轴系扭振

轴系扭振
轴系扭振

汽轮发电机组的轴系扭振

电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。

产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。

从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。其中影响较大的可归纳为以下四个方面:

1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种

类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。

2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械

应力。例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短

路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同

时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭

转振动。

3.电力系统次同步振荡对轴系扭振的影响:在电力系统高压远距离输电线路上,当采用串联补偿电容用以提高输电能力时,该电容器同被补偿的输电线

路的电感,将构成L-C回路(略去回路电阻)并产生谐振。当电网频率与上

述的谐振频率的差值与轴系某一机械固有扭振频率相同或接近时,则上述的

电气谐振与机械扭振合拍并相互激励,从而给机组轴系的安全运行构成严重

的威胁。由于电气谐振频率低于电网频率,通常称为次同步振荡。

4.电力系统负序电流对轴系扭振的影响:发电机定子绕组中的负序电流可由三相负荷不平衡、各种不对称短路、断线故障引起。负序电流相当于一个外力

源,因此由负序电流产生的轴系扭振有别于上述的自激扭振,并称之为强迫

扭振。负序电流在电机中产生的旋转磁场与转子的励磁磁场相互作用,并产

生交变转矩作用在轴系上,如果这一交变转矩的频率同机组轴系某一个固有

的扭振频率重合,就会激发起轴系的扭振。

预防和抑制轴系扭振的措施可以从设计制造、运行方式,机—电配合、在线监测等几个方面针对不同的情况采取相应的措施。

设计制造,是指包括汽轮发电机轴系扭振频率、绕组的设计、选材、工艺和机械加工以及输电系统的线路的结构方式、继电保护、控制手段以及串联电容补偿方式的设计与选择

等。例如:轴系的结构尺寸和刚度要考虑避免机—电谐振合拍,使轴系固有的扭振频率避开对应出现的谐振频率,一般倍频要求避开±7HZ,工频要求避开±15HZ。电网的规划设计如需采用串联电容补偿方式,在考虑满足电力系统稳定的同时,还要考虑避开可能出现的激发轴系扭振的谐振频率或采取相应的抑制措施。

运行方式,是指在满足输电的条件下,尽量避免采用前述的可能导致高轴系扭振应力的运行方式。例如,尽量避免使机组输出的有功功率发生±0.5(标么值)突变量的正常线路的切合操作(包括甩负荷).

在线监测,是利用机组扭振在线监测装置准确测量系统冲击所造成的轴系扭振的损伤国外的一些大型汽轮发电机组,根据系统的需要所配备的扭振在线监测装置(简称TSA,于1977年在欧洲投入使用),是防止机组出现过大扭应力和疲劳损伤的有效手段。

对于运行人员来说,轴系扭振不象机组的横向机械振动那样易于感受和发现,但应注意遇到电力系统大的扰动如发电机短路、机组甩负荷等可能造成的轴系扭振损坏。经验证明:在轴系扭振造成轴系某些部件损坏时,都伴随着机组振动的变化。严格监视机组的振动变化,尤其是机组受到电力系统重大扰动时引起的振动变化,在一定程度上可以监督轴系的扭振造成的轴系损坏。

轴系扭振

汽轮发电机组的轴系扭振 电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。 产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。 从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。其中影响较大的可归纳为以下四个方面: 1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种 类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。 2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械 应力。例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短 路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同 时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭 转振动。 3.电力系统次同步振荡对轴系扭振的影响:在电力系统高压远距离输电线路上,当采用串联补偿电容用以提高输电能力时,该电容器同被补偿的输电线 路的电感,将构成L-C回路(略去回路电阻)并产生谐振。当电网频率与上 述的谐振频率的差值与轴系某一机械固有扭振频率相同或接近时,则上述的 电气谐振与机械扭振合拍并相互激励,从而给机组轴系的安全运行构成严重 的威胁。由于电气谐振频率低于电网频率,通常称为次同步振荡。 4.电力系统负序电流对轴系扭振的影响:发电机定子绕组中的负序电流可由三相负荷不平衡、各种不对称短路、断线故障引起。负序电流相当于一个外力 源,因此由负序电流产生的轴系扭振有别于上述的自激扭振,并称之为强迫 扭振。负序电流在电机中产生的旋转磁场与转子的励磁磁场相互作用,并产 生交变转矩作用在轴系上,如果这一交变转矩的频率同机组轴系某一个固有 的扭振频率重合,就会激发起轴系的扭振。 预防和抑制轴系扭振的措施可以从设计制造、运行方式,机—电配合、在线监测等几个方面针对不同的情况采取相应的措施。 设计制造,是指包括汽轮发电机轴系扭振频率、绕组的设计、选材、工艺和机械加工以及输电系统的线路的结构方式、继电保护、控制手段以及串联电容补偿方式的设计与选择

