微积分(上)期末考试试题(B)
微积分上考试题目及答案
微积分上考试题目及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1的导数为:A. 3x^2-3B. x^2-3x+1C. 3x^2-3xD. 3x^2-3x+1答案:A2. 极限lim(x→0)(sin(x)/x)的值为:A. 0B. 1C. -1D. ∞答案:B3. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - 2xC. f(x) = cos(x)D. f(x) = sin(x) + x答案:C4. 以下哪个积分是发散的?A. ∫(1/x)dx 从1到∞B. ∫(x^2)dx 从0到1C. ∫(e^(-x))dx 从0到∞D. ∫(sin(x))dx 从0到2π答案:A5. 以下哪个是复合函数的导数?A. (f(g(x)))' = f'(g(x))g'(x)B. (f(g(x)))' = f'(x)g'(x)C. (f(g(x)))' = f(g'(x))g'(x)D. (f(g(x)))' = f'(x)g(x)答案:A二、填空题(每题4分,共20分)6. 函数f(x)=x^2的二阶导数为________。
答案:27. 定积分∫(0到1) x dx的值为________。
答案:1/28. 函数y=ln(x)的反函数为________。
答案:e^y9. 函数f(x)=e^x的不定积分为________。
答案:e^x + C10. 函数f(x)=x^3-3x^2+2x的极值点为________。
答案:x=0, x=2三、计算题(每题10分,共30分)11. 计算极限lim(x→∞) (x^2 - 3x + 2) / (2x^2 + 5x - 3)。
答案:1/212. 计算定积分∫(0到1) (x^2 - 2x + 1) dx。
答案:1/313. 求函数f(x)=x^3-6x^2+11x-6的极值。
《微积分》课程期末考试试卷(B)及参考答案
二.
单项选择题 (每题 2 分,共 12 分) 2. A 3. B 4. A 5. C 6C .
1. B 三. 1. 2.
求偏导数 (每题 6 分,共 24 分)
z 1 z 1 ; (6 分) ; x x y y z x 2z x 2y ln x y (6分) (3 分) ; 2 x x y x ( x y) 2 y x2 y2
六、求方程 y
y 1 的通解.(6 分) x
七、判别级数 2 n sin
n 1
33
的收敛性.(6 分)
《微积分》课程期末考试试卷(B)参考答案 一. 填空题. (每题 3 分,共 36 分) 1. x y 2 x y 2 2. 0 3. 2 4. 1 5. 1,1,2 6. x, y x y 2 0 7. 1 8. 2 9. e xy y 2 xy dx e xy x x 2 dy 10. 1 11. 发散 12. 10
1 1 ,则 f ( ,0) ______. cos xy 2
3. y '' ( y ' ) 3 2 xy 是______阶微分方程. 4. 方程 F ( x, y, y ' ) 0 的通解中含______个任意常数. 5. 点 (1,1,2) 关于 xoy 平面的对称点是______. 6. 函数 Z lnx y 2 的定义域是______. 7. 设 f ( x, y ) x 2 y 2 ,则 f x1 2,0 ______. 8. 设 f x, y x 2 y 2 ,则 f y1 1,1 ______. 9. 设 Z e xy yx 2 ,则 dz ______. 10. 11. 12. 设积分区域 D : 1 x 2,2 y 3 ,则 d ______.
