变压器介损

合集下载

变压器电容式套管介损数据异常分析

变压器电容式套管介损数据异常分析

变压器电容式套管介损数据异常分析变压器电容式套管介损数据异常分析变压器是电力系统中一个重要的设备,其作用是将高电压变换为低电压,或将低电压变换为高电压,以满足不同终端的电压需求。

而电容式套管介损则是对变压器绕组故障诊断中的重要参考指标,是评估变压器绕组绝缘质量的良好方法之一。

然而,在实际工作中,电容式套管介损数据经常出现异常,需要进行进一步的分析和判断。

一、电容式套管介损的基本概念电容式套管介损是指绕组绝缘材料在高电场作用下的能量损耗。

它为表征绕组的绝缘质量提供一种重要的检测手段,它直接影响到变压器的安全稳定运行。

电容式套管介损测试是一项标准的变压器绕组绝缘质量检测方式,即将一个电容容积为1.8L的电容器插入变压器绕组中,其中绕组与电容器的串联效应使得电流在绕组内部流动,电容器内的电极之间产生电压,从而测量得到绕组的电容式套管介损的数值。

二、电容式套管介损数据的异常情况由于各种原因,电容式套管介损测试数据有时会出现异常,主要表现为以下几个方面:(一)读数异常测试人员在测试时可能会出现操作不当,如连接不紧或接触不良,导致读数出现偏差或波动较大。

在数据上出现骤升或骤降情况。

(二)超出范围仪器在正常运行下测量范围是20W以下,当电容式套管介损超出该范围时,测试结果不准确,需要更换更高阶的测量设备才能测量。

(三)非随时间变化异常电容式套管介损测试的结果应该是随时间推移逐渐稳定,但如果测试的数据出现非随时间变化的异常情况,如单次测试结果比平均值远大或远小,这可能表明绕组绝缘存在故障或损坏。

(四)畸变波在测试时,电容式套管介损发生畸变波时,它会导致读数不准确或错误,这时测试仪器可能会出现误报异常。

三、异常数据的处理方法在发现电容式套管介损数据异常时,需要进行正确的处理方法。

(一)根据常识和经验来分析异常数据的原因,检查测量仪器的正常性。

(二)在电容式套管介损测试完毕后,在数据处理程序中进行对比和分析,发现异常数据,并问询测试工人得到数据异常的原因。

介质损耗,介损

介质损耗,介损
U
图16、绝缘介质tanδ的电压特性
2、温度特性
GB/T6451-2008《油浸式电力变压器技术参数和要求》中要求:容量 在8000KVA及以上变压器应提供tanδ值,测试通常在10~40 ℃下进行, 不同温度下的tanδ 值一般可按下式换算:
tan δ 2 = tan δ 1 *1.3
(T2 − T1 )
一旦变压器状态确定,无 论在串联模型还是并联模型中 变压器的等效电阻和电容也就 确定了,从而被试组合的tanδ 也就确定了,为一定值。所以 认为tanδ是绝缘材料在某一状 态下固有的,可以用作判断产 品绝缘状态是否良好的依据, 是绝缘介质的基本特性之一。
P =U IR Q =U IC
• •

P IR tan δ = = • Q IC U 1 Z R ZC jωCP 1 tan δ = = = = U ZR RP jω RP CP ZC tan δ = 1 ω RP CP
I U
C1 IC1 C R
被试绕组的等效电路
R1 ICR
IR1
图1
P tan δ = Q
图1可以转化成两种模型,一种是串联模型(图3)所示,另一种是并 联模型(图4)所示:
P =UR I Q =UC I
• • •
P UR tan δ = = • Q U C RS Z tan δ = R = = jω RS CS 1 ZC jωCS tan δ = ω RS CS
表1、变压器介损的测量部位
序列号 1 2 3 4 5 6 其他特别指示部分 高压、低压 外壳 双线圈变压器 被测线圈 低压 高压 接地部分 高压、外壳 低压、外壳 被测线圈 低压 中压 高压 高压、中压 高压、中压、低压 其他特别指示部分 三线圈变压器 接地部分 高压、中压、外壳 高压、低压、外壳 中压、低压、外壳 低压、外壳 外壳

介质损耗正接法与反接法

介质损耗正接法与反接法

介质损耗正接法与反接法变压器介损试验实际在给套管实验。

应该用反接法。

因为,套管的高压端连接在绕组上,所以应将高压接地,从套管抽头加压2500--3000V电压,进行试验。

正接法应在套管单独试验时应用追问对变压器整体做介损时,低压绕组短接接地,高压侧加试验电压,用反接法不是可以测高压绕组对低及地的介损吗用正接测高低压之间介损可以吗回答首先要弄清楚什么叫正接法和反接法的意义和线路:前者是电容的一个极板接高压同时并联标准电容器,另一个极板进桥。

这时电桥处于低电位;后者是电容的一个极板接高压同时进桥,另一个极板接地。

这时电桥处于高电位。

这种情况下电压不能加高,不超过10kV。

这样解释你能明白为什么你的回路不正确了吧,如果那样将把所有的损耗及电容都计算到里面去了介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因素角Φ)的余角(δ)。

简称介损角。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

高压电容电桥高压电容电桥的标准通道输入标准电容器的电流、试品通道输入试品电流。

通过比对电流相位差测量tgδ,通过出比电流幅值测量试品电容量。

因此用电桥测量介损还需要携带标准电容器、升压PT和调压器。

接线也十分烦琐。

变压器介质损耗测试仪使用说明书

变压器介质损耗测试仪使用说明书

一、变压器介质损耗测试仪概说变压器介质损耗测试仪是一种先进的测量介质损耗(tgδ)和电容容量(Cx)的仪器,用于工频高压下,测量各种绝缘材料、绝缘套管、电力电缆、电容器、互感器、变压器等高压设备的介质损耗(tgδ)和电容容量(Cx )。

