-的值为( )A .14B .12C .16D .【答案】B 【分析】根据题意将x 、y 的值分别代入,再分母有理化,最后计算加减可得答案. 【详解】解:当2x =+2y = 2y x x y+-22772=-+12=故选:B . 【点睛】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则.【变式5-2】(2021·江苏江阴·八年级期中)已知m___________. 【答案】2 【分析】根据题意知m,将所求式子进行通分化简,再将m 的值代入即可求解. 【详解】解:由题意,知m-1,当m 时,原式1=2.故答案为2.【点睛】本题考查了实数的混合运算,二次根式的化简求值.解题的关键是掌握二次根式的性质.【变式5-3】(2020·(b a =-a 、b 应满足________________.【答案】0b ≥且b a ≥ 【分析】a -(0)a a a =-≤即可得出答案. 【详解】解:(a b a =-=- ∴a 、b 应满足0b ≥且0b a -≥,即0b ≥且b a ≥. 故答案为:0b ≥且b a ≥. 【点睛】本题考查了二次根式有意义的条件、根据二次根式的性质化简,属于基本题型,掌握解答的方法是关键.【变式5-4】(2020·广东高明·二模)先化简,再求值:235(1)442x x x x -÷-+++,其中2x =.【答案】12x + 【分析】首先根据分式的运算法则对原式进行化简,再把x 的值代入化简后的算式计算即可. 【详解】 解:原式=()()2232532123222x x x x x x x x x -+--+÷=⨯=+-+++,∴当2x =时,原式【点睛】本题考查分式的化简与求值和二次根式的运算,根据分式的运算法则对分式进行正确的化简是解题关键.题型六:同类二次根式例题6(2021·上海市建平中学西校八年级阶段练习)下列各组根式中,不是同类二次根式的是( )A .BCD 【答案】C 【分析】根据题意,将它们化成最简二次根式比较被开方数是否相同, 【详解】A.==3,故A不符合题意;==被开方数都是2,故B不符合题意;C符合题意;=5,故D不符合题意;故选C.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.【变式6-1】(2020·江苏·常州市武进区星辰实验学校八年级阶段练习)下列各组的两个根式,是同类二次根式的是()A B C与D【答案】A【分析】将原式进行化简,求出最简二次根式,然后逐一判断即可.【详解】=,A选项正确;=B选项错误;=C选项错误;2D选项错误;故选A.【点睛】本题考查了同类二次根式的概念,要将原式进行化简,分母有理化求出最简二次根式即可判断.【变式6-2】(2021·山东惠民·ba-=______.【答案】19【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案. 【详解】解:∵∴124135a ab -=⎧⎨-=+⎩, ∴32a b =⎧⎨=⎩,∴2139b a --==; 故答案为:19.【点睛】本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.【变式6-3】(2021·北京·八年级单元测试)已知最简根式72-+2a -+b a a b +的值为___________. 【答案】23-【分析】根据同类根式的定义可得方程组,求解即可. 【详解】 解:∵最简根式2a b -+-∴232122a b a b a b b a-+-=-+-⎧⎨+=-⎩ 解得,13a b =-⎧⎨=⎩.∴3112=(1)3133b a a b -+-+=-+=-故答案为:23-.【点睛】本题考查了同类根式的概念:根指数与被开方数相同,根据概念列出方程组是解答本题的关键.【变式6-4】(2021·河南新县·八年级期末)先阅读解题过程,再回答后面的问题. 如果m 、nm -m 、n 的值.m -∴()121627m n m n m --=⎧⎨+=+⎩,即331167m n m n -=⎧⎨+=⎩,解得55478647m n ⎧=⎪⎪⎨⎪=⎪⎩.∵m 、n 是正整数, ∴此题无解.问:(1)以上解法是否正确?如果不正确,错在哪里? (2)给出正确的解答过程.【答案】(1(2)见解析 【分析】(1)要知道,同类二次根式是化简后被开方数相同.(2 【详解】解:(1 (2)正确解答过程如下:=m -∴1227m n m n m --=⎧⎨+=+⎩,解得:52m n =⎧⎨=⎩, 经检验5m =,2n =符合题意,∴5m =,2n =. 【点睛】本题考查同类二次根式的概念,同类二次根式化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.题型七:二次根式的混合运算例题7(2021·黑龙江·哈尔滨市萧红中学八年级阶段练习)下列计算中,正确的是( )A .=B .10=C .(33+-=-D .)2b a b +=+【答案】C 【分析】根据二次根式的性质和二次根式的混合运算计算即可得出答案. 【详解】解:A 、B 、=C 、(39123+-=-=-,此选项正确,符合题意;D 、2)2+b a += 故选:C . 【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.【变式7-1】(2020·广东·a=2b =2a 、b 是互为倒数.其中错误的个数有( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】对五个命题进行判断,即可求解. 【详解】解:①带根号的数是无理数,判断错误;③实数与数轴上的点是一一对应的关系,判断正确; ④两个无理数的和一定是无理数,判断错误;⑤已知a =2b =2a 、b 是互为倒数,判断正确. 所以错误的有两个命题. 故选:B 【点睛】本题考查了无理数的定义,算术平方根、立方根的定义,实数与数轴的关系,实数的运算,二次根式的乘法,熟知相关知识点是解题关键.【变式7-2】(2021·山东·青岛市城阳第二十中学八年级阶段练习)若实数a 、b 满足(2a +的值为_________.【答案】43-【分析】利用非负数的性质可求得a 与b 的值,从而可求得代数式的值. 【详解】∵(2a +∴(20a +=0即0a +,20b -=∴a =-2b =当a =-2b =43==-故答案为:43-【点睛】本题考查了非负数的性质,求代数式的值,二次根式的计算,关键是根据非负数的性质求得a 与b 的值.【变式7-3】(2021·四川·,利用这个比例,我们规定一种“黄金算法”即:a ⊗b =a b ,比如1⊗2=×2x ⊗(4⊗8)=10,则x 的值为______.【答案】【分析】根据定义新运算,先计算出4⊗8,然后根据定义新运算,列出方程,即可求出x 的值即可. 【详解】解:由题可知:4⊗848==∴x ⊗x =+10x =+-即1010x +-=,∴x =故答案为: 【点睛】此题考查的是定义新运算,二次根式混合运算,一元一次方程的解法,掌握定义新运算的公式和运算顺序是解决此题的关键.【变式7-4】(2021·山东中区·八年级期中)阅读下面式子:111⨯==1122⨯⨯====.根据以上解法,试求: (11n 为正整数)的值;(2⋅⋅⋅【答案】(1(2)9 【分析】(1)由题意根据材料所给出的解法进行分析计算求解即可; (2)根据题意直接依据材料所给出的解法得出规律进行计算即可. 