轴系扭振

电信号扰动下的轴系扭振 摘要 本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。 关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动 1.引言 转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。 当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法 (TMM)解决频域内的动态问题。TMM使用了一种匹配过程,即从系统一侧的边界条 1

船舶轴系扭振计算步骤2006

船舶轴系扭振计算 1 已知条件 轴系原始资料 2 当量系统 2.1惯量计算(或给定) 2.2 刚度计算(或给定) 2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表) 当量系统参数

3 固有频率计算(自由振动计算并画出振型图) Holzer表 4 共振转速计算 5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算

步骤2:计算第1惯性圆盘的平衡振幅 步骤3:计算各部件的动力放大系数

步骤4:求总的放大系数 d r s p e Q Q Q Q Q Q 111111++++= 步骤5:计算第1质量的振幅 A =Q ×A 1st 步骤6:轴段共振应力计算 101,A k k ?=+ττ 步骤7:共振力矩计算 步骤8:非共振计算 2 22 2 1111??? ? ??+??? ???????? ? ??-= c c st n n Q n n A A 步骤9:扭振许用应力计算(按CCS96规范) 步骤10:作出扭振应力或振幅-转速曲线 能量法计算步骤: 步骤1 相对振幅矢量和的计算(如为一般轴系,可省略) 步骤2 激励力矩计算M v (若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定) 步骤3:激励力矩功的计算 ∑=k T A M W απν1 步骤4:阻尼功的计算 各部件的阻尼功

部件外阻尼功的计算: 步骤5:阻尼力矩功W c 的计算(为系统各部件总阻尼功之和) +++++=cr cs cp cd ce c W W W W W W 步骤6:求第1质量振幅A1 c T W W A = 1 步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表:

航速及螺旋桨计算书设绘通则

航速及螺旋桨计算书设绘通则

1 主题内容与适用范围 1.1主题内容 航速及螺旋桨计算书是计算船舶在要求吃水状态下的阻力、航速、螺旋桨几何要素、螺旋桨的强度校核、空泡校核、系柱推力和转速、重量、惯量及螺旋桨特性等。为绘制螺旋桨图和进行轴系扭振计算提供依据。 1.2适用范围 应用MAU型或楚思德B型螺旋桨设计图谱设计常规螺旋桨并计算航速。 2 引用标准及设绘依据图纸 2.1引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4954-84 船舶设计常用文字符号 2.2 编制依据图纸 a)技术规格书或设计任务书; b)总布置图; c)静水力曲线图或表; d)阻力估算方法或船模试验报告; e)螺旋桨设计图谱; f)主机主要参数及特性曲线; g)减速齿轮箱主要参数。 3 基本要求 提供完整的航速及螺旋桨计算书。 4 内容要点 4.1 计算说明 说明应用上海船舶研究设计院电子计算机程序SC88-CR158计算或应用何种螺旋桨设计图谱直接计算。 4.2 主要参数 4.2.1 船舶数据:主尺度(见表1)、船型系数(见表2)。

船舶主尺度表1 船型系数表2 4.2.2 主机参数:型号X台数、额定功率、额定转速、转向(见表3)。 主机参数表3 4.2.3 减速齿轮箱参数:型号、台数、减速比(见表4)。

减速齿轮箱参数表4 4.2.4 螺旋桨设计要求:主机功率、螺旋桨设计转速、螺旋桨只数、螺旋桨浸深、螺旋桨旋向、桨叶形式和叶片数、桨毂形状和尺度(见表5)。 螺旋桨设计要求表5 4.3 计算阻力、有效功率曲线 根据阻力计算公式及图谱计算实船阻力或按船模试验报告换算实船阻力,绘制有效功率曲线。 4.4 推进因子及螺旋桨收到功率 根据船型特点、主机和齿轮箱参数、船模试验或应用经验公式确定轴系传递效率、螺旋桨收到功率、伴流分数、推力减额分数、相对旋转效率、船身效率。 4.5 航速计算 应用螺旋桨设计图谱计算。 4.6 螺旋桨空泡校核 应用伯努利及各种定理推导出校验空泡的衡准数,若不产生空泡的条件可直接应用勃力尔空泡图。 上述计算中应用的符号及单位,见表6。