它淘汰了QSI高压电桥,具有操作简单、中文显示、打印,使用方便、无需换算、自带高压,抗干扰能力强等优点。

JSY—03体积小、重量轻,是我厂的第三代智能化介质损耗测试仪。

二、变压器介质损耗测试仪技术指标1.环境温度:0~40℃(液晶屏应避免长时日照)2.相对湿度:30%~70%3.供电电源:电压:220V±10%,频率:50±1Hz5.输出功率:1KVA6.显示分辨率:4位7.测量范围:介质损耗(tgδ):0-50%电容容量(Cx)和加载电压:2.5KV档:≤300nF(300000pF)3KV档:≤200nF(200000pF)5KV档:≤76nF(76000pF)7.5KV档:≤34nF(34000pF)10KV档:≤20nF(20000pF)8.基本测量误差:介质损耗(tgδ):1%±0.07%(加载电流20μA~500mA)正接介质损耗(tgδ):2%±0.09%(加载电流5μA~20μA)反接电容容量(Cx):1.5%±1.5pF三、变压器介质损耗测试仪结构仪器为升压与测量一体化结构,输出电压2.5KV~10KV五档可调,以适应各种需要,在测量时无需任何外部设备。

接线与QSI电桥相似,但比其方便。

图一为仪器操作面板图,图二为仪器接线端面图。

⑴显示窗————————液晶显示屏。

⑵试验电压选择开关———当开关置于“关”时,仪器无高压输出。

⑶操作键盘———————选择测量方式、起动、停止、打印等操作。

⑷电源插座———————保险丝用5A。

⑸电源开关———————电源通断。

⑹起动灯————————指示高压输出。

⑺打印机————————打印测试结果。

变压器试验之绕组介质损耗试验

变压器试验之绕组介质损耗试验

变压器试验之绕组介质损耗试验变压器之绕组介质损耗试验绕组介质损耗试验试验目的测试变压器绕组连同套管的介质损耗角正切值的目的主要是检查变压器整体是否受潮、绝缘油及纸是否劣化、绕组上是否附着油泥及存在严重局部缺陷等。

它是判断变压器绝缘状态的一种较有效的手段,近年来随着变压器绕组变形测试的开展,测量变压器绕组的及电容量可以作为绕组变形判断的辅助手段之一。

试验仪器选择全自动抗干扰介质损耗测试仪。

试验试验步骤及接线图(1)变压器绕组连同套管tgδ和电容量的测量1) 首先将介损测试仪接地。

2) 将高压侧A、B、C三绕组短接起来。

3) 将其他非被试绕组三相及中性点短接起来,并接地(2#)。

4) 将红色高压线一端芯线插入测试仪“高压输出”插座上,注意要将红色高压线的外端接地屏蔽线接地。

5) 红色高压线另一端接高压绕组的短接线(1#)。

6) 连接好电源输入线。

7) 检查试验接线正确,操作人员征得试验负责人许可后方可加压试验。

8) 打开电源,仪器进入自检。

9) 自检完毕后选择反接线测量方式。

10) 预置试验电压为10KV。

11) 接通高压允许开关。

12) 按下启动键开始测量。

注意:加压过程中试验负责人履行监护制度。

13) 测试完成后自动降压到零测量结束。

14) 关闭高压允许开关后,记录所测量电容器及介损值。

15) 打印完实验数据后,关闭总电源。

16) 用专用放电棒将被试绕组接地并充分放电,变更试验接线,同理的方法测量变压器低压绕组连同套管tgδ值和电容量。

17) 首先断开仪器总电源。

18) 在高压端短接线上挂接地线。

19) 拆除高压测试线。

20) 拆除高压套管短接线。

21) 拆除其他非被试绕组的接地线及短接线。

22) 最后拆除仪器其它试验线及地线。

23) 试验完毕后,填写试验表格。

(2)变压器电容型套管tgδ和电容量的测量1) 首先将介损测试仪接地。

2) 将高压侧A、B、C三绕组短接起来。

3) 将非测试的其他绕组中压侧三相及中性点短接起来,并接地。

变压器绕组介损试验

变压器绕组介损试验
技能操作项目作业指导书及考核评分标准
工种:电气试验
编号
行为领域
得分
考核时限
30min
题型
技能
题分
56
开始时间
结束时间
用时
作业项目
变压器绕组连同套管介损试验
需要说明的问题和要求
1、用智能型介损电桥测量变压器绕组连同套管的介损及电容量;
2、一人单独完成测量接线工作,有人监护(考评员作为监护人);
3、现场就地操作演示;
2
2、接好试品,合上电源刀闸,启动设备进行升压、试验。
2
3、升压时进行呼唱。
2
4、升压过程中注意仪器的电压、电流显示,并留意被试品有无异常声响。
2
5、电压升到试验要求值,正确记录仪器显示数值。
3
6、读取数据后,将仪器启动电源关闭,拉开电源刀闸。
2
7、被试品放电、挂地线。
2
9
试验数据记录
(满分2分)
准确记录试验时间、地点温度、湿度、油温、分接开关档位及试验数据
5、绝缘胶带;
6、量要求
满分
1
安全措施
(满分10分)
1、试验人员穿绝缘鞋、戴安全帽,工作服穿戴齐整
2
2、检查被试品是否带电(可口述)
2
3、接好接地线对变压器进行充分放电(使用放电棒)
2
4、设置合适的围栏并悬挂标示牌
2
5、试验前,对变压器外观进行检查(包括瓷瓶、油位、接地线、分接开关、本体清洁度等),并向考评员汇报
1、试品附近放置温湿度表,口述放置要求
2
2、在变压器本体测温孔放置棒式温度计。
2
5
介损接线情况
(满分6分)
1、仪器摆放规整