微积分复习试题及答案10套(大学期末复习资料)
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
《微积分》期末复习题及答案-推荐下载
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
09级上微积分B期末试卷(答案)
浙工大之江学院2009-2010学年第一学期《微积分B 》期末试卷(A )班级 姓名 学号一.选择题:(每格3分,共15分)1、下列四种趋向中,函数11)(2+++=x x x x x f 不是无穷小量的是( B ) A.0→x B.1→x C.1-→x D.+∞→x2、关于函数)(x f y =在点x 处连续、可导及可微三者的关系是( D )A. 连续是可微的充分条件B. 连续是可导的充要条件C. 可微不是连续的充分条件D. 可微是可导的充要条件3、设⎪⎩⎪⎨⎧≥<--=1,21,11)(2x x x x x x f , 则1=x 是)(x f 的 ( A ) A. 连续点 B. 可去间断点 C. 跳跃间断点 D. 第二类间断点4、311-+=x y 的拐点为 ( C )A. )0,0(B.)2,2(C. )1,1(D. 无5、若)(x f 是)(x g 的一个原函数,则 ( B )A.⎰+=c x g dx x f )()( B.⎰+=c x f dx x g )()( C.c x g dx x f +='⎰)()( D.⎰+='c x f dx x g )()(二.填空题:(每格3分,共15分)1、 设x x x f cos )(=, 则='')(x f __-2sinx-xcosx______________2、某商品的需求量Q 与价格P 的函数关系式为P Q 3100-=,则需求量对价格的弹性是______31003p p-____________3、函数32)(3+-=x x x f 在区间]0,2[-上满足拉格朗日定理的条件,求定理中的=ξ_____4、设x e x f -=)(, 则='⎰dx x x f )(ln ____1c x +______________5、x e x f 2)(=的n 阶麦克劳林公式为 __________22(2)(2)12()2!!nx n x x e x x n ο=+++++ __________________________三. 计算题:1、求极限(每题5分,共10分) (1) x x x )1ln(lim 0+→011lim 11x x→+==(2) 10)xx x →1)0012032lim )lim 1(1)132=x x x x x ex xx e →→-→=++==先求原式2、求不定积分(每题5分,共15分) (1) dx x x ⎰+231()()()()22222312222111122111123x xx x c=+-+=+-++=(2) ⎰+++dxxxx82622221225228(1)71ln282xdx dxx x xx x c+=+++++=++++⎰⎰(3) 3lnx xdx⎰4444344ln4ln ln441ln441ln416xxdx xx d xxx x dxxx x c==⋅-=⋅-=-+⎰⎰⎰3、利用对数求导法求函数35)33()23(4+-⋅+=xxxy的导数y'(7分)解:1ln ln(4)5ln(32)3ln(33)2y x x x=++--+1115(2)33243233yy x x x-'=⋅+-⋅+-+532)1103()(33)2(4)321xyx x x x-'=--++-+4、设曲线方程为33(1)cos()90x y x y π++++=,试求此曲线在横坐标1-=x 的点处的切线方程。
完整版)大一期末考试微积分试题带答案
完整版)大一期末考试微积分试题带答案第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置。
答错或未答,该题不得分。
每小题3分,共15分。
)1.XXX→0sinx/x = ___1___.2.设f(x) = lim(n-1)x(n→∞) / (nx+1),则f(x)的间断点是___x=0___.3.已知f(1)=2,f'(1)=-1/4,则df-1(x)/dx4x=2.4.(xx)' = ___1___。
5.函数f(x)=4x3-x4的极大值点为___x=0___。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分。
)1.设f(x)的定义域为(1,2),则f(lgx)的定义域为___[ln1,ln2]___。
2.设对任意的x,总有φ(x)≤f(x)≤g(x),使lim[g(x)-φ(x)] = a,则limf(x) x→∞ = ___存在但不一定等于零___。
3.极限limex/(1-2x) x→∞ = ___e___。
4.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
5.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
三、(请写出主要计算步骤及结果,8分。
)4.设f(x)=(ex-sinx-1)/(sinx2),f'(x)=(ex-cosx)/sinx2,lim(x→sinx/2)f(x) = lim(x→sinx/2)(ex-sinx-1)/(sinx2) =___1/2___。
四、(请写出主要计算步骤及结果,8分。
)1.lim(x→0)(cosx1/x)x = ___1___。
五、(请写出主要计算步骤及结果,8分。
)确定常数a,b,使函数f(x)={x(secx)-2x。
x≤a。
ax+b。
x>a}处处可导。
因为f(x)处处可导,所以f(x)在x=a处连续,即a(sec(a))-2a=lim(x→a)(ax+b),得到a=1/2.根据f(x)在x=a处可导,得到a(sec(a))-2=lim(x→a)(ax+b)/(x-a),得到b=-1/2.六、(请写出主要计算步骤及结果,8分。
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
微积分(上)期末考试试题(B)