【详解】解:(1=(2⋅⋅⋅1⋅⋅⋅110=-+ 9=.【点睛】本题考查二次根式的运算,熟练掌握二次根式分母有理化的方法是解题的关键.题型八:分母有理化例题8 (2019·0,那么yx的值为( )A .1B .-1C .5D .5-【答案】D 【分析】根据算术平方根具有双重非负性,它们相加为0,那个每一个算术平方根都为0,则被开方数都为0,列出二元一次方程组,解方程组求出x 和y 的值后,即可求解. 【详解】 解:由题意:0x y x y ⎧--⎪⎨+-⎪⎩x y x y ⎧-=⎪∴⎨+=⎪⎩x y ⎧=⎪∴⎨=⎪⎩5y x ∴==-所以D 正确. 故选D . 【点睛】本题考查了算术平方根的双重非负性、解二元一次方程组和二次根式的计算等问题,解题关键是要求考生能理解算数平方根的双重非负性并能进行实际的应用,同时能利用加减法解二元一次方程组和利用分母有理化来化简二次根式.【变式8-1】(2021·全国·八年级专题练习)已知a =2b =a 与b 大小关系是( ) A .a b ≥ B .a b ≤ C .a b < D .a b =【答案】D 【分析】根据分母有理化将a = 【详解】解:12a =+=2=-又2b =-a b ∴=.故选:D . 【点睛】此题主要考查分母有理化的应用,正确掌握分母有理化是解题关键.【变式8-2】(2020·湖北·华师一附中初中部九年级期中)若7和5m ,n ,则11m n+=________ .【分析】先求出75m ,n ,即可求解. 【详解】解:∵34<<,∴-4<-3,∴10711<< ,1<5<2 ,∴710, 5的整数部分为1,∴73 , 54,即3m =-,4n =-∴11++==m n m n mn【点睛】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分.【变式8-3】(2021·全国·九年级专题练习)阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例如:(1分母有理化可得___; (2)关于x 的方程113297x -=++_____.﹣1 【分析】(1)根据材料进行分母有理化即可;(2)先分母有理化,再根据式子的规律化简,解方程即可求解. 【详解】解:(11=,1; (2)113297x -=++113299x -=+++(132991x -=++,11399212x -=+-,)113221x -=,13212x -,3x =x =【点睛】本题考查二次根式分母有理化,及其规律探索,解方程,掌握二次根式分母有理化,发现规律,解方程方法,找到有理化分母是解题关键.【变式8-4】(2021·河南南召·九年级期中)===1=也可以这样化简:1====这些化简变形也是分母有理化.利用以上信息解答以下问题: (1= ,= ; (2(3.【答案】(1(2(3 【分析】(1)根据题目中例题方法计算即可;(2)由题目中例题采用的两种化简方法依次进行计算即可;(3)由(1)和(2)的化简方法,将其先变形为12⨯形式,然后根据例题化简即可得出结果. 【详解】解(1=(2)解法1==解法2=== (3)原式12=⨯ 112=⨯【点睛】题目主要考查二次根式的分母有理化过程,理解例题的解题过程是解题关键.题型九:二次根式的应用例题9(2021·全国·八年级)若x=,则2x 2x -=( )A B .1 C .2D 1【答案】B 【分析】直接将已知分母有理化,进而代入求出答案. 【详解】 解:∵ x=1,∴ ()2x 2x x x 2-=-)112=-21=- 1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.【变式9-1】(2020·广西平桂·模拟预测)已知整数1a ,2a ,3a ,4a ,……,满足下列条件:1a =1,2a3a =4a ……,以此类推,则1a +2a +3a +…+2019a 的值为 ( )A .1009B .1010C .1011D .2019【答案】B 【分析】根据题意可以写出这组数据的前几个数,从而可以发现这组数据的变化规律,进而可以得到1a +2a +3a +…+2019a 的值. 【详解】 由题意可得,1a =1,20a =,31a =,40a =,……,∴1a +2a +3a +…+2019a =1+0+1+…+1=1010, 故选:B . 【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化规律,求出相应的项的值.【变式9-2】(2021·重庆一中八年级开学考试)设a 、b 、c 是ABC 的三边的长,a b c-+的结果是________.【答案】22-b a 【分析】根据三角形的三边关系:两边之和大于第三边,依此对原式进行去根号和去绝对值. 【详解】解:∵a ,b ,c 是△ABC 的三边的长, ∴a <b +c ,a +c >b , ∴a -b -c <0,a -b +c >0,a b c -+()=+---+b c a a b c =+--+-b c a a b c=22-b a故答案为:22-b a . 【点睛】本题考查了二次根式的化简和三角形的三边关系定理,关键是根据三角形的性质:两边之和大于第三边去根号和去绝对值解答.【变式9-3】(2021·四川眉山·中考真题)观察下列等式:1311212x ==+⨯;2711623x ==+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021- 【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n ++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021 =12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.【变式9-4】(2021·全国·八年级课时练习)设一个三角形的三边长分别为a ,b ,c ,()12p a b c =++,则有下列面积公式:S =,S =. (1)一个三角形的三边长依次为5,6,7,利用两个公式分别求这个三角形的面积;(2【答案】(1)(2【分析】(1)根据题目所给公式把5a =,6b =,7c =代入求解即可得到答案;(2)根据题目所给公式把5a =,6b =,7c =代入求解即可得到答案.【详解】解:(1)由题意得:()()11567922p a b c =++=++=,∴海伦公式求解:S=秦九韶公式求解:S ======(2)∵()1122p a b c =++=,∴1122p a -=,同理得12p b -=,12p c -=,∴海伦公式求解:∵S∴()()()2=S p p a p b p c ---1111=2222⨯⨯⨯ 1=16⎡⎡⎤⎤⎤⨯⨯⨯⎣⎣⎦⎦⎦ 2215516⎡⎤⎡⎤=-⨯-⎢⎥⎢⎥⎣⎦⎣⎦ ()(1=67557616++--+ ()()1=8816 (21=6416⎡⎤-⎢⎥⎣⎦ ()1=1686416-13=,2∴S=秦九韶公式求解:S=====【点睛】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握完全平方公式和平方差公式.【亮点训练】1.(2021·黑龙江·哈尔滨市第十七中学校八年级阶段练习)下列计算正确的是()A.)2=7 B.=3C25 D【答案】D【分析】根据完全平方公式对A进行判断;根据二次根式的加减运算对B、D进行判断;根据二次根式的性质对C 进行判断.