110kV变压器套管介损试验方法

110kV变压器套管介损试验方法

1引言按照《电力设备预防性试验规程》的规定,在对电容量为3150kVA 及以上的变压器进行大修或有必要进行绕组连同套管时,应对损失角正切值tan δ进行测量[1]。

若介损值超标,就意味着变压器可能受潮、绝缘老化、油质劣化、绝缘上附着油泥或设备绝缘存在严重缺陷;若电介质严重发热,设备则有爆炸的危险,应立即检修。

然而实际中,对大中型变压器的tan δ测量,只能发现整体的分布性缺陷,因为局部集中性缺陷所引起的损失增加值占总损失的很小部分,也就是说套管缺陷引起的损耗增加值占总损耗的很小部分,因此若要检测大容量变压器套管的绝缘状况,应单独测量套管的介质损耗正切值和末屏对地的介损值[2]。

2变压器套管结构变压器套管是将变压器绕组的高压线引至油箱外部的出线装置。

110kV 以上的变压器套管通常是油纸电容型,这种套管是依据电容分压原理卷制而成的,电容芯子是以电缆纸和油作为主绝缘,其外部是瓷绝缘,电容芯子必须全部浸在优质的变压器油中[3]。

110kV 级以上的电容型套管,在其法兰上有一只接地小套管,接地小套管与电容芯子的最末屏(接地屏)相连,运行时接地,检修时供试验(如测量介损、绝缘电阻等)用。

当套管因密封不良等原因受潮时,水分往往通过外层绝缘逐渐进入电容芯子,因此测量主绝缘和测量外层绝缘即末屏对地的绝缘电阻及介质损耗因数,能有效地发现绝缘是否受潮。

为防止套管在运行中发生爆炸事故,应定期进行主绝缘和末屏对地介损试验[4]。

3变压器试验规程的规定为了及时有效地发现电容型套管绝缘受潮,《电力设备预防性试验规程》规定大修后或运行中油纸电容型110kV 套管主绝缘的tan δ值在20℃时不大于1.0%,当电容型套管末屏对地绝缘电阻小于1000M Ω时,应测量末屏对地的介质损耗因数,其值不大于2。

电容型套管的电容值与出厂值或上一次试验值的差别超出±5%时,应查明原因[5]。

4套管的介损试验方法为了准确测量套管的受潮情况和末屏对地的绝缘情况,在实验室内,对一台110kV 电容型套管进行如下试验:该试验采用HJY-2000B 型介损测试仪。

变压器的套管介损试验

变压器的套管介损试验

变压器的套管介损试验
实际上是指变压器电容型套管的主绝缘及电容型套管对地末屏tanδ与电容量的测量。

tanδ测量值:
1)20℃时的tanδ(%)值应不大于下表中数值:见附表。

2) 电容型套管的电容值与出厂值或上一次试验值的差别超出±5%时,应查明原因。

3) 当电容型套管末屏对地绝缘电阻小于1000MΩ时,应测量末屏对地tanδ,其值不大于2%。

测量接线方法及注意事项:
⑴电桥正接线测量。

测量变压器套管tanδ时,与被试套管相连的所有绕组端子连在一起加压,其余绕组端子均接地,末屏接电桥,正接线测量。

⑵油纸电容型套管的tanδ一般不进行温度换算,当tanδ与出厂值或上一次试验值比较有明显增长或接近左表数值时,应综合分析tanδ与温度、电压的关系。

当tanδ随温度增加明显增大或试验电压由10kV升到Um/ 时,tanδ增量超过±0.3%,不应继续运行。

⑶测量时记录环境温度及变压器顶层油温。

⑷只测量有末屏引出的套管tanδ和电容值。

⑸封闭式电缆出线或GIS出线的变压器,电缆、GIS侧套管从中性点加压,非被试侧短路接地。

主绝缘及电容型套管末屏对地绝缘电阻:
1)主绝缘的绝缘电阻值一般不应低于下列数值:
110kV及以上:10000MΩ
35kV:5000MΩ;
2)末屏对地的绝缘电阻不应低于1000MΩ。

变压器介损试验操作规程

变压器介损试验操作规程

第Ⅰ级第3-3 页第Ⅱ级第4-8页文件编码:CZGC-TLM-YQSCJSB-DLCSD-005-2007版本更新记录版本号日期再版原因试验目的:检测变压器内部绝缘状况。

试验原理:采用高压电桥原理,分别对标准回路和被试回路的电流信号进行采样,求得两回路的“相角差”和“模之比”,从而得到介质损耗值tgδ和被测电容值Cx。

试验对象:三圈变压器(带套管)试验设备:M-8000型变频介质侧试仪技术指标:1、介损测量范围:0—100%2、电容测量范围:2kV:15PF—0.2μF ,10kV:3P—40000PF3、电压输出:2—10KV变频频率:47.5HZ,52.5HZ4、温湿度测量范围:温度:±2℃,湿度:±5%RH测试参数:高压侧对地C1,中压侧对地C2,低压侧对地C3,高压对低中压侧C12,中压对低压侧C23,低压对高压侧C13如图所示:C12C13C2C23C3三圈变压器Ⅰ级状态描述100 变压器做符合试验所需条件的操作110 试验设备与试验接线准备200变压器介损试验300 拆除试验接线和整理试验设备Ⅱ级动作执行和确认防范措施:1、工作中正确穿戴劳保用品。