微积分(上)期末考试试题(B)微积分(上)期末考试试题(B)对外经济贸易大学 2003-2004学年第一学期《微积分》(上)期末考试试卷(B)课程课序号CMP101??(1~14)学号:___________ 姓名:___________班级:___________ 成绩:___________ 题号一二三四五六总分成绩一、选择题 (选出每小题的正确答案,每小题2分,共计8分)1.下列极限正确的是 _________。
(A )10lim 20xx +→= (B )10lim 20xx -→=(C )1lim(1)xx ex→∞-=- (D )01lim (1)1xx x+→+=2.若()(),f x x a x x φφφ=-≠其中()为连续函数,且(a )0,()f x 在x a =点_________。
(A )不连续(B )连续(C )可导(D )不可导3.设f (x )有二阶连续导数,且2()(0)0,lim1,_______x f x f x→'''==则。
()0()A x f x =是的极大值点 ()0(0)B f (,)是f(x)的拐点()0()C x f x =是的极小值点 ())0D f x x =(在处是否取极值不确定4.下列函数中满足罗尔定理条件的是。
()ln(2)[0,1]A f x x x =-()201()01x x B f x x ?≤<=?=?()()sin sin [0,]C f x x x x π=+() 21()1[1,1]D f x x =--()5.若()(),f x x φ''=则下列各式成立。
()()()0A f x x φ-= ()()()B f x x C φ-=()()()C d f x d x φ=?? ()()()d dD f x dx x dx dx dxφ=??二、填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim 1sin x f x f x x f x→-===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
微积分考试题目及答案
微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。
解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。
代入x=1得斜率为7。
又因为该点经过(1,3),故切线方程为y = 7x - 4。
8. 求曲线y = x^3上与x轴围成的面积。
解:首先确定曲线截距为(0,0),解方程得x=0。
利用定积分区间求解:∫[0,1] x^3dx = 1/4。
以上为微积分考试题目及答案,希望对您的学习有所帮助。
感谢阅读!。
《微积分》期末考试试卷(含ABC三套)
四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x
)
D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x
2
tan x 1 x
D、 lim x sin
x
1 1 x
)
3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
经济数学-微积分期末测试及答案(B)
粳稻籼稻出米率-概述说明以及解释1.引言概述部分的内容可以这样编写:1.1 概述在农产品中,稻米是世界上最重要的粮食之一,而稻米的品质和产量直接影响着人们的日常生活和粮食供应。
而在稻米的种类中,粳稻和籼稻是最常见的两种。
粳稻和籼稻在外观、生长环境、产量和食用特点等方面存在一定的差异。
对于稻米生产者和消费者来说,了解和掌握两种稻米的特点以及它们的出米率是至关重要的。
出米率是指稻米加工过程中,从稻谷中获得的高质量稻米的比例。
它是一种评价稻米加工质量的重要指标。
直观地说,出米率高意味着从同样数量的稻谷中可以获得更多的稻米。
而了解出米率的计算方法和影响因素,可以帮助稻米种植者和加工者更好地控制和提高出米率,从而达到优化资源利用和提高经济效益的目的。
本文将深入探讨粳稻和籼稻的特点,并介绍出米率的定义和计算方法。
同时,我们还将比较粳稻和籼稻的出米率,分析影响出米率的因素,并提供提高粳稻和籼稻出米率的相关方法。
希望读者通过阅读本文,能够对粳稻和籼稻的出米率有更深入的了解,同时为相关从业人员提供一些有益的参考和建议。
【1.2 文章结构】本文主要通过对粳稻和籼稻出米率的研究,探讨了两者的特点、出米率的定义和计算方法,以及影响粳稻和籼稻出米率的因素和提高出米率的方法。
具体结构如下:1. 引言1.1 概述在这一部分,我们将简要介绍粳稻和籼稻以及出米率的概念。
1.2 文章结构此处我们将详细介绍本文的整体结构,以便读者更好地理解文章的内容。
1.3 目的我们将阐明本文的研究目的,以及为什么粳稻和籼稻出米率的研究是重要的。
1.4 总结引言部分的最后,我们将对本章的内容进行一个简要的总结。
2. 正文2.1 粳稻的特点在这一部分,我们将探讨粳稻的生长环境、生长周期和产量等特点,并分析其与出米率的关系。
2.2 籼稻的特点在本节中,我们将介绍籼稻的生产特点,如生长环境、品质特点和适应能力,并分析其与出米率的关系。
2.3 出米率的定义和计算方法此部分将详细定义出米率的概念,并提供不同计算方法的说明,以便读者更好地理解出米率的计算过程。
微积分期末试题及答案
微积分期末试题及答案一、选择题1.微积分的概念是由谁提出的?A.牛顿B.莱布尼茨C.高斯D.欧拉答案:B2.一个物体在 t 秒后的位移函数为 s(t) = 4t^3 - 2t^2 + 5t + 1。
求该物体在 t = 2 秒时的速度。
A.10B.23C.35D.49答案:C3.定义在[a,b]上的函数 f(x) 满足f(x) ≥ 0,对于任意 x ∈ [a,b] 都有∫[a,b] f(x) dx = 0,则 f(x) =A.常数函数B.0C.连续函数D.不满足条件,不存在这样的函数答案:B4.若函数 f 在区间 [a,b] 上连续,则在区间内至少存在一个数 c,使得A.∫[a,b] f(x) dx = 0B.∫[a,b] f(x) dx = f(c)C.∫[a,b] f'(x) dx = f(b) - f(a)D.∫[a,b] f(x) dx = F(b) - F(a),其中 F 为 f 的不定积分答案:D5.已知函数 f(x) = x^2,求在点 x = 2 处的切线方程。