【详解】=+=+解:A、)22347B、=C15=,故选项错误;D故选:D.本题考查了二次根式的加减及二次根式的性质,掌握二次根式的性质和加减运算法则是解题的关键. 2.(贵州省六盘水市2021-2022学年八年级上学期第三次月考数学试题)实数a ,b 在数轴上对应的位置如图所示,化简|a ﹣b |﹣2b 的结果是( )A .aB .﹣aC .2bD .2b ﹣a【答案】A【分析】根据数轴可知0b a <<,然后根据绝对值的性质、二次根式的性质进行化简即可.【详解】解:由数轴可知:0b a <<,∴0a b ->,∴原式=()a b b a ---=,故选:A .【点睛】本题考查了二次根式的性质与化简,绝对值的化简,解题的关键使根据数轴得出0b a <<,属于基础题型.3.(2021·浙江·杭州第十四中学附属学校八年级阶段练习)若x ,y 为实数,且y =33x x --则|x +y |的值是( )A .5B .3C .2D .1 【答案】A【分析】根据二次根式的有意义的条件求出x 的值,故可求出y 的值,故可求解.【详解】 依题意可得3030x x -≥⎧⎨-≥⎩解得x =3∴y =2∴|x +y |=|3+2|=5故选A .此题主要考查二次根式的性质应用,解题的关键是熟知二次根式被开方数为非负数.4.(2021·山东省青岛第六十三中学八年级期中)下列结论正确的有()个±4=112+;③无理数是无限小数;④两个无理数的和还是无理数A.1 B.2 C.3 D.0【答案】D【分析】根据算术平方根,无理数的概念:即无限不循环小数,二次根式的化简进行判断即可.【详解】解:4,故错误,不符合题意;③无理数是无限不循环小数,故错误,不符合题意;④(0=,故正确的有0个,故选:D.【点睛】本题考查了求一个数的算术平方根,二次根式的化简,无理数的相关概念等知识点,熟练掌握相关定义是解本题的关键.5.(2021·全国·八年级课时练习)若化简2x﹣5,则x的取值范围是()A.x为任意实数B.1≤x≤4 C.x≥1D.x≤4【答案】B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.6.(2020·立,其中a、x、y是两两不同的实数,则22223x xy yx xy y+--+的值是()A.3 B.13C.2 D.53【答案】B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.7.(2021·=_______________.2##【分析】先利用二次根式的性质,再利用求绝对值的法则,即可求解.【详解】解:∵4<5,∴222=.2.【点睛】a ,是解题的关键.8.(2021·河北·临漳县教育体育局教研室八年级期中)如果5y ,那么xy 的值是______.【答案】25【分析】根据二次根式有意义的条件可得x 、y 的值,进而问题可求解.【详解】解:∵5y =,且50,50x x -≥-≥,∴5x =,∴5y =,∴25xy =;故答案为25.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.9.(2021·广东·高州市长坡中学八年级期中)规定a b a b a b-=+※_________.【答案】5-【分析】 根据规定列出算式,再分母有理化,利用乘法公式计算.【详解】解:根据题意得: 25===-故答案为:5-【点睛】此题属于新定义运算,考查了二次根式的运算,熟练掌握平方差公式和完全平方公式是解题的关键.10.(2021·上海市文来中学七年级期中)如果1a a=-,那么21a --________. 【答案】-1【分析】根据已知条件先确定a 的取值范围,再化简即可.【详解】解:∵1a a =-, ∴0a <,∴210a -<,10a -<,21a --=21a -- =2121a a ---,=122(1)a a ---,=1222a a --+,=-1.【点睛】本题考查了二次根式化简和绝对值的意义,解题关键根据一个数的绝对值与它本身的商为-1,这个数是负数确定a 的取值范围,熟练运用二次根式的性质和绝对值的意义进行化简.11.(2021·福建三元·八年级期中)对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.【答案】255【详解】解:∵3,15,255,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.12.(2020·浙江·宁波市第七中学八年级期末)实数a 、b 22a -4a 436-12a a 10-b 4-b-2++=+,则22a b +的最大值为_________.【答案】52.【分析】22a -4a 436-12a a 10-b 4-b-2+++,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】解:22a -4a 436-12a a 10-b 4-b-2+++,()()22261042a a b b --=-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根。
二次根式知识点章末重难点题型(举一反三)

专题1.1二次根式章末重难点题型【考点1 二次根式的概念】【方法点拨】掌握二次根式的定义:一般地,我们把形如√a(a≥0)的式子叫做二次根式,理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【例1】(2020春•安庆期末)下列式子一定是二次根式的是()A.√−x−2B.√x C.√a2+1D.√x2−2【分析】根据二次根式的定义:一般地,我们把形如√a(a≥0)的式子叫做二次根式可得答案.【解答】解:根据二次根式的定义可得√a2+1中得被开方数无论x为何值都是非负数,故选:C.【点评】此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.【变式1-1】(2020春•文登区期中)在式子,√x2(x>0),√2,√y+1(y=﹣2),√−2x(x>0),√33,√x2+1,x+y中,二次根式有()A .2个B .3个C .4个D .5个【分析】根据二次根式的定义作答.【解答】解:√x 2(x >0),√2,√x 2+1符合二次根式的定义.√y +1(y =﹣2),√−2x (x >0)无意义,不是二次根式. √33属于三次根式.x +y 不是根式.故选:B .【点评】本题考查了二次根式的定义.一般形如√a (a ≥0)的代数式叫做二次根式.当a ≥0时,√a 表示a 的算术平方根;当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).【变式1-2】(2020春•青云谱区校级期中)在式子√π−3.14,2+b 2,√a +5,√−3y 2,2+1,√|ab|中,是二次根式的有( )A .3个B .4个C .5个D .6个【分析】根据二次根式的定义形如√a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【解答】解:在所列式子中是二次根式的有√π−3.14,√a 2+b 2,√m 2+1,√|ab|这4个,故选:B .【点评】本题主要考查二次根式的定义,解题的关键是掌握形如√a (a ≥0)的式子叫做二次根式.