2、在2m以上的变压器平台上工作须正确使用安全带。

3、试验时与高压挂钩保持至少0.7m的安全距离。

紧急停机:在出现危害人身,设备安全的紧急情况时,可以迅速关闭仪器电源开关或切断仪器电源。

操作100变压器做符合试验所需条件的操作101I [ ] -给待测试品做安全措施102I ()-安全措施正确无误103I ()-变压器已与高压线路隔离104I ()-通知P接好放电棒的接地线105I [ ] -通知P用接地的放电棒给各侧线圈放电106I [ ] -通知P给各侧线圈验电107P ()-各侧线圈确无电压110试验设备与试验接线准备111I [ ]-准备M-8000型变频介质侧试仪112I [ ]-将透明双色接地线一端夹在地网上113I [ ]-将双色线的另一端可靠的接于控制箱面板的接地螺栓上114I [ ]-将红色测量线插入面板的测量插座115I [ ]-将蓝色屏蔽线插入面板的屏蔽插座116I [ ]-将高压电缆头一端插入箱体侧面的高压插座内并锁住117I [ ]-将控制箱的过流开关置于“ON”118I [ ]-插好220V交流电源插头119I [ ]-通知P做试验监护200变压器介损试验201I [ ]-准备测量高压侧对地绝缘介质参数202I [ ]-通知P将中压侧和低压侧线圈三相相互短接203P [ ]-将屏蔽线的鳄鱼夹夹在中低压线圈的短接线上204P [ ]-将测量线的鳄鱼夹可靠夹在地网上205P [ ]-将高压挂钩挂于高压线圈的出线端上206I [ ]-通知P做实验监护207I ()- P试验监护到位208I ()-控制面板上的过流开关在“ON”位置209I [ ]-开启仪器电源开关210I ()-仪器显示正常211I [ ]-按“工作方式”键选择“内接”方式212I [ ]-按“接线方式”键选择“工频反接”方式213I [ ]-按“电压设置”键选择10kV试验电压214I [ ]-按“测量/换页”键进行测量215I [ ]-测量结束后记录测试数据216I [ ]-按“测量/换页”键翻页记录数据217I [ ]-准备测量中压侧对地绝缘介质参数218I [ ]-将过流开关置于“0ff”位置219I [ ]-按“工作方式”键退回测量前设置菜单220I [ ]-通知P用放电棒给各侧线圈放电221I [ ]-通知P给各侧线圈验电222P ()-各侧线圈确无电压223P [ ]-解下中低压线圈的短接线224P [ ]-将高压侧和低压侧线圈三相相互短接225P [ ]-将屏蔽线的鳄鱼夹夹在高低压线圈的短接线上226P [ ]-将测量线的鳄鱼夹可靠夹在地网上227P [ ]-将高压挂钩挂于中压线圈的出线端上228I [ ]-通知P做实验监护229I ()- P试验监护到位230I ()-控制面板上的过流开关在“ON”位置231I [ ]-重复211-216步操作232I [ ]-准备测量低压侧对地绝缘介质参数233I [ ]-将过流开关置于“0ff”位置234I [ ]-按“工作方式”键退回测量前设置菜单235I [ ]-通知P用放电棒给各侧线圈放电236I [ ]-通知P给各侧线圈验电237P ()-各侧线圈确无电压238P [ ]-解下高低压线圈的短接线239P [ ]-将高压侧和中压侧线圈三相相互短接240P [ ]-将屏蔽线的鳄鱼夹夹在高中压线圈的短接线上241P [ ]-将测量线的鳄鱼夹可靠夹在地网上242P [ ]-将高压挂钩挂于低压线圈的出线端上243I [ ]-通知P做实验监护244I ()- P试验监护到位245I ()-控制面板上的过流开关在“ON”位置246I [ ]-重复211-216步操作247I [ ]-准备测量高压侧对中压侧绝缘介质参数248I [ ]-将过流开关置于“0ff”位置249I [ ]-按“工作方式”键退回测量前设置菜单250I [ ]-通知P用放电棒给各侧线圈放电251I [ ]-通知P给各侧线圈验电252P ()-各侧线圈确无电压253P [ ]-解下高中压线圈的短接线254P [ ]-将透明双色接地线可靠夹在低压线圈的出线端上255P [ ]-将测量线的鳄鱼夹可靠夹在中压线圈的出线端上256P [ ]-将高压挂钩挂于高压线圈的出线端上257I [ ]-通知P做实验监护258I ()- P试验监护到位259I ()-控制面板上的过流开关在“ON”位置260I [ ]-按“工作方式”键选择“内接”方式261I [ ]-按“接线方式”键选择“工频正接”方式262I [ ]-按“电压设置”键选择10kV试验电压263I [ ]-按“测量/换页”键进行测量264I [ ]-测量结束后记录测试数据265I [ ]-按“测量/换页”键翻页记录数据266I [ ]-准备测量中压侧对低压侧绝缘介质参数267I [ ]-将过流开关置于“0ff”位置268I [ ]-按“工作方式”键退回测量前设置菜单269I [ ]-通知P用放电棒给各侧线圈放电270I [ ]-通知P给各侧线圈验电271P ()-各侧线圈确无电压272P [ ]-将透明双色接地线可靠夹在高压线圈的出线端上273P [ ]-将测量线的鳄鱼夹可靠夹在低压线圈的出线端上274P [ ]-将高压挂钩挂于中压线圈的出线端上275I [ ]-通知P做实验监护276I ()- P试验监护到位277I ()-控制面板上的过流开关在“ON”位置278I ()-重复260-265步设置和操作279I [ ]-准备测量低压侧对高压侧绝缘介质参数280I [ ]-将过流开关置于“0ff”位置281I [ ]-按“工作方式”键退回测量前设置菜单282I [ ]-通知P用放电棒给各侧线圈放电283I [ ]-通知P给各侧线圈验电284P ()-各侧线圈确无电压285P [ ]-将透明双色接地线可靠夹在中压线圈的出线端上286P [ ]-将测量线的鳄鱼夹可靠夹在高压线圈的出线端上287P [ ]-将高压挂钩挂于低压线圈的出线端上288I [ ]-通知P做实验监护289I ()- P试验监护到位290I ()-控制面板上的过流开关在“ON”位置291I ()-重复260-265步设置和操作292I [ ]-将过流开关置于“0ff”位置293I [ ]-按“工作方式”键退回测量前设置菜单300拆除试验接线和整理试验设备301I [ ]-关闭仪器电源开关302I [ ]-断开仪器220V交流电源303I [ ]-通知P用放电棒给各侧线圈放电304P ()-验明各侧线圈无残余电压305P [ ]-拆除变压器上所有试验接线306P [ ]-依次拆除和整理仪器上高压电缆线,测量线,屏蔽线307P [ ]-最后拆除和整理双色接地线308P [ ]-整理试验设备。