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

汽轮机轴系振动试验方案

江苏华电句容发电有限公司 一期(2×1000MW)工程 汽轮机轴系振动试验方案 联合体:华电电力科学研究院 上海电力建设启动调整试验所 二○一二年一月

1设备及系统概述 1.1系统描述 略(此方案为原则性方案,中标后根据现场实际情况另行完善) 2试验目的及目标 2.1对汽机轴系进行调整和试运,考察系统与设备设计的合理性、安装质量的好坏,了解系统设 备的运行特性,以便该系统能够长期、安全、经济运行; 2.2完成项目质量验评表要求,各项指标优良率达到85%以上; 2.3监测汽轮发电机组的振动升降速特性,对机组出现的振动原因进行故障诊断,并通过相应的 振动处理措施,保证机组的振动达到安全运行的目的; 2.4检验机组对运行环境的适应能力。适当改变运行工况,测量机组振动特性; 2.5汽轮发电机组的轴系稳定,主机各轴承的垂直和水平方向振动达到部颁新投产机组的振动标 准,小于50μm,轴振小于76μm; 2.6保证系统试运过程中,重要环境因素控制得当; 2.7保证系统试运过程中设备和人员的安全,例如,确保联锁保护试验完整并合格,防止设备在 异常工况下试运,保证不发生设备和人员损伤事故。 3编制依据及参考资料 3.1《火电工程启动调试工作规定》(原电力工业部建设协调司1996); 3.2《火力发电建设工程启动试运及验收规程》(国家发改委2009); 3.3《火电机组达标投产考核标准》(2006年版); 3.4《火电工程调整试运质量检验及评定标准》; 3.5《旋转机械转轴径向振动的测量和评定》GB/T11348.2-2007; 3.6设备厂家的运行维护说明书及设计图纸等; 4试验范围及相关项目 4.1汽机轴系系统各联锁、保护传动检查; 4.2机组的振动在线监测从机组整套启动试运开始,包括机组的冲转、升速、带负荷、超速、稳 定运行以及机组甩负荷期间的振动监测。 4.1测试机组升速过程中轴系振动情况。 4.2机组空负荷时,汽机排汽温度变化,机组轴系振动情况。 4.3机组半负荷时,汽机润滑油温度变化,机组轴系振动情况。 4.4机组满负荷时,机组轴系振动情况。 4.5机组超速试验升/降转速时的振动情况。

船舶轴系扭振计算步骤2008

船舶轴系扭振计算的一般步骤 (能量法和放大系数法) 1 已知条件 轴系原始资料

2 当量系统 2.1惯量计算(或给定) 2.2 刚度计算(或给定) 2.3 当量系统转化,即将系统转化成惯量-刚度系统,并给出当量系统图以及相关参数(见表) 当量系统参数 3 固有频率计算(自由振动计算并画出振型图) Holzer表 4 共振转速计算

5强迫振动计算(动力放大系数法的计算步骤) 步骤1:激励计算

步骤2:计算第1惯性圆盘的平衡振幅 步骤3:计算各部件的动力放大系数 步骤4:求总的放大系数 d r s p e Q Q Q Q Q Q 111111++++= 步骤5:计算第1质量的振幅

A =Q ×A 1st 步骤6:轴段共振应力计算 101,A k k ?=+ττ 步骤7:共振力矩计算 步骤8:非共振计算 2 22 2 1111??? ? ??+??? ???????? ? ??-= c c st n n Q n n A A 步骤9:扭振许用应力计算(按CCS96规范) 步骤10:作出扭振应力或振幅-转速曲线 6强迫振动计算(能量法的计算步骤) 步骤1 相对振幅矢量和的计算(如为一般轴系,可省略) 步骤2 激励力矩计算M v (若为柴油机轴系,方法同动力放大系数法步骤1;若为一般轴系,则已知条件给定) 步骤3:激励力矩功的计算 ∑=k T A M W απν1 步骤4:阻尼功的计算 各部件的阻尼功 部件外阻尼功的计算:

步骤5:阻尼力矩功W c 的计算(为系统各部件总阻尼功之和) +++++=cr cs cp cd ce c W W W W W W 步骤6:求第1质量振幅A1 c T W W A = 1 步骤7-11同动力放大系数法步骤6-10 强迫振动计算结果表: 7 一缸不发火的扭振计算 1)不发火气缸的平均指示压力近似为零,相应的气体简谐系数为bv ;其他气缸的平均指示压力pimis 为: i i mi s p z z p 1 -= N/mm2;式中:z-气缸数,pi 按前面计算公式计算。 2)相应的Cimis 为:v im is v im is b p a C += 3)一缸不发火影响系数为:∑∑=a C a C mis imis νγ 式中:Cv 、Cvmis ——分别为正常发火与一缸不发火时的简谐系数; ∑a 、∑mis a 分别为正常发火与一缸不发火时的相对振幅矢量和,其中∑mis a 按下式计算: ∑∑∑==+=z k z k k k k k k k mis a a a 1 1 2 ,12 ,1)cos ()sin (νζβνζβ 不发火缸vmis k C b νβ= ,其他气缸为1; 4)一缸不发火的振幅、应力和扭矩: 第1质量振幅为: 11A A mis γ= 轴段应力为: 1,!,1++=k k k m isk γττ 齿轮啮合处振动扭矩为:G gmis T T γ= 弹性联轴器振动扭矩为:R rmis T T γ=

轴承支承长度及间距对船舶轴系振动特性影响

轴承支承长度及间距对船舶轴系振动特性影响 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:___________________ 审核:___________________ 单位:___________________