【变式1-3】(2019春•平舆县期末)下列各式中①√83;②√−(−b);③√a 2;④√1|x|+0.1;⑤√x 2+2x +1一定是二次根式的有( )A .1个B .2个C .3个D .4个 【分析】二次根式的定义:一般地,我们把形如√a (a ≥0)的式子叫做二次根式,据此逐一判断即可得.【解答】解:在①√83;②√−(−b);③√a 2;④√1|x|+0.1;⑤√x 2+2x +1一定是二次根式的是③④⑤, 故选:C .【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【考点2二次根式有意义的条件(求取值范围)】【方法点拨】对于二次根式有意义的条件求取值范围类题型,关键是掌握二次根式中的被开方数是非负数 以及分式分母不为零.【例2】(2020春•文登区期末)若式子√m−1m−2在实数范围内有意义,则m 的取值范围是( )A .m ≥1B .m ≤1且m ≠2C .m ≥1且m ≠2D .m ≠2【分析】分别根据二次根式及分式有意义的条件列出关于m 的不等式,求出m 的取值范围即可.【解答】解:∵√m−1m−2在实数范围内有意义, ∴{m −1≥0m −2≠0, 解得m ≥1且m ≠2.故选:C .【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.【变式2-1】(2020•合肥校级期中)要使√2x −1+3−x 有意义,则x 的取值范围为( ) A .12≤x ≤3 B .12<x ≤3 C .12≤x <3 D .12<x <3 【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:要使√2x −113−x有意义, 则2x ﹣1≥0,3﹣x >0,解得:12≤x <3. 故选:C .【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.【变式2-2】(2020•日照二模)若使式子√2−x ≥√x −1成立,则x 的取值范围是( )A .1.5≤x ≤2B .x ≤1.5C .1≤x ≤2D .1≤x ≤1.5【分析】直接利用二次根式的性质进而计算得出答案.【解答】解:由题意可得:{2−x ≥0x −1≥02−x ≥x −1,解得:1≤x ≤1.5.故选:D .【点评】此题主要考查了二次根式有意义的条件,正确把握相关定义是解题关键.【变式2-3】(2020秋•北辰区校级月考)等式√a−3a−1=√a−3a−1成立的条件是( ) A .a ≠1 B .a ≥3且a ≠﹣1 C .a >1 D .a ≥3【分析】观察等式右边,根据二次根式有意义和分式的分母不为0的条件列出不等式组,求出a 的取值范围即可.【解答】解:∵等式√a−3a−1=√a−3a−1成立, ∴{a −3≥0a −1>0, ∴a ≥3.故选:D .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.【考点3二次根式有意义的条件(被开方数互为相反数)】【方法点拨】对于解决此类型的题目关键从被开方数中找出一对相反数,利用二次根式的被开方数是非负 数进行求解即可.【例3】(2020春•蕲春县期中)已知,x 、y 是有理数,且y =√x −2+√2−x −4,则2x +3y 的立方根为 .【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x +3y 的值,进而可得立方根.【解答】解:由题意得:{x −2≥02−x ≥0, 解得:x =2,则y =﹣4,2x +3y =2×2+3×(﹣4)=4﹣12=﹣8.所以√−83=−2.故答案是:﹣2.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.【变式3-1】(2019春•咸宁期中)若a ,b 为实数,且b =√a 2−9+√9−a 2a+3+4,则a +b 的值为( ) A .﹣1 B .1 C .1或7 D .7 【分析】先根据二次根式的基本性质:√a 有意义,则a ≥0求出a 的值,进一步求出b 的值,从而求解.【解答】解:∵b =√a 2−9+√9−a 2a+3+4,∴a 2﹣9=0且a +3≠0,解得a =3,b =0+4=4,则a +b =3+4=7.故选:D .【点评】考查了二次根式有意义的条件,解决此题的关键:掌握二次根式的基本性质:√a 有意义,则a ≥0.【变式3-2】(2019秋•新化县期末)已知√2x +y −3+√x −2y −4=√a +b −2020×√2020−a −b ,(1)求a +b 的值;(2)求7x +y 2020的值.【分析】(1)根据二次根式有意义即可求出答案.(2)根据二次根式有意义的条件列出方程组求出x 与y 的值即可求出答案.【解答】解:(1)由题意可知:{a +b −2020≥02020−a −b ≥0, 解得:a +b =2020.(2)由于√a +b −2020×√2020−a −b =0,∴{2x +y −3=0x −2y −4=0∴解得:{x =2y =−1∴7x +y 2020=14+1=15.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.【变式3-3】(2019秋•南江县期末)已知√3x +y −z −8+√x +y −z =√x +y −2019+√2019−x −y ,求(z ﹣y )2的值.【分析】首先根据二次根式的被开方数是非负数推知:原题中方程右边为0.方程左边也为0,据此求得x 、y 、z 的值;然后代入求值.【解答】解:由题中方程等号右边知:√x +y −2019有意义,则x +y ﹣2019≥0,即x +y ≥2019,√2019−x −y 有意义,则2019﹣x ﹣y ≥0,即x +y ≤2019,即{x +y ≤2019x +y ≤2019,∴x +y =2019.∴√x +y −2019=0,√2019−x −y =0.∴原题中方程右边为0.∴原题中方程左边也为0,即√3x +y −z −8+√x +y −z =0.∵√3x +y −z −8≥0,√x +y −z ≥0.∴3x +y ﹣z ﹣8=0,x +y ﹣z =0.又x +y =2019,∴{3x+y−z−8=0 x+y−z=0x+y=2019,∴{x=4y=2015 z=2019.∴(z﹣y)2=(2019﹣2015)2=42=16.【点评】考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.【考点4二次根式的性质与化简(根据被开方数为非负数)】【方法点拨】对于解决此类型的题目关键根据被开方数为非负数确定相关字母的符号,利用二次根式的性质即可化简.【例4】(2020春•沭阳县期末)已知a≠0且a<b,化简二次根式√−a3b的正确结果是()A.a√ab B.﹣a√ab C.a√−ab D.﹣a√−ab【分析】首先根据二次根式有意义的条件确定ab的符号,然后根据a<b来确定a、b各自的符号,再去根式化简.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|√−ab=−a√−ab,故选:D.【点评】本题主要考查了二次根式的化简,解决此题的关键是根据已知条件确定出a、b的符号,以确保二次根式的双重非负性.【变式4-1】(2020春•徐州期末)与根式﹣x√−1x的值相等的是()A.−√x B.﹣x2√−x C.−√−x D.