变压器介损试验

变压器介损试验
9.局部缺陷的影响。
10.周围的杂散电容太大,而被试品的自身电容量相 对小。
11.在潮湿大气条件下瓷套表面凝结水膜。 12.套管内部油质劣化。 13.标准电容介质损耗大于试品介质损耗。 14.试品周围构架杂物与试品绝缘结构形成的空间
干扰网络的影响。 15.试验装置屏蔽不完善。 16.电压的影响。 17.频率的影响。
③局部放电引起的损耗
(二)介质损失角正切主要能发现哪些缺陷?
测量电气设备绝缘的介质损失角正切值tgnδ、是
判断绝缘性能的有效方法,主要用于检查电气设 备整体是否受潮、绝缘老化、油质劣化、绝缘上 附着油泥及严重局部缺陷等;以及小体积设备绝 缘的某些局部缺陷。(在一般情况下,介质损耗
tgnδ试验主要反映设备绝缘的整体缺陷,而对局
③升压速度不应太快。升压中若发现异常现象, 应马上降压断开电源,并查明原因。
④试验完毕,降压、断开电源后,才能更改接线 。AI-6000E型高压输出源自板图AI-6000E型上面板图
仪器结构
(六)影响变压器介损测量的一些因素
影响介质损耗的因素有下面几种
1.温度的影响:
应尽量选择在相近温度条件下进行绝缘tgnδ试验, 温度 对测量tgnδ值影响较大,在绝大多数情况下,tgnδ值随温 度升高而增高,tgnδ值随温度的变化与试品的绝缘结构有关 。这是由于温度升高,介质中的离子增多,电导电流增大, 极化过程中分子间阻力增加,从而使介质损耗增加。
(同一变压器各绕组tgnδ的要求值)
③当变压器电容型套管末屏对地绝阻低于1000MΩ 时,应测量末屏对地介损,加压2kV
(四)试验方法
正接线及反接线
①测量变压器介损要采用反接法
把各绕组的所有端子用导线短接,被试绕组(引 出者)应短接一起加压,其它绕组短接后接地或 屏蔽,铁心和夹件的接地端子与油箱相连(接地 )反接线。该接线适用于被试品—端接地。测量 时电桥处于高电位,试验电压受电桥绝缘水平限 制,高压端对地杂散电容不易消除,抗干扰性差 。例测量变压器介损要采用反接法

综述电力变压器套管介损试验

综述电力变压器套管介损试验

综述电力变压器套管介损试验摘要:本文阐述电力系统中的变压器改变交流电压的重要装置,在维持系统运作中发挥了关键作用。

对变压器进行介损试验有助于掌握装置的结构性能,判断变压器使用期间状态的正常与否,在故障发生后提醒技术人员采取措施处理。

针对这一点,文章分析了“变压器介损试验”的有关问题,以变压器套管介损试验为重点,联系现场试验情况之后,对试验中涉及到的问题进行进一步研究。

关键词:变压器;套管介损;现场试验;分析变压器套管是把变压器中的高、低压引线连接到油箱之外,发挥了重要的引线功能,也是变压器载流的主要元件。

变压器套管出现故障后,则会造成油管引线作用受损,不利于变压器的正常运行。

通过110 kV变压器套管介损试验,企业可以及时发现变压器运行存在的诸多问题,采取有效的方法防止介损扩大。

1变压器套管结构变压器套管的主要作用在于把变压器装置里的高压引线、低压引线牵引到油箱之外,对整个装置内的电流负荷有很大的引导作用。

目前,我国电力企业采用的110 kV变压器套管均为电容型,这种套管产品的法兰上有接地小套管,其与电容芯子互相连接,在变压器运行过程中会发挥检修、试验等功能,如介损检测、绝缘检测等。

①结构介绍。

变压器电容套管是目前运用最多的电容套管,这种套管具有小重量、小尺寸、小体积等特点,在变压器中的运用十分广泛。

电容套管的具体结构为:套管的主绝缘使用了油纸电容芯子,载流方法是选用了穿缆式,套管在变压器中的连接结合了多组压力弹簧引起的轴向压紧力完成。

一般情况下,110 kV 以上的套管在瓷件、连接套管之间的连接处添加了心卡装结构,这样可以显著改善套管的密封效果。

套筒在连接过程中设置了抽头装置、取油阀、放气塞等,每一种结构都有着不同的作用。

②试验流程。

第一,选择AI-6000介损仪装置,将其与变压器准确地连接起来;第二,把AI-6000型的数据、QSI型数据之间进行对比分析;第三,检测电容套管的受潮状况,测量套管主绝缘的介损、末屏对地的绝缘电阻等值数;第四,总结试验中需要注意的相关事项,为后期的试验积累经验。

变压器油介损增高的原因及解决办法

变压器油介损增高的原因及解决办法

变压器油介损增高的原因及解决办法
变压器油介损增高的原因及解决办法如下:
一、变压器油介损增高的原因:
1. 污染状况:极端环境污染,例如飞灰、气象因素和污染物,都可以影响变压器油的性能,也会降低变压器对油的抗污染能力;
2. 温度状况:由于变压器的温度升高,油的黏度会降低,油的介电性也会降低,也就是使油介损增高的主要因素;
3. 水污染:水污染也是变压器油介损增高的重要原因之一,如果变压器油中含有较多的水分,相互抵消,会导致介损增大;
4. 化学反应:当变压器油中混合有污染物和量超过允许限度,可能会发生不可逆化学反应,造成油介损增高。