A.y = 2x - 2B.y = 2x + 2C.y = -2x + 2D.y = -2x - 2答案:A二、计算题1.计算∫(2x - 1) dx。
解:∫(2x - 1) dx = x^2 - x + C。
2.计算极限lim(x→∞) (3x^2 - 4x + 2)。
解:lim(x→∞) (3x^2 - 4x + 2) = ∞。
3.计算导数 dy/dx,其中 y = 5x^3 - 2x^2 + 7x - 1。
解:dy/dx = 15x^2 - 4x + 7。
4.计算函数 f(x) = x^3 + 2x^2 - 5x + 3 的驻点。
解:驻点为 f'(x) = 0 的解。
f'(x) = 3x^2 + 4x - 5 = 0,解得 x = -1 或 x = 5/3。
5.计算定积分∫[0,π/2] sin(x) dx。
(完整word版)微积分考试试题
《微积分》试题一、选择题(3×5=15)1、.函数f (x)=1+x3+x5,则f (x3+x5)为( d )(A)1+x3+x5(B)1+2(x3+x5)(C)1+x6+x10(D)1+(x3+x5)3+(x3+x5)52、.函数f(x)在区间[a,b] 上连续,则以下结论正确的是( b )(A)f (x)可能存在,也可能不存在,x∈[a,b]。
(B)f (x)在[a,b] 上必有最大值。
(C)f (x)在[a,b] 上必有最小值,但没有最大值。
(D)f (x)在(a,b) 上必有最小值。
3、函数的弹性是函数对自变量的( C )A、导数B、变化率C、相对变化率D、微分4、下列论断正确的是( a )A、可导极值点必为驻点B、极值点必为驻点C、驻点必为可导极值点D、驻点必为极值点5、∫e-x dx=( b )(A)e-x+c (B)-e-x+c (C)-e-x(D)-e x +c二、填空题(3×5=15)1.设,则 。
[答案: ]2.函数y=x+ex 上点 (0,1) 处的切线方程是_____________。
[答案:2x-y+1=0]3、物体运动方程为S=11+t (米)。
则在t=1秒时,物体速度为V=____,加速度为a=____。
[答案:41-,41]4.设,则 。
[答案:34]5.若⎰+=c e 2dx)x (f 2x ,则f(x)=_________。
[答案:2x e ]三、计算题 1、设x sin ey x1tan = ,求dy 。
(10分)解:dy=d x sin ex1tan =dx x sin x 1sec x 1x cos e22x1tan⎪⎭⎫ ⎝⎛-2.计算⎰+2x )e 1(dx。
(15分)解:原式=⎰+-+dx )e 1(e e 12x x x =⎰⎰++-+2x x x )e 1()e 1(d e 1dx =⎰+++-+x x x x e 11dx e 1e e 1 =x-ln(1+e x )+xe11+ +c3.求(15分)解:4.设一质量为m的物体从高空自由落下,空气阻力正比于速度( 比例常数为k)0 )求速度与时间的关系。
微积分上册期末考试试题
微积分上册期末考试试题一、选择题(每题3分,共30分)1. 函数 \( f(x) = \frac{1}{x} \) 在区间 \( (0, \infty) \) 上是:A. 连续的B. 可导的C. 不连续也不可导D. 有界但无界的2. 曲线 \( y = x^2 \) 与直线 \( y = 4x \) 相切的点是:A. \( (0,0) \)B. \( (2,8) \)C. \( (1,1) \)D. \( (4,16) \)3. 若 \( \lim_{x \to 0} \frac{f(x)}{x} = 3 \),则函数 \( f(x) \) 在 \( x = 0 \) 处的导数是:A. 0B. 3C. 无穷大D. 不存在4. 函数 \( f(x) = \sin(x) \) 在区间 \( [0, \pi] \) 上的最大值是:A. 1B. \( \frac{\pi}{2} \)C. \( \pi \)D. \( \frac{\pi}{4} \)5. 若 \( \int_{0}^{1} f(x) dx = 2 \),且 \( f(x) \) 在\( [0,1] \) 上连续,则 \( f(x) \) 在 \( [0,1] \) 上的平均值是:A. 1B. 2C. 3D. 46. 函数 \( f(x) = \ln(x) \) 的原函数是:A. \( x \ln(x) \)B. \( x \ln(x) + x \)C. \( x \ln(x) - x \)D. \( x \ln(x) + C \)7. 函数 \( f(x) = x^3 - 6x^2 + 9x \) 的零点是:A. 0, 3B. -3, 0C. 1, 3D. -3, 18. 若 \( \int_{a}^{b} f(x) dx = 3 \),且 \( f(x) = x^2 \),则\( a \) 和 \( b \) 的值分别是:A. \( -1, 1 \)B. \( 0, 2 \)C. \( -2, 2 \)D. \( 1, 2 \)9. 函数 \( f(x) = \tan(x) \) 在区间 \( (-\frac{\pi}{2},\frac{\pi}{2}) \) 上是:A. 连续的B. 可导的C. 有界但无界的D. 不连续也不可导10. 若 \( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),则\( f(x) \) 在无穷远处的渐近线是:A. \( y = 0 \)B. \( y = x \)C. \( y = -x \)D. \( y = \infty \)二、计算题(每题15分,共30分)1. 计算定积分 \( \int_{0}^{1} (3x^2 - 2x + 1) dx \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分(上)期末考试试题(B)
对外经济贸易大学 2003-2004学年第一学期 《微积分》(上)期末考试试卷(B)
课程课序号CMP101−−(1~14)
学号:___________ 姓名:___________
班级:___________ 成绩:___________ 题号
一 二 三 四 五 六 总分
成
绩
一、 选择题 (选出每小题的正确答案,每小题2分,共计8分)
1.