√−x 【分析】将原式进行化简后即可确定正确的选项.【解答】解:∵√−1x有意义,∴x<0,∴﹣x√−1x>0,∴﹣x √−1x =−x •√−x −x =√−x ,故选:D . 【点评】考查了二次根式的性质与化简和二次根式有意义的条件,解题的关键是了解原式有意义是x 的取值范围,难度不大.【变式4-2】(2020春•东湖区校级月考)化简﹣a √1a的结果是( ) A .√a B .−√a C .−√−a D .√−a【分析】首先根据二次根式有意义的条件判断a 的取值范围,再根据二次根式的性质进行化简即可.【解答】解:∵1a ≥0, ∴a >0,∴﹣a <0,∴﹣a √1a =−√a ,故选:B .【点评】此题主要考查了二次根式的性质与化简,能够正确化简二次根式是解题的关键.【变式4-3】(2020春•柯桥区期中)把代数式(a ﹣1)√11−a中的a ﹣1移到根号内,那么这个代数式等于( ) A .−√1−a B .√a −1 C .√1−a D .−√a −1 【分析】根据二次根式的概念和性质化简即可.【解答】解:(a ﹣1)√1(1−a)=−(1﹣a )√11−a =−√1−a .故选:A .【点评】正确理解二次根式的性质与化简及概念是解决问题的关键.【考点5二次根式的性质与化简(根据字母取值范围或数轴)】【例5】(2020春•河北期末)若1≤x ≤4,则|1−x|−√(x −4)2化简的结果为( )A .2x ﹣5B .3C .3﹣2xD .﹣3 【分析】根据绝对值及二次根式的非负性化简即可求解.【解答】解:∵1≤x ≤4,∴原式=|1﹣x |﹣|x ﹣4|=x ﹣1﹣(4﹣x )=x ﹣1﹣4+x=2x﹣5,故选:A.【点评】本题主要考查绝对值及二次根式的非负性,根据绝对值及二次根式的非负性化简是解题的关键.【变式5-1】(2020•攀枝花)实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是()A.﹣2B.0C.﹣2a D.2b【分析】根据实数a和b在数轴上的位置,确定出其取值范围,再利用二次根式和绝对值的性质求出答案即可.【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【点评】本题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,学会根据表示数的点在数轴上的位置判断含数式子的符号,掌握绝对值的化简及二次根式的性质是解决本题的关键.【变式5-2】(2020春•潮南区期末)若a、b、c为三角形的三条边,则√(a+b−c)2+|b﹣a﹣c|=()A.2b﹣2c B.2a C.2(a+b﹣c)D.2a﹣2c【分析】先利用二次根式的性质得到原式=|a+b﹣c|+|a+c﹣b|,然后根据三角形三边的关系和绝对值的意义去绝对值后合并同类项.【解答】解:∵a、b、c为三角形的三条边,∴a+b>c,a+c>b,∴原式=|a+b﹣c|+|a+c﹣b|=a+b﹣c+a+c﹣b=2a.故选:B.【点评】本题考查了二次根式的性质与化简:灵活应用二次根式的性质进行化简计算.也考查了三角形三边之间的关系.【变式5-3】(2020春•邗江区校级期末)已知实数a,b,c在数轴上的对应点的位置如图所示,化简√a2+|a ﹣c|+√(b−c)2−|b|.【分析】根据二次根式的运算法则即可求出答案.【解答】解:由数轴可知:c<a<0<b,∴a﹣c>0,b﹣c>0,∴原式=|a|+|a﹣c|+|b﹣c|﹣|b|=﹣a+(a﹣c)+(b﹣c)﹣b=﹣2c.【点评】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.【考点6最简二次根式的概念】【方法点拨】最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.【例6】(2020春•广州期中)下列二次根式中,是最简二次根式的是()A.√8B.√2x2y C.√ab2D.√3x2+y2【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A.√8=2√2,可化简;B.√2x2y=|x|√2y,可化简;C.√ab2=√2ab2,可化简;D.√3x2+y2不能化简,符合最简二次根式的条件,是最简二次根式;故选:D.【点评】本题主要考查了最简二次根式.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.【变式6-1】(2020春•包河区期末)在根式√xy 、√12、√ab 2、√x −y 、√x 2y 中,最简二次根式有( ) A .1个 B .2个 C .3个 D .4个【分析】被开方数不含分母,被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.【解答】解:根式√xy 、√12、√ab 2、√x −y 、√x 2y 中,最简二次根式有√xy 、√ab 2、√x −y ,共3个, 故选:C .【点评】本题主要考查了最简二次根式,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.【变式6-2】(2019秋•新化县期末)若二次根式√5a +3是最简二次根式,则最小的正整数a 为 2 .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:若二次根式√5a +3是最简二次根式,则最小的正整数a 为2,故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.【变式6-3】(2019春•望花区校级月考)若√2m+3和√32m−n+1都是最简二次根式,则m +n = ﹣6 .【分析】根据最简二次根式的定义,可知m +3=1,2m ﹣n +1=1,解方程组求得m 和n 的值,则m +n 的值可得.【解答】解:由题意可得:{m +3=12m −n +1=1解得:{m =−2n =−4∴m +n =﹣6故答案为:﹣6.【点评】本题考查了最简二次根式的定义、解二元一次方程组和简单的整式加法运算,属于基础知识的考查,难度不大.【考点7同类二次根式的概念】【方法点拨】同类二次根式的概念:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫同类二次根式,同类二次根式可以合并.【例7】(2019春•潍城区期中)下列二次根式:√32,√18,√43,−√125,√0.48,其中不能与√12合并的有( ) A .1个B .2个C .3个D .4个【分析】先根据二次根式的性质化简各二次根式,找到不是同类二次根式即可得.【解答】解:∵√12=2√3,√18=3√2,√43=2√33,−√125=−5√5,√0.48=2√35,∴不能与√12合并的是√18、−√125这2个, 故选:B .【点评】本题主要考查同类二次根式,解题的关键是掌握二次根式的性质和同类二次根式的概念. 【变式7-1】(2020春•西城区校级期中)若最简二次根式√x +3与最简二次根式√2x 是同类二次根式,则x 的值为( ) A .x =0B .x =1C .x =2D .x =3【分析】根据同类二次根式的定义得出方程,求出方程的解即可. 【解答】解:∵最简二次根式√x +3与最简二次根式√2x 是同类二次根式, ∴x +3=2x , 解得:x =3, 故选:D .