二、变压器油介损增高的解决办法:
1. 控制污染:对变压器装置采用一定的保护措施,限制混入污染物;
2. 防止水污染:采取必要的技术措施,在变压器及管路的接头处妥善
密封,以防止水污染;
3. 控制温度:采取必要的技术措施,控制变压器的散热能力,降低变压器的工作温度;
4.定期检查:对变压器油进行定期检查,及时发现污染物和水污染,及时处理变压器油介损增高的问题。

变压器介损测试方法

变压器介损测试方法

变压器介损测试方法(实用版3篇)目录(篇1)一、引言二、变压器介质损耗测试方法的原理与特点1.介质损耗测试仪的测量原理2.介质损耗测试仪的特点三、变压器介质损耗测试方法的注意事项1.测试前的准备工作2.测试过程中的操作要点3.测试数据的分析与处理四、变压器介质损耗测试方法的应用实例1.110kV 变压器套管介损试验方法2.新安装 500 kV 变压器介损分析与判定五、结论正文(篇1)一、引言随着我国电力系统的快速发展,变压器作为电力系统中的重要设备,其安全运行备受关注。

变压器介质损耗是衡量其绝缘性能的重要指标,因此,采用正确的测试方法对变压器介质损耗进行检测至关重要。

本文将介绍变压器介质损耗测试方法的原理、特点、注意事项以及应用实例。

二、变压器介质损耗测试方法的原理与特点(1)介质损耗测试仪的测量原理变压器介质损耗测试仪主要采用变频电源技术,利用单片机和现代化电子技术进行自动频率变换、模/数转换和数据运算。

测试仪能够抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便。

(2)介质损耗测试仪的特点介质损耗测试仪具有以下特点:1.负载损耗的测量:能够显示三相电压、三相电流、三相功率,自动计算出变压器的阻抗电压百分比,折算到额定温度下的负载损耗。

2.测试过程中的报警自适应提示功能:方便现场用户使用。

3.采用高新技术:突破了传统的电桥测量方式,采用变频电源技术,具有抗干扰能力强、测试速度快、精度高、全自动数字化、操作简便等特点。

三、变压器介质损耗测试方法的注意事项(1)测试前的准备工作1.确保测试仪器完好无损,接线牢固。

2.对被测变压器进行检查,确保其表面清洁、无破损。

3.准备测试所需的标准电容、采样电阻等元器件。

(2)测试过程中的操作要点1.根据被测变压器的电压等级选择合适的测试电压。

2.接线正确,确保正接线、内标准电容、内高压等接线方式正确。

3.测试过程中注意观察测试仪器的显示数据,如有异常应及时处理。

变压器介损及电容量测试

变压器介损及电容量测试
变压器介损及电容量测试
1 试验目的
介质损耗角正切值又称介质损耗因数或简称介 损,它是在交流电压作用下,电介质中的电流 有功分量与无功分量的比值,是一个无量纲的 数。它反映电介质内单位体积中能量损耗的大 小,它与电介质的体积尺寸大小无关。测量介 质损耗因数是一项灵敏度很高的试验项目,它 可以发现电力设备绝缘整体受潮、劣化变质以 及小体积被试设备贯通和未贯通的局部缺陷。
5 试验项目
变压器介损及电容量测试
5 试验项目 电容型套管的tanδ和电容值 ➢ 拆开套管末屏接地片(线) ➢ 与被试套管相连的所有绕组端子短接后接介损
测试仪高压端,其余绕组端子均接地,套管末 屏接介损测试仪,正接线测量 ➢ 施加电压10kV
变压器介损及电容量测试
5 试验项目
变压器介损及电容量测试
✓绕组电压10kV以上:10kV ✓绕组电压10kV以下:Un ➢介损仪的高压屏蔽端均悬空
变压器介损及电容量测试
5 试验项目
测量部位
低压绕组-高、中压绕组及地 中压绕组-高、低压绕组及地
介损仪接线
接线法 其它应
高压端 Cx端
接地部位
低压绕组 - 反接法 高、中压绕组
中压绕组 - 反接法 高、低压绕组
夹件
芯、夹件
高、低压绕组-中压绕组、铁芯、 高、低压绕组 中压绕组、铁 正接法
夹件
芯、夹件
中、低压绕组-高压绕组、铁芯、 中、低压绕组 高压绕组、铁 正接法
夹件
芯、夹件
高、中、低压绕组-铁芯、夹件 高、中、低压绕组 铁芯、夹件 正接法
接地 部件 外壳 外壳 外壳 外壳 外壳 外壳 外壳
变压器介损及电容量测试
1.0
变压器介损及电容量测试

变压器油介损增大原因及处理

变压器油介损增大原因及处理

变压器油介损增大原因及处理摘要:500kv变压器中在投运时,均伴随着油介损问题,主要表现在不稳定方面,或增大、或分散等,通过不同的实验,对不同的油进行了分析与研究,从而为分析油介损的原因提供了依据,但在油介损增大与分散问题的研究尚未完成,因此本文将对500kv变压器油的介损处理进行研究,从而保证电力系统的安全性、可靠性与经济性等。

关键词:变压器;增大;原因;措施1、500kv变压器的运行情况在某个变电站中使用了250kv与500kv变压器,在20世纪90年代共同进行投运,对其用油进行过多次检验,其中250kv变压器的用油指标在合格范围内,但500kv变压器的用油指标存在问题,主要表现在油的介损较高,同时也具有分散性,为了研究500kv变压器油的介损问题,对其进行了实验分析,实验结果显示变压器油的介损与诸多因素有关。