文件编号:KG-A0-4761-53 轴承支承长度及间距对船舶轴系振 动特性影响 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 本文主要对轴承的支承长度以及间距对于船舶轴系 振动的特性进行相应的分析,发现在不同位置处,以及 不同的支承长度对船舶的轴系的固有振动的影响, 并且经 过计算,不同位置轴承的变化对于船舶轴系固有振动的 影响都不同。其中对于船舶轴系的振动的影响最大的是 船舶前后醍架轴承和船舶醍管轴承,并且这些轴承所工 作的环境都是十分的恶劣,在运行的过程中会发生很大 的变化。 在船舶的轴承的正常的运作中,轴承的支承的面积 是随之改变的,所以必须要对轴承的长度对于轴系振动 的影响进行相应的研究,并且要根据一些条件,来对相 应的轴系进行调整,以此来避开共振所产生的危害。主 要是对船舶的轴系的后醍架轴承和船舶艇管轴承进行相

轴系扭振计算例子

1 轴系基本数据 轴系布置数据 船舶类型海船 安装类型螺旋桨 中间轴连接方式键槽 减振器无 弹性联轴器无 齿轮箱无 总质量数12 主支质量数12 1级分支数0 2级分支数0 柴油机基本参数 型号7S60MC 制造厂/ 气缸数目7 冲程数 2 气缸型式直列 额定功率(kW) 13570 额定转速(r/min) 105 最低稳定转速(r/min) 30 缸径(mm) 600 活塞行程(mm) 2292 往复部件重量(kg) 5559 平均有效压力(MPa) 1.7 连杆中心距(mm) 2628 发火顺序1-7-2-5-4-3-6 机械效率0.83 第1气缸质量号 2 螺旋桨基本参数 型号Fault 制造厂Fault 直径(mm) 700 叶数 4 盘面比0.7 螺距比 1.1 转动惯量(kg.m^2) 230 螺旋桨所处单元号12

2 系统当量参数表 序号分支号惯量(Kgm^2) 刚度(MNm/rad) 外径(mm) 内径(mm) 传动比标识 1 0 209.0000 1329.787 2 672.0 115.0 1 2 0 10171.0000 1095.290 3 672.0 115.0 1 气缸#1 3 0 10171.0000 1135.0738 672.0 115.0 1 气缸#2 4 0 10171.0000 1054.8523 672.0 115.0 1 气缸#3 5 0 10171.0000 1055.9662 672.0 115.0 1 气缸#4 6 0 10171.0000 1133.7868 672.0 115.0 1 气缸#5 7 0 10171.0000 1165.5012 672.0 115.0 1 气缸#6 8 0 10171.0000 1538.4615 620.0 115.0 1 气缸#7 9 0 3901.0000 3115.2648 620.0 115.0 1 推力轴 10 0 5115.0000 60.3500 480.0 0.0 1 中间轴 11 0 613.9000 166.8335 590.0 0.0 1 螺旋桨轴 12 0 75197.0000 1.0000 100.0 0.0 1 螺旋桨

机械设备振动特性分析

机械设备振动特性分析 佟德纯 教授 一 振动波形变换 设备的振动监测与诊断,振动波形的分析,提取表征状态信息的特征量是最常用的有效方法之一,振动波形的分析主要有两种:一是时域分析,即将振动作为时间τ(秒)的函数x(τ)来观测。二是频域分析,即按傅立叶变换方法将x(τ)变换成频率f (赫芝)的函数X(f)。这个变换关系和过程可用空间简图来表示,见图5.1。 图5.1 振动波形分析 1. 振动的时域波形特征量 (1) 均值x :描述振动过程的静态成分,又称为直流分量,即 ?=T dt t x T x 0)(1 (5.1) 式中T —平均时间(样本长度),以秒或毫秒计。 (2) 绝对值平均x ,即 dt t x T x T ?=0)(1 (5.2) (3) 均方值2x :表示振动的平均能量或平均功率的指标,即 ?=T dt t x T x 022)(1 (5.3) (4) 均方根值(有效值)rms X :描述振动的有效正振幅,即 ?=T rms dt t x T X 0 2)(1 (5.4) (5) 方差2x σ :描述振动偏离均值散布情况,其标准差σx 表示振动的动态分量 ,即 []?-=T x dt x t x T 02 2 )(1σ (5.5) 为了进一步理解上述振动特征量的物理意义,特用模拟电路表示特征量的运算过程,具

体如图5.2所示。 图5.2 振动特征量的运算电路 3. 复杂周期振动的分解 复杂的周期振动)()(nT t x t x T +=都可用傅立叶级数的形式展开,即分解成若干个 谐波(简谐)振动之各,即 ∑∑∞=∞=++=++=1 010)cos()sin cos (2n n n n n n T t n A A t n b t n a a x θωωω (5.6) 式中 ω为角频率,T f ππω220== 0A 为直流分量,200a A = n A 为n 阶谐波的振幅,)2,1(,?????=+=n b a A n n n n θ为n 阶谐波的相角,)2,1(),(???=-n a b arctg n n n θ 由(5.6)式可知,复杂的周期振动)(t x τ是由直流分量0A 和各次谐波振动 )3,2,1(,???=n A n 所组成。这就是振动信号的频率分析,又称谐波分析,是振动监测与诊断的基本方法之一。 示例:柴油机扭振分析 柴油机是六缸四冲程星形连接,点火次序如图5.3所示。转速n=195rpm ,即基频f 0