【点评】本题考查了同类二次根式和最简二次根式,能根据同类二次根式的定义得出x +3=2x 是解此题的关键,注意:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫同类二次根式.【变式7-2】(2020春•赛罕区期末)若最简二次根式√3m +n ,2√4m −2可以合并,则m ﹣n 的值为 . 【分析】由题意可知,√3m +n 与2√4m −2同类二次根式,即被开方数相同,由此可列方程求解. 【解答】解:根据题意3m +n =4m ﹣2, 即﹣m +n =﹣2, 所以m ﹣n =2. 故答案为:2.【点评】本题考查同类二次根式的概念:化为最简二次根式后,被开方数相同的根式称为同类二次根式;同类二次根式可以合并.【变式7-3】(2019春•随州期中)若最简二次根式√2x +y −53x−10和√x −3y +11是同类二次根式.(1)求x ,y 的值; (2)求√x 2+y 2的值.【分析】(1)根据同类二次根式的定义:①被开方数相同;②均为二次根式;列方程解组求解; (2)根据x ,y 的值和算术平方根的定义即可求解. 【解答】解:(1)根据题意知{3x −10=22x +y −5=x −3y +11,解得:{x =4y =3;(2)当x =4、y =3时, √x 2+y 2=√42+32=√25=5.【点评】此题主要考查了同类二次根式和算术平方根的定义,属于基础题,解答本题的关键是掌握被开方数相同的二次根式叫做同类二次根式. 【考点8二次根式的加减运算】【方法点拨】二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变解答. 【例8】(2019春•江夏区校级月考)计算: (1)3√3−√8+√2−√27 (2)7a √7a −4a 2√18a+7a √2a 【分析】(1)根据二次根式的加减计算即可; (2)根据二次根式的性质和加减计算解答即可. 【解答】解:(1)原式=3√3−2√2+√2−3√3=−√2, (2)原式=7a √7a −a √2a +7a √2a =7a √7a +6a √2a .【点评】此题考查二次根式的加减,关键是根据二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变解答. 【变式8-1】(2019春•硚口区期中)计算:(1)2√12−6√13+3√48(2)5√x 5+52√4x 5−x √20x【分析】(1)根据二次根式的运算法则即可求出答案. (2)根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=4√3−2√3+12√3 =14√3.(2)原式=√5x +√5x −2√5x =0【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型. 【变式8-2】(2019春•江宁区校级月考)计算: (1)2√3+3√12−√48 (2)32√4x −(15√x25−2√x 2)(x >0) 【分析】(1)先将二次根式化简,再将被开方数相同的二次根式合并即可;(2)先将二次根式化简,再利用去括号法则去括号,再将被开方数相同的二次根式合并即可. 【解答】解:(1)原式=2√3+6√3−4√3 =4√3; (2)原式=32×2√x −(15×√x5−2x ) =3√x −3√x +2x =2x .【点评】本题主要考查二次根式的加减,解决此类问题的关键是要先将二次根式化简,此外还要注意,只有被开方数相同的二次根式才能合并,当被开方数不相同时是不能合并的. 【变式8-3】(2019春•海陵区校级月考)计算 (1)√27−√45−√20+√75(2)2√a −3√a 2b +5√4a −2b √a 2b (a ≥0,b >0)【分析】(1)直接利用二次根式的性质分别化简计算得出答案; (2)直接利用二次根式的性质分别化简计算得出答案. 【解答】解:(1)原式=3√3−3√5−2√5+5√3 =8√3−5√5;(2)原式=2√a −3a √b +10√a −2a √b =12√a −5a √b .【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.【考点9二次根式的乘除运算】【方法点拨】掌握二次根式的乘除法法则是解决此类题的关键,①两个二次根式相乘,把被开方数相乘,根指数不变;②两个二次根式相除,把被开方数相除,根指数不变. 【例9】(2019秋•闵行区校级月考)计算:√313÷(25√213)×(4√125). 【分析】根据二次根式的乘法法则进行计算即可.【解答】解:√313÷(25√213)×(4√125) =(1÷25×4)√103÷73×75=(1×52×4)√103×37×75=10√2.【点评】本题主要考查了二次根式的乘法法则,掌握二次根式的乘法法则是解决问题的关键.【变式9-1】(2019秋•黄浦区校级月考)计算:nm √n3m ⋅(−1m √n 3m )÷√n2m. 【分析】依据二次根式的乘除法法则进行计算即可.【解答】解:nm√n 3m ⋅(−1m√n 3m )÷√n 2m=nm ×(−1m )÷1√n 3m 3×n 3m 3×2m 3n =−n m 2√2n 33m 3=−n m 2×|n|3m 2√6mn=±n 23m 4√6mn .【点评】本题主要考查了二次根式的乘除法法则,掌握二次根式的乘除法法则是解决问题的关键.【变式9-2】(2019春•徐汇区校级期中)化简:2x3y√2x3y 3⋅(4x √÷(4x 2y √3x 2y)【分析】根据二次根式的运算法则即可求出答案. 【解答】解:原式=2x 3y •√2xy 3y •4x •3√xy ÷(4x 2y x √3√y )=√2x 33y 2•√y 4√3x 3y=2√2y 3y 3【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型. 【变式9-3】(2019秋•嘉定区期中)计算:2b√ab •(−32√a 3b )÷13√ba (a >0) 【分析】直接利用二次根式的性质化简进而得出答案. 【解答】解:2b√ab •(−32√a 3b )÷13√ba (a >0) =−3b •a 2b ÷13√ba =﹣9a 2√ab=−9a 2b √ab .【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键. 【考点10二次根式的混合运算】【方法点拨】二次根式的混合运算可以说是二次根式乘、除法、加、减法的综合应用,在进行二次根式的混合运算时应注意以下几点:①观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的;②在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”; 【例10】(2020春•宜春期末)(1)计算:√3×√12+√6÷√2−√27;(2)化简:√18x +2x√x 32+x ÷√x 2.【分析】(1)根据二次根式的乘除法则运算;(2)先进行二次根式的除法法则运算,然后把二次根式化为最简二次根式后合并即可. 【解答】解:(1)原式=√3×12+√6÷2−3√3 =6+√3−3√3 =6﹣2√3;(2)原式=3√2x +√2x +x •√2√x=3√2x +√2x +√2x =5√2x .【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式10-1】(2020春•永城市期末)(1)计算:√12×√34+√24÷√6.