2、500kv变压器油介损问题的原因(一)增大的原因500kv变压器油介损增大的原因主要表现在三方面:其一,在油源方面,在500kv变压器中基本为绝缘油,但绝缘油来自不同的炼油厂,通过检验,克拉玛依炼油厂的油介损未曾超标,而其他炼油厂的油介损明显增大。

45号绝缘油具有良好的抗氧化性与安定性,同时具有较低的切割馏份与平均分子量,虽然45号油的各项指标在合格范围内,但由于其具有较强的溶解性与较低的粘度,导致其极易受到污染,进而造成油介损的增大。

其二,在胶体物质方面,通常来说,油中普遍存在胶体物质,油介损在实验过程中受诸多因素的影响,如:样品、时间、温度等,如果时间相对较长,则胶质物质的下沉情况越明显,从而造成底部介损偏大;如果样品的部位相对较低,在同样的时间与温度下进行实验,较低部位的介损相对较大,由此可知,500kv变压器油的介损增大受胶体物质的影响。

其三,在微生物方面,通过对500kv变压器油样本的研究,结果表明,在超标油中含有微生物。

(二)分散的原因经过试验,500kv变压器油介损的分散性受温度的影响,加温时间越长,介损的值越小,同时油的温度越低,油介损的值越高。

变压器检修后油介损异常原因分析及处理

变压器检修后油介损异常原因分析及处理

• 204•ELECTRONICS WORLD ・技术交流1.变压器油介损概述在交变电厂作用下,变压器油会产生一定的极化损失和电导损失,统称为油的介质损耗,简称为油介损。

油介损可以通过测量介质损耗因数,即介质损失角的正切值来表示,可准确灵活地反映出变压器绝缘性的好坏,以及在电场、氧化和高温等的作用下变压器油的老化程度,反映出油中极性杂质以及带电胶体的污染程度。

变压器油在变压器长期运行下,受到复杂运行环境因素以及氧化、温度等因素的影响,会出现不同程度的污染,这时可通过油介质损耗因素进行试验分析,准确反映变压器油的运行情况。

2.变压器油介损出现异常情况的原因分析2.1 变压器油中混入溶胶杂质变压器在出厂之前本身就存在残油、固体绝缘材料等溶胶杂质,如果在出厂试验时没有及时检测出来,加上在安装时又再次混入了溶胶材质,在运行中也可能会产生溶胶杂质。

所以溶胶杂质是导致变压器油介损增大的主要原因。

而溶胶杂质的产生主要和生产变压器、安装和使用变压器时没有做好有效的监督控制、没有及时回收变压器生产后产生的残油、没有做好安装前的试验检查和运行中的排查控制有关。

一旦变压器油中混入或产生了溶胶杂质后,便会使电导系数超出正常电导,使变压器油介质损耗因数增大。

2.2 取样位置胶体杂质沉积速度慢,而且在高温和电压的影响下一直处于不稳定的、分散的状态,导致水平面上油的浓度不同。

底部浓度较大,所以底部油介质损耗也大,上部浓度较小所以上层油介质损耗较小。

所以在取样时,取样的位置不同也会影响最终对油介质损耗值的测定结果。

2.3 油介老化程度较深当变压器运行时间加长以后,油介质老化程度也会加深,从而导致变压器油中的酸碱度发生变化,使其中的酸值增大,而粘度和界面张力降低。

不过从目前变压器油介损异常整体情况来看,具体异常表现为油介损增加,而发生油介损增加的变压器运行时间并不是很长,所以和油介质老化关系不大。

2.4 微生物细菌感染在变压器安装和维修的过程中,可能会混入苍蝇蚊子以及细菌类生物,这些生物本身就带有细菌病毒,当和变压器油中的水、空气、碳化物、有机会和微量元素等混合后,会助长这些细菌生物的生长繁殖。

变压器介损和电容量测量正反接线的研究

变压器介损和电容量测量正反接线的研究

套管一般都是要求用正接线的,主要是因为套管的电容量相对较小,采用正接线,就相当于屏蔽了测量接线端对变压器上其他接地部分的电容,相对来说测量会更准确一些,而对于绕组,我们一般采用的是反接线,同电压等级端短路,接测量线,另一个电压等级的三相短接并接地,这个相对于一次对二次及地的介损,当然这里实际上已经把套管的介损包含在内了,但是由于套管的影响较小,我们就认为这个主要是绕组的绝缘。

介损试验使用正反接线是看设备是否接地决定的。

主变套管平时应该是通过末屏接地的,如果要单独做套管的介损应该打开末屏(否则做的就是整个的介损)。

所以应该用正接线1、正接法当被试设备的低压测量端或二次端对地绝缘时,采用该方法。

将红色专用高压电缆从仪器后侧的HVx端上引出,高压屏蔽层接被试设备高压端;将黑色专用低压电缆从仪器面板上的Cx端引出,低压芯线接被试设备低压端L;低压屏蔽线接被试设备屏蔽端E。

(试品无屏蔽端则悬空)HVx及Cx的芯线与屏蔽线之间严禁短接,否则无法取样,无法测量;2、反接法当被试设备的低压测量端或二次端对地无法绝缘,直接接地时,采用该方法。

将红色专用高压电缆从仪器后侧的HVx端上引出,高压芯线接被试设备高压端;低压端接地;此时的CX 端不必接线,悬空;3、CVT 自激法测量当Cx线的红线悬空后,仪器显示“信号太小或无信号,检查仪器接线端”CVT的2次端a、n或1a、1n或2a、2n不能接地,只允许通过仪器的接地端一点接地!Cx线的屏蔽黑线、芯线不允许短接在一起;屏蔽黑线必须悬空!应注意高压线应悬空不能接触地面,否则其对地附加介损会引起误差,可用细电缆连接高压插座与CVT 试品并吊起来。