扭振测量与分析

扭振测量和Q T V介绍 1.引言 噪声及振动问题,在旋转部件开发中,是一个必须充分重视的因素。就车辆而言,旋转机械或旋转部件包括:发动机(引擎),动力传动系, 变速装置, 压缩机和泵等等?。对它们的动力特性, 必须了解得非常透彻, 力图实现宁静、平顺、安全地运转?。通常, 对线振动和角振动的测量和分析, 是分头进行的??。旋转件横向振动的测量方法, 是大家熟悉的,研究得已经比较透彻?,为了充分把握结构的动力特性, 通常会实施多通道并行的测量和分析?。而扭振测量则需使用专门的设备, 它们一般并不集成在一总体动力学测试系统内?。 2.扭振的“源—传导—接收”模型 研究动力学问题的一般方法,是建立所谓“源—传导—接收”模型(图1)。在某一部位(接收部位)观测到的响应,视为由源和源在结构上沿某途径传导产生的效果。由于结构的共振或反共振效应,源可能在传导过程中被放大或者被衰减。此外,它们可能沿多个不同途径,传导至接收部位。 图1 扭振的“源——传导——接收”模型接收部位或响应部位的振动,通常是刚体运动伴随柔体运动的复合现象。前者一般不产生交变应力,后者则会引起交变应力,并成为某种耐久性问题的根源。传递途径分析(TPA)涉及到某接收部位对源的干扰,这种干扰经由其可能的传导途径,并依赖于传导途径固有的动力学特性,影响整个结构的响应。 用同样的方法,我们来研究扭转振动。先是有一个“源”,譬如说,发动机给出的交变输入力矩。力矩传递过程,牵涉到轴系、齿轮传动系或皮带传动系等的动力特性。最终表现出来的,是旋转件的转速变化。如果沿整个轴,各部位的转速变化都是相同的、一致的,那么在严格的意义上,这不能算作是扭振,仅仅只是转速在变罢了(这相当于线振动分析中的刚体模态)。仅当沿轴不同部位检测到的转速增量有幅值和相位的相对变化时,扭振才确实发生了。当激励频率接近于扭振谐振频率时,会导致旋转件产生很大的内应力。如果未设置专门的监测设备,就有可能发生严重的耐久性问题。 习惯上,凡是在平均转速上、下发生得转速波动,都被称之为扭转振动,无论转轴的不同截面之间是否真正存在相对扭转。