(2)计算:(√5+√3)2−(√5+√2)(√5−√2).【分析】(1)利用二次根式的乘除法则运算;(2)利用完全平方公式和平方差公式计算.【解答】(1)解:原式=14×√12×3+√24÷6=32+2=72;(2)解:原式=5+2√15+3−(5−2)=8+2√15−3=5+2√15.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式10-2】(2020春•吴忠期末)计算:(1)(2√3−1)2+(√3+2)(√3−2);(2)√48÷2√3−√27×√63+4√12.【分析】(1)利用完全平方公式和平方差公式计算;(2)先利用二次根式的乘除法则运算,然后化简后合并即可.【解答】解:(1)原式=12﹣4√3+1+3﹣4=12﹣4√3;(2)原式=12√48÷3−13√27×6+2√2=2﹣3√2+2√2=2−√2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 【变式10-3】(2020春•涪城区期末)计算: (1)(√3−2)(√3+2)﹣(√3−1)2+5; (2)(2√2x3−√10x •√15)÷√6x3.【分析】(1)先利用平方差公式和完全平方公式计算,再去括号,最后计算加减可得; (2)先化简二次根式,再计算括号内二次根式的减法,最后将除法转化为乘法、约分即可得. 【解答】解:(1)原式=(3﹣4)﹣(3﹣2√3+1)+5 =﹣1﹣3+2√3−1+5 =2√3;(2)原式=(23√6x −5√6x )÷√6x3=−13√6x 3•√6x=﹣13.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则. 【考点11二次根式的化简求值】【例11】(2020春•涪城区校级月考)若x ,y 是实数,且y =√4x −1+√1−4x +13,求(23x √9x +√4xy )﹣(√x 3+√25xy )的值.【分析】先根据二次根式有意义的条件求出x 的值,求出y 的值,再把根式化成最简二次根式,合并后代入求出即可.【解答】解:∵x ,y 是实数,且y =√4x −1+√1−4x +13, ∴4x ﹣1≥0且1﹣4x ≥0, 解得:x =14, ∴y =13,∴(23x √9x +√4xy )﹣(√x 3+√25xy )的值.=2x √x +2√xy −x √x −5√xy =x √x −3√xy=14√14−3√14×13=18−12√3.【点评】本题考查了二次根式有意义的条件,二次根式的化简求值的应用,解此题的关键是求出xy 的值,题目比较好,难度适中.【变式11-1】(2019春•洛南县期末)已知x =5−3y =5+3,求下列各式的值: (1)x 2﹣xy +y 2; (2)yx+xy .【分析】(1)先将x 、y 的值分母有理化,再计算出x +y 、xy 的值,继而代入x 2﹣xy +y 2=(x +y )2﹣3xy 计算可得;(2)将x +y 、xy 的值代入yx +x y=x 2+y 2xy=(x+y)2−2xyxy计算可得.【解答】解:(1)∵x =5−3=√5+√32,y =5+3=√5−√32,∴x +y =√5,xy =12,则x 2﹣xy +y 2=(x +y )2﹣3xy =5−32=72;(2)yx+xy=x 2+y 2xy=(x +y)2−2xy xy=5−112=8.【点评】本题主要考查二次根式和分式的计算,解题的关键是掌握二次根式与分式的混合运算顺序和运算法则.【变式11-2】(2019春•台安县期中)已知x=12(√5+√3),x=12(√5−√3),求x2﹣3xy+y2的值.【分析】先由x、y的值计算出x﹣y、xy的值,再代入原式=(x﹣y)2﹣xy计算可得.【解答】解:∵x=12(√5+√3),y=12(√5−√3),∴x﹣y=12(√5+√3)−12(√5−√3)=√52+√32−√52+√32=√3,xy=12(√5+√3)×12(√5−√3)=14×(5﹣3)=14×2=12,则原式=(x﹣y)2﹣xy=(√3)2−1 2=3−1 2=52.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的运算法则与完全平方公式、平方差公式.【变式11-3】(2019秋•宝山区校级月考)已知x=2a+b−2a−b ,y=2a+b+2a−b,求x2﹣xy+y2的值.【分析】根据分母有理化化简x与y,然后求出x+y与xy的表达式即可求出答案.【解答】解:∵x=b2a+b−√2a−b,y=b2a+b+√2a−b,∴x=√2a+b+√2a−b2,y=√2a+b−√2a−b2,∴x+y=√2a+b,xy=b 2,∴原式=x2+2xy+y2﹣3xy =(x+y)2﹣3xy=2a+b−3b 2=2a−b 2【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【考点12分母有理化】【方法点拨】二次分母有理化就是通过分子和分母同时乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的.【例12】(2020•唐山二模)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如√3,√23,√3+1进一步化简:√3=√3√3×√3=5√33√23=√2×33×3=√63√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−12=√3−1以上这种化简的步骤叫做分母有理化. (1)化简√27(2)化简√5+√3. (3)化简:√3+1+√5+√3+√7+√5+⋯+√2n+1+√2n−1.【分析】(1)分子分母分别乘√3即可; (2)分子分母分别乘√5−√3即可;(3)分母有理化后,合并同类二次根式即可; 【解答】解:(1)√27=√3√27×√3=√33(2)化简√5+√3=√5−√3)(√5+√3)(√5−√3)=√5−√3(3)化简:√3+1+√5+√3+√7+√5+⋯+√2n+1+√2n−1=12(√3−1+√5−√3+√7−√5+⋯+√2n +1−√2n −1) =12(√2n +1−1)【点评】本题考查二次根式的化简、分母有理化等知识,解题的关键是熟练掌握分母有理化的方法,属于中考常考题型.【变式12-1】(2020春•淮安区校级期末)阅读下面计算过程:√2+1=√2−1)(√2+1)(√2−1)=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2;√5+2=√5−2)(√5+2)(√5−2)=√5−2.求:(1)√7+√6的值.(2)√n+1+√n (n 为正整数)的值.(3)√2+1+√3+√2+√4+√3+⋯+√100+√99的值.【分析】(1)根据给定算式,在分式√7+√6的分母和分子上分别相乘(√7−√6),计算后即可得出结论;(2)根据给定算式,在分式√n+1+√n的分母和分子上分别相乘(√n +1−√n ),计算后即可得出结论; (3)根据(2)的结论即可得出√2+1+√3+√2+√4+√3+⋯+√100+√99=(√2−1)+(√3−√2)+(2−√3)+…+(10−√99),由此即可算出结论. 