4、小电容试品的接线对于小电容,空气湿度较大时,其tgδ受其表面状态影响,介损测量值会异常且不稳定。

此时可采用屏蔽环吸收试品表面泄漏电流,其屏蔽电极在正接法时接地,反接法时接Cx的屏蔽层;此方法有可能改变被试设备内部的电场分布而影响tgδ;标准电容器和标准介损器均采用此接法。

500kV主变压器油介损超标原因与处理措施

500kV主变压器油介损超标原因与处理措施

500 kV主变压器油介损超标原因与处理措施摘要:主变压器油的介损劣化主要原因是由于运行中油的温度较高导致油氧化后产生的微生物、油泥等产物使油的介损、酸值及体积电阻率等数据异常。

通过吸附剂吸附再生,可以除去油中氧化老化所产生的溶解物质,恢复油的性能指标,性能恢复后,添加抗氧剂可以提高油的抗氧化能力。

通过对某电厂主变压器油的再生、添加抗氧剂和真空处理,我们发现这是处理主变压器油介损超标的有效方法。

油吸附再生并滤油既可节源开流,又能利于环保,防止污染。

关键词:500 kV;主变压器油;介损超标1变压器油介损概述在交流电站的作用下,变压器油产生了一定的极化损失和传导损失,统称为油的介质损失,简称油油田损失。

油介质损耗可以通过测量介质损耗系数(介质损耗角的正切值)来表示。

由于变压器绝缘性的好坏、电场、氧化、高温等作用,可以准确灵活地反映变压器油的老化程度。

反映油中极性杂质和电胶体的污染程度。

变压器油在变压器的长期运行下,由于复杂的运行环境因素和氧化、温度等因素,可能会发生不同程度的污染,此时可以通过油介质损失因素进行实验分析,准确反映变压器油的运行状态。

2变压器油介质损耗异常原因分析2.1变压器油中掺入了溶胶杂质变压器从工厂出货前就存在剩余油、固体绝缘材料等溶胶杂质,在工厂试验时没有及时检测到,安装时再与溶胶材料混合,操作过程中也会产生溶胶杂质。

因此,由于其中的杂质原因,导致了变压器油介电常数的升高。

而造成这些现象的原因,主要是因为在变压器的生产过程中,在变压器的安装过程中,没有对其进行有效的监督控制,在变压器生产后,没有及时的将其回收,在安装前,对其进行试验检测,在运行中,对其没有进行调查控制。

在变压器油中掺有或生成有溶胶的物质,会使其导电性大于一般导电性,从而使绝缘损失增大。

2.2采样位置由于胶体杂质在液面上的沉降速率较慢,且受到温度、电压等因素的影响,使得液面上的油品浓度差异较大。

因为地板浓度高,地板油介质损失也大,上层浓度小,所以上层油介质损失小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FS3001抗干扰介质损耗测试仪
一、产品简介
FS3001抗干扰介质损耗测试仪用于现场抗干扰介损测量,或试验室精密介损测量。

仪器为一体化结构,内置介损电桥、变频电源、试验变压器和标准电容器等。

采用变频抗干扰和傅立叶变换数字滤波技术,全自动智能化测量,强干扰下测量数据非常稳定。

测量结果由大屏幕液晶显示,自带微型打印机可打印输出。

二、产品别称
介损测试仪、抗干扰介损测试仪、全自动介损测试仪、异频介损测试仪、异频介质损耗测试仪、抗干扰介质损耗测试仪、全自动介质损耗测试仪
三、产品特征
1、变频抗干扰
采用变频抗干扰技术,在200%干扰下仍能准确测量,测试数据稳定,适合在现场做抗干扰介损试验。

2、高精度测量
采用数字波形分析和电桥自校准等技术,配合高精度三端标准电容器,实现高精度介损测量。

仪器所有量程输入电阻低于2Ω,消除了测量电缆附加电容的影响。

3、多级安全保护,确保人身和设备安全
高压保护:试品短路、击穿或高压电流波动,能以短路方式高速切断输出。

低压保护:误接380V、电源波动或突然断电,启动保护,不会引起过电压。

接地保护:仪器接地不良使外壳带危险电压时,启动接地保护。

C V T:高压电压和电流、低压电压和电流四个保护限,不会损坏设备;误选菜单不会输出激磁电压。

CVT测量时无10kV高压输出。

防误操作:两级电源开关;电压、电流实时监示;多次按键确认;接线端子高/低压分明;缓速升压,可迅速降压,声光报警。

防“容升”:测量大容量试品时会出现电压抬高的“容升”效应,仪器能自动跟踪输出电压,保持试验电压恒定。

抗震性能:仪器采用独特抗震设计,可耐受强烈长途运输震动、颠簸而不会损坏。

高压电缆:为耐高压绝缘导线,可拖地使用。

四、技术指标
准确度:Cx: ±(读数×1%+1pF)
tgδ: ±(读数×1%+0.00040)
抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度
电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV
外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV
分辨率:最高0.001pF,4位有效数字
tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。

试验电流范围:10μA~1A
内施高压:设定电压范围:0.5~10kV
最大输出电流:200mA
升降压方式:连续平滑调节
试验频率:45、50、55单频
45/55Hz自动双变频
频率精度:±0.01Hz
外施高压:正接线时最大试验电流1A,工频或变频40-70Hz
反接线时最大试验电流10kV/1A,工频或变频40-70Hz
CVT自激法低压输出:输出电压3~50V,输出电流3~30A
测量时间:约40s,与测量方式有关
输入电源:180V~270VAC,50Hz±1%,市电或发电机供电计算机接口:标准RS232接口
打印机:炜煌A7热敏微型打印机
环境温度:-10℃~50℃
相对湿度:<90%
外形尺寸:460×360×350mm
仪器重量:28kg。

相关文档
最新文档