水力发电机组轴系振动特性及其故障诊断分析

水力发电机组轴系振动特性及其故障诊断分析 发表时间:2017-09-04T17:07:37.297Z 来源:《电力设备》2017年第14期作者:赵红伟 [导读] 摘要:随着社会的全面发展,水力发电机组轴系振动特性及其故障诊断分析十分重要。其能够使得水力发电机组的体系结构得到相应的优化。 (新安江水电厂) 摘要:随着社会的全面发展,水力发电机组轴系振动特性及其故障诊断分析十分重要。其能够使得水力发电机组的体系结构得到相应的优化。本文主要针对水力发电机组轴系振动特性及其故障进行相应的分析,并提出了相应的优化措施。 关键词:水力发电机组;轴系振动;故障诊断;分析 为了能够使得水利发电的效率得到相应的提升,在进行振动体系结构的分析过程中,其需要采用多种不同的形式使得水利发电的效率得到显著性的提高。在进行具体的故障诊断过程中,其需要对轴系振动结构进行较为明确的数据分析。从而使得其故障的整体诊断效果更加显著。 一、水利发电机组轴系振动特性分析 1.1水利发电机组振动规则 为了能够使得整体的水利发电效率得到相应的提升,在进行发电机组的整体控制。在轴承的整体支持上,其同样需要对轮机的径流的变化进行主轴系统参数的变化进行分析。在推力轴距的变化上,其需要对模型进行参数性的设计。一般情况下,其机组在正常的运行过程中会发生一定的振动。可以采用有限元复模态法计算了水电机组轴系横向回转振动的自振频率及临界转速。这样,其轴承的推力在整体的运转过程中同样会发生一定变化。在主轴的方向系统上,其需要利用发电机组的轴向变化规律对系统方程进行参数的求解。这样,其整体的振动规律就能得到确定。同时应用周期变换将叶片和转子的祸合振动方程转化为常系数微分方程,分析了转速、叶片阻尼等系数对转子系统稳定性的影响。 1.2水利发电机组的振动参数计算 在进行整体的参数计算中,其首先需要明确其机组的运动状态。对于机组的各种特性变化进行体系参数的整体分析。在机组的数据处理过程中,其还要对微分运动的模拟数值进行转子质量的选取。通常,在质量参数转移的过程中,其偏心率会随着偏心重量进行参数的设计。可以取0.5-3.3mm。【1】在离心数据的处理过程中,其同样需要对系统圆盘的径向位移参数进行相应的程序改变。最终使得其机组转子的偏心质量进行相应的程序改变。从而使得转子系统得到相应的平衡,最终达到相应的减震目的。其机组偏心质量的位移结构图如下所示: 从圆盘的径向位移中我们能够十分清晰的看到,其圆盘在不同的位移参数中会得到不同层面的改变。同时,其水利发电机组在横向范围的震幅也会出现不同的变化。其圆盘1的径向位移参数会随着时间的推进而逐渐地增加。但整体的增幅并不明显,其圆盘2的径向位移参数相对较大,在0.5-3h的范围内,会有较为明显的增幅。最终使得水利发电的效率得到明显性的提高。【2】 二、水力发电机组轴系振动的故障诊断分析 2.1水利发电机组的故障分析 2.1.1机械因素 为了能够有效地提升水利发电机组的效率,在进行故障分析的过程中,其首先需要对其机械因素进行相应的考虑。在保证机组逐渐地稳定情况下,其需要对机械部分的惯性以及摩擦力进行参数的考虑。在保证其运行稳定的情况下,需要对其机械的运行进行相应的故障检验。引发水力发电机组振动的机械因素指振动中的干扰力来自机组机械部分的惯性力、摩擦力等。通常来说,当其机组的整体润滑不足时,其很容易出现一定的机械故障,从而使得水力发电机组的轴系统难以得到全面性的维护。 2.1.2电气因素 由于现代的机械化水平逐渐地提升,其轴系统在整体的运行过程中同样很容易出现轴系统故障。其主要会表现在以下几个方面: ①绕线电阻出现的短路。这样情况在电气故障中同样十分显著。其首先需要对各个绕组的参数结构进行较为明确的数据分析。目前,很多机组在整体的运行过程中都容易出现短路的情况。主要在于其机组在整体的运行过程中,其温度常常会偏高,从而使得机组中的绝缘线出现脱落或者老化,最终使得机组在电气的运行中出现较为显著的故障。 ②发电机气隙不均匀。一般情况下,其发电机的会出现不同的气隙。从整体上而言,其不同程度的气隙在不同的参数层面会发生一定的改变。这就很容易导致其内部气流发生改变,使得机组出现共振。很难还原到原本的气流状态。 2.1.3水利因素 发电机组在整体的运行中,其水利因素的影响也会较为显著。一般情况下,由于水力发电机组振动的水力因素指机组振动的干扰力来

轴承支承长度及间距对船舶轴系振动特性影响

安全管理编号:LX-FS-A85244 轴承支承长度及间距对船舶轴系振 动特性影响 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

轴承支承长度及间距对船舶轴系振 动特性影响 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 本文主要对轴承的支承长度以及间距对于船舶轴系振动的特性进行相应的分析,发现在不同位置处,以及不同的支承长度对船舶的轴系的固有振动的影响,并且经过计算,不同位置轴承的变化对于船舶轴系固有振动的影响都不同。其中对于船舶轴系的振动的影响最大的是船舶前后艉架轴承和船舶艉管轴承,并且这些轴承所工作的环境都是十分的恶劣,在运行的过程中会发生很大的变化。 在船舶的轴承的正常的运作中,轴承的支承的面积是随之改变的,所以必须要对轴承的长度对于轴系