【解答】解:(1)√7+√6=√7−√6)(√7+√6)(√7−√6)=√7−√6;(2)√n+1+√n=√n+1−√n)(√n+1+√n)(√n+1−√n)=√n +1−√n ;(3)√2+1+√3+√2+√4+√3+⋯+√100+√99=(√2−1)+(√3−√2)+(2−√3)+…+(10−√99)=10﹣1=9.【点评】本题考查了分母有理化,根据给定算式找出利用平方差公式寻找有理化因式是解题的关键. 【变式12-2】(2020春•孟村县期末)观察下列格式,√5−12−√5−1,√8−22−√8−2,√13−32−√13−3,√20−42−√20−4(1)化简以上各式,并计算出结果;(2)以上格式的结果存在一定的规律,请按规律写出第5个式子及结果 (3)用含n (n ≥1的整数)的式子写出第n 个式子及结果,并给出证明的过程. 【分析】(1)分别把每个式子的第二项进行分母有理化,观察结果; (2)根据(1)的结果写出第5个式子及结果; (3)根据(1)的规律可得√n 2+4−n2−√n 2+4−n,然后分母有理化,求出结果即可.【解答】解:(1)√5−12−√5−1=√5−12−√5+1)(√5−1)(√5+1)=√5−12−√5+12=−1, √8−22−√8−2=√8−22−√8+22=−2, √13−32−√13−3=√13−32−√13+32=−3, √20−42−√20−4=√20−42−√20+42=−4, (2)√29−52−√29−5=−5,(3)√n 2+4−n2−√n 2+4−n=√n 2+4−n2−√n 2+4+n2=−n .【点评】本题主要考查分母有理化的知识点,解答本题的关键是找出上述各式的变化规律,此题难度一般.【变式12-3】(2019春•微山县期中)【阅读材料】材料一:把分母中的根号化去,使分母转化为有理数的过程,叫做分母有理化 通常把分子、分母乘以同一个不等于0的式子,以达到化去分母中根号的目的 例如:化简√3+√2解:√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2材料二:化简√a ±2√b 的方法:如果能找到两个实数m ,n ,使m 2+n 2=a ,并且mn =√b ,那么√a ±2√b =√m 2+n 2±2mn =√(m ±n)2=m ±n 例如:化简√3±2√2解:√3±2√2=√(√2)2+12±2√2=√(√2±1)2=√2±1 【理解应用】 (1)填空:化简√5+√3√5−√3的结果等于 ;(2)计算: ①√7−2√10; ②√2+1+√3+√2+2+√3+⋯+√2018+√2017+√2019+√2018.【分析】(1)根据分母有理化法则计算;(2)①根据完全平方公式、二次根式的性质化简; ②先把原式分母有理化,再合并同类二次根式即可. 【解答】解:(1)原式=(√5+√3)(√5+√3)(√5+3)(√5−3)=8+2√152=4+√15, 故答案为:4+√15;(2)①√7−2√10=√(√5)2+(√2)2−2√10=√(√5−√2)2=√5−√2; ②原式=√2−1+√3−√2+4−√3+⋯+√2019−√2018=√2019−1.【点评】本题考查的是分母有理化、二次根式的化简,掌握分母有理化法则、二次根式的性质是解题的关键.【考点13复合二次根式的化简】【例13】(2020春•安庆期末)阅读理解题,下面我们观察:(√2−1)2=(√2)2﹣2×1×√2+12=2﹣2√2+1=3﹣2√2.反之3﹣2√2=2﹣2√2+1=(√2−1)2,所以3﹣2√2=(√2−1)2,所以√3−2√2=√2−1.完成下列各题:(1)在实数范围内因式分解:3+2√2;(2)化简:√4+2√3;(3)化简:√5−2√6.【分析】(1)利用二次根式的性质结合完全平方公示直接化简得出即可;(2)利用二次根式的性质结合完全平方公示直接化简得出即可;(3)利用二次根式的性质结合完全平方公示直接化简得出即可.【解答】解:(1)3+2√2=12+2√2+(√2)2=(1+√2)2;(2)√4+2√3=√(√3+1)2=√3+1;(3)√5−2√6=√(√3−√2)2=√3−√2.【点评】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.【变式13-1】(2020春•思明区校级月考)观察下式:(√2−1)2=(√2)2﹣2•√2•1+12=2﹣2√2+1=3﹣2√2反之,3﹣2√2=2﹣2√2+1=(√2−1)2根据以上可求:√3−2√2=√2−2√2+1=√(√2−1)2=√2−1求:(1)√5+2√6;(2)你会算√4−√12吗?【分析】根据二次根式的性质以及完全平方公式即可求出答案.。
二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:二次根式重难点综合题型
题型一:二次根式的性质
1.写出下列各式有意义时x 的取值范围.
(1)12--x ; (2) .
2.已知:,x y 为实数,且311+-+-<x x y , 化简:23816y y y ---+。
3.已知,a b , 求20152014a a -的值。
4.已知数a ,b ,c 在数轴上的位置如图所示:
化简:||)(|2|||22b b c c a a a ---++--.
题型二:二次根式的化简
1.判断下列各式是不是最简二次根式,如果不是,请化简成最简二次根式.
(1) (2) (3) (4)
2.已知2
31-=
a ,
2
31+=
b ,求值: (1)33ab b a - ; (2) 22b ab a ++。
3.化简下列二次根式
(1) 549549++- (2)
4.已知:625+=+b a ,625-=-b a ,求2015
2212⎪
⎪⎭
⎫ ⎝⎛--b a 的值。
题型三:二次根式的运算 1.计算下列各题: (1) (2)
(3) (4)
(5) (6)
2.计算:
2004
2003200320041
3
22312
21++
+++
+
a
1-42+x 3
8m -()x x --11131
+x 35
6356++-()
21341183122⨯-⨯;2
23b a b a a
b ⨯÷-⎪⎪⎭
⎫ ⎝⎛-+483814122223321825038a a a a a a -+(1110a b b +--).32
18)(8321(-+.
)21()21(20092008-+
※课后练习
1.若53+的小数部分是a ,5-3的小数部分是b ,求a +b 的
值。
2.已知411+=-+-y x x ,则xy 的平方根为______.
3.已知25-=x ,求4)25()549(2++-+x x 的值.
4.计算下列各题:
(1)
(2)
(3) (4)
5.已知,23,23-=+=y x
求(1)x 2-xy +y 2; (2)x 3y +xy 3的值.
6.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足
.09622=+-+-b b a 试求△ABC 的c 边的长.
7
.已知:11a a +=221
a a
+的值。
8.化简:
9.已知:x,y,z 满足关系式:
y x y x z y x z y x --+-+=-++--+20122012223,试求x ,y ,
z 的值。
10.求值:
2004
20031431321211++
++++++ x
x x x x 1399413+-a
a b b a a a 2129122+-+)
23(623
24b a a b b a ab b -⨯-÷2
310253b a
b a ÷-
⋅。