下列极限正确的是 _________。
(A )1
0lim 20x
x +
→= (B )
10lim 20
x
x -
→=
(C )1lim(1)
x
x e
x
→∞
-=- (D )
01lim (1)1x
x x
+→+=
2.若()(),f x x a x x φφφ=-≠其中()为连续函数,且(a )0,()
f x 在
x a =点_________。
(A ) 不连续 (B ) 连续 (C )可导 (D ) 不可导
3.
设f (x )有二阶连续导数,且
2
()
(0)0,lim
1,_______x f x f x
→'''==则。
()
0()A x f x =是的极大值点 ()0(0)B f (,)是f(x)的拐点
()0()C x f x =是的极小值点 ())0D f x x =(在处是否取极值不确定
4.下列函数中满足罗尔定理条件的是 。
()ln(2)
[0,1]
A f x x x =-()
2
01()0
1
x x B f x x ⎧≤<=⎨
=⎩()
()sin sin [0,]
C f x x x x π=+() 2
1
()1[1,1]
D f x x =-
-()
5.若()(),f x x φ''=则下列各式 成立。
()
()()0A f x x φ-= ()
()()B f x x C φ-=
()
()()C d f x d x φ=⎰⎰ ()
()()d d
D f x dx x dx dx dx
φ=⎰⎰
二、 填空题(每小题3分,共18分)
1. 设0
(2)
()0(0)0,lim 1sin x f x f x x f x
→-===-在处可导,且,那么曲线()
y f x =在原点处的切线方程是__________。
2.设函数f (x )可导,则2
(4)(2)lim 2
x f x f x →--=-_________。
3.设ln ,()x xf x dx x '=⎰为f(x)的一个原函数那么 。
4
.
设
2121,2ln 3x x y a x bx x a b ===++均是的极值点,则、的值为。
5. 设某商品的需求量Q是价格P的函数
116004
P
Q =(),
,那么在P=1的水平上,若价格
下降1%,需求量将 。
6.若1
(),,1
x y f u u x +==-且,1)('
u u f
=
dy dx
= 。
三、计算题(共42分): 1、求1
sin 0
((1)lim x x
x xe →+
2、()41
lim x x
x arctg x π→∞
-+
3、确定 a 值,使x →0时,无穷小量sin 21
x
ax e -+-与x
等价。
4、2
1
dx
x x -
5、2
2323x dx x x ++-⎰
6、x
x arctge dx
e ⎰
7、设
()0()00
x g x e x f x x
x -⎧-≠⎪=⎨⎪=⎩
,其中g (x )具有二阶连续
导数,且g (0)=1,(0)1g '=-
求()f x '。
四、(8分))假设某种商品的需求量Q 是单价P (单位元)的函数:Q=12000-80P ;商品的总成本C 是需求量Q 的函数:C=25000+50Q 。
(1) 求边际收益函数和边际成本函数; (2)若每单位商品需要纳税2元,试求使销售利润最大的商品单价和最大利润。
五、(12分)作函数2
12(1)
x
y x -=-的图形
六、证明题(每题5分,共计10分) 1、证明方程
23
10
26
x x x +++=只有一个实根。
2、设f(x)在[a,b]上连续,在(a,b)内有二
阶导数,且()()0,()0,.
其中a<
==><
f a f b f c c b
证明在(a,b)内存在ξ,使得()0.
''<
fξ。