第四节 轴系的纵向振动

第四节轴系的纵向振动 一、轴系的纵向振动及危害 轴系在外力作用下,沿轴线方向产生的周期性变形现象,称为轴系的纵向振动。轴系纵振的激振力主要是气缸内的气体压力和往复运动部件产生的惯性力通过连杆作用在曲柄销上的径向分量和螺旋桨在不均匀伴流场中产生的周期性轴向激振力。此外,轴系的扭转振动也可能激起轴系的纵向振动,特别是在扭振固有频率与纵振固有频率相同或相近时,还会产生扭转-纵向耦合振动现象。推进轴系纵向振动的危害性主要表现在以下几个方面: (1)柴油机、传动装置和轴系的故障。如:曲轴弯曲疲劳破坏;推力轴承的松动;艉轴管的早期磨损;传动齿轮的破坏和磨损等。 (2)在推力轴承上的轴向力作用在柴油机的机体上并引起船体构件及上层建筑的附加振动。 对于中速柴油机一般不存在轴向振动,因为中速机的轴系刚度很高,其固有频率远高于激振力的频率。中国船级社要求对于大型低速柴油机推进轴系,必须提交其推进轴系的纵向振动特性并获得船级社的批准。 二、推进轴系纵向振动的消减和回避 1.推进轴系纵向振动的衡量标准 中国船级社要求持续运转的纵振振幅不得超过计算值。对于瞬时通过的允许纵振振幅值,一般不超过计算值的1.5倍。如果超过持续运转的许用值,则应设转速禁区。一般在r=0.85时由共振或上坡波产生的纵振振幅应不超过持续运转许用值,在r=1.0时由共振或下坡波产生的纵振振幅也应不超过持续运转许用值。 2. 纵向振动的消减和回避 (1)调频 系统纵振固有频率的基本方法是改变轴段的纵向刚度、集中质量及分布。改变轴系的长度或直径,可以提高或降低轴系的纵振固有频率,从而把有害纵振共振移开;在轴系纵振相对振幅较大处安装附加质量,或调整主机飞轮质量,不仅可以降低轴系纵振固有频率而且可以改变振型,从而达到避开有害纵振共振转速或减小振幅的作用。 (2)减小输入系统的激振能量 副简谐引起的有害共振和柴油机发火顺序有关。改变发火顺序,可以减小输入系统的振动能量。但这一方法对主简谐引起的纵振无效。艉部不均匀伴流场是诱导螺旋桨激振力的直接原因,改善伴流提高螺旋桨的设计水平和加工精度,

转动惯量对轴系扭振测试的影响

转动惯量对轴系扭振测试的影响 发表时间:2019-07-22T15:57:14.870Z 来源:《基层建设》2019年第13期作者:余成双 [导读] 舟山市港航与口岸管理局浙江舟山 316000 在对轴系扭振理论进行大量的研究后,我们对影响轴系扭振计算结果的各种因素进行了详细的分析,研究发现对船舶轴系扭振计算影响较大的有平均指示压力、运动部件往复惯性力产生的干扰力矩、气体力和运动部件重力所产生的力矩以及外阻尼系数等,而在工程应用中比较常见的影响计算精度的扭振参数有联轴节的刚度、转动惯量、减振器等。本文选取一条轴系固有频率计算值与实测值不一致的船舶进行了分析,对这些影响因素进行了深入的分析和研究,来具体说明转动惯量对轴系扭振测试的影响。 某船在扭振测试时,在主机自由端连接光电编码器,其测得的扭振信号接至“ZDCL—Ⅳ型轴系振动测量分析仪”,如图6.2-1所示。 6.2-1 扭振测试布点示意图 测试方法为:在400~990r/min的转速范围内,每间隔20r/min左右为一档,对脱排工况进行测试;在360~980r/min的转速范围内,每间隔20r/min左右为一档,对柴油机的正常发火航行工况进行测试。 对测试结果的分析中,发现该船在脱排工况所测转速范围内,未测到明显的共振转速,而且在航行工况所测转速范围内也未测到主谐次3次和6次的共振转速,分别见图6.2-2和图6.2-3。但是在航行工况851.4r/min附近测得双节5次共振转速,频谱及典型波形见图6.2-4。 图6.2-2 3谐次频谱图 图6.2-3 6谐次频谱图 图6.2-4 双节5谐次频谱图 该船轴系扭振应力测试值都在规范许用值范围之内,如表6.2-1所示: 表6.2-1 正常发火航行工况扭振测量值及规范许用值 该船在双节5谐次的计算频率为90.33Hz,而实测固有频率为70.95Hz,相对误差达到27.32%,误差如此之大,已经大大超出规范允许的范围。我们对可能存在的问题进行了逐步排查,在反复核实柴油机相关参数并与柴油机厂家进行沟通后,发现问题应该不是出在主机的参数选取上。我们又对齿轮箱、轴系、螺旋桨的扭振参数进行了核算,也没能发现什么问题。最后,我们将最可能出现变数的联轴节刚度取值进行了反复核算,发现除非大幅度地将联轴节的刚度从38kNm/rad减小到18kNm/rad,才能使计算固有频率值减小到基本与实测值相符,但是这种大幅度降低某一个参数值的做法基本上是不切实际的,弹性联轴器的供货商也不认同这种做法。 在多方查找验算无果后,我们想到最后一种可能性,主机在安装上船以后,船东因为实际需要可能会在主机自由端加装皮带轮之类的元件,而设计公司并不是太了解船上的实际情况,因此设计师可能在生成计算模型的时候漏掉某一个元件。经实船查验,并与轮机长交流之后发现,该船主机自由端确实加装了一个皮带轮,相当于在主机的自由端增加了一个惯量为7.41kgm2的惯性轮。将该惯性轮加入整个系统中经重新建模并计算后得出,该船调整后的计算频率为72.35Hz,与实测固有频率70.95Hz的相对误差缩小到1.97%,调整后的计算频率及误差见表6.2-2。 表6.2-2 调整前后计算值与实测对比表 因此得出结论,该船首次计算所出现的远超规范允许的误差现象的原因,就是因为设计师漏掉了一个质量点所致。参考文献:

扭振测量与分析

扭振测量和QTV介绍 1.引言 噪声及振动问题,在旋转部件开发中,是一个必须充分重视的因素。就车辆而言,旋转机械或旋转部件包括:发动机(引擎),动力传动系, 变速装置, 压缩机和泵等等?。对它们的动力特性, 必须了解得非常透彻, 力图实现宁静、平顺、安全地运转?。通常, 对线振动和角振动的测量和分析, 是分头进行的??。旋转件横向振动的测量方法, 是大家熟悉的,研究得已经比较透彻?,为了充分把握结构的动力特性, 通常会实施多通道并行的测量和分析?。而扭振测量则需使用专门的设备, 它们一般并不集成在一总体动力学测试系统内?。 2.扭振的“源—传导—接收”模型 研究动力学问题的一般方法,是建立所谓“源—传导—接收”模型(图1)。在某一部位(接收部位)观测到的响应,视为由源和源在结构上沿某途径传导产生的效果。由于结构的共振或反共振效应,源可能在传导过程中被放大或者被衰减。此外,它们可能沿多个不同途径,传导至接收部位。 图1 扭振的“源——传导——接收”模型 接收部位或响应部位的振动,通常是刚体运动伴随柔体运动的复合现象。前者一般不产生交变应力,后者则会引起交变应力,并成为某种耐久性问题的根源。传递途径分析(TPA)涉及到某接收部位对源的干扰,这种干扰经由其可能的传导途径,并依赖于传导途径固有的动力学特性,影响整个结构的响应。 用同样的方法,我们来研究扭转振动。先是有一个“源”,譬如说,发动机给出的交变输入力矩。力矩传递过程,牵涉到轴系、齿轮传动系或皮带传动系等的动力特性。最终表现出来的,是旋转件的转速变化。如果沿整个轴,各部位的转速变化都是相同的、一致的,那么在严格的意义上,这不能算作是扭振,仅仅只是转速在变罢了(这相当于线振动分析中的刚体模态)。仅当沿轴不同部位检测到的转速增量有幅值和相位的相对变化时,扭振才确实发生了。当激励频率接近于扭振谐振频率时,会导致旋转件产生很大的内应力。如果未设置专门的监测设备,就有可能发生严重的耐久性问题。 习惯上,凡是在平均转速上、下发生得转速波动,都被称之为扭转振动,无论转轴的不同截面之间是否真正存在相对扭转。 注意, 转矩变化或转速变化,不能只看到表面现象。实际上,旋转件之间传递的力和力矩,只是机械载荷的一部分。而发生的机械振动和噪声,也应视为动力载荷的另一部分。

轴系扭振计算书设绘通则

轴系扭振计算书设绘通则

1 主题内容与适用范围 1.1 本标准规定了“柴油机轴系扭振计算书”的设绘依据、基本要求、内容要 点、数据准备、注意事项、校审要点、质量要求以及附录。 1.2 本标准适用于下列柴油机动力装置在正常工况和任意一缸熄火工况下的扭 振特性计算。 1.2.1 船舶柴油机推进轴系,包括双机并车轴系,PTO轴系、可调距螺旋桨轴 系; 1.2.2 船舶柴油机发电机组轴系; 1.2.3 柴油机水力测功器轴系; 1.2.4燃气轮机推进轴系的自由振动计算。 2引用标准及设绘依据图纸 2.1 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效,所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4476-84金属船体制图; b) GB4954-85船舶设计常用文字符号。 2.2 设绘依据图纸 a) 轮机说明书; b) 轴系布置图; c) 有关产品说明书尾轴尾管总图。 3 基本要求 3.1 船舶柴油机轴系扭振计算原理 3.1.1 计算模型 程序是把柴油机轴系简化成一个线性集总参数系统模型。如图1所示。

图1 3.1.2 计算公式 对一个有n个质量的系统,在圆频率为ω的激励力矩作用下,第k个质量的运动方程为: J kφk+C kφk+C k-1,k(φk-φk-1)+C k,k+1(φk-φk+1) +k k-1,k(φk-φk-1)+k k,k+1(φk-φk+1)=M k sin(ωt+ρk) (k=1,2,3,…n)……………………….(3.1.2) 式中: φk、φk、φk第k个质量的角位移、角速度、角加速度; J k第k个质量的转动惯量; C k-1,k、C k,k+1第k-1个和第k个质量间,第k个和第k+1 个质量间的轴段阻尼; k k-1,k、k k,k+1第k-1个和第k个质量间,第k个和第k+1 个质量间的刚度; M k 作用在第k个质量上的激励力矩振幅值; ρk 激励力矩的初相位;

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类 故障分类主要原因 设计原因①设计不当,动态特性不良,运行时发生强迫振动或自激振动 ②结构不合理,应力集中 ③设计工作转速接近或落人临界转速区 ④热膨胀量计算不准,导致热态对中不良

相关文档
最新文档