单克隆抗体制备的技术
杂交瘤技术制备单克隆抗体
杂交瘤技术制备单克隆抗体1975年Koehler和Milstein在体细胞融合技术的基础上创立了淋巴细胞杂交瘤(hybri-doma)技术,他们将丧失合成次黄嘌吟-鸟嘌吟磷酸核糖转移酶的骨髓瘤细胞与经绵羊红细胞免疫的小鼠脾细胞举行融合,融合的细胞不仅可以延续传代,而且能分泌抗绵羊红细胞的单克隆抗体,这项技术开创了医学与生物学基础讨论的新纪元。
杂交瘤技术具有周期长,高度延续的特点,涉及大量组织细胞培养,细胞免疫学和免疫化学等办法。
一、杂交瘤技术的原理 B淋巴细胞接受抗原刺激后,能分泌针对该抗原的特异性抗体,是重要的体液免疫细胞。
B淋巴细胞本身是一种终末分化细胞,通常不再举行细胞分裂。
骨髓瘤细胞是恶性增殖的转化细胞,通过细胞融合技术将B淋巴细胞与骨髓瘤细胞融合,所产生的融合细胞既具有亲本骨髓瘤细胞的无限繁殖的生物学特性,又具有另一亲本B淋巴细胞合成、分泌特异性抗体的能力。
B淋巴细胞杂交瘤技术的原理可以从以下三个关键之处来阐明:首先是细胞融合剂的挑选,用法细胞融合剂造成细胞膜一定程度的损伤,使细胞易于互相粘连而融合在一起。
最佳的融合效果应是最低程度的细胞损伤而又产生最高频率的融合。
(PEG1000~2000)是目前最常用的细胞融合剂,普通应用浓度为40% (W/V)。
第二,细胞融合的挑选培养基中有3种关键成分:次黄嘌呤( hypoxanthine, H )、甲氨蝶吟( aminopterin, A)和(thymidine, T ),所以取三者的字头称为HAT培养基。
甲氨蝶吟是叶酸的拮抗剂,可阻断瘤细胞利用正常途径合成DNA,而融合所用的瘤细胞是经毒性培养基选出的HGPRT-细胞株,所以不能在该培养基中生长。
惟独融合细胞具有亲代双方的遗传性能,能在HAT培养基中长久存活与繁殖。
第三,细胞融合是随机的过程,在已经融合的细胞中有相当比例的无关细胞的融合体,需经筛选去除。
筛选过程普通分为两步举行:一是融合细胞的抗体筛选,二是在此基础上举行的特异性抗体筛选,从而找出针对目标抗原的抗体阳性细胞株,增殖后举行冻存、体外培养或动物腹腔接种培养,这一过程称作克隆化。
单克隆抗体技术(文献综述)
文献综述—单克隆抗体技术的原理、发展与主要的实验步骤1. 单克隆抗体制备的基本原理经免疫的动物产生的致敏B淋巴细胞能分泌特异性的抗体,但这些细胞不能在体外长期存活;而骨髓瘤细胞则可以在体外大量地、无限地繁殖,但不能分泌特异性的抗体。
如果应用杂交瘤技术使骨髓瘤细胞与那些能分泌特异性抗体的细胞相融合,那么得到的杂交瘤细胞(hybridoma cell)将同时具有两种亲本细胞的特性:既能够象肿瘤细胞那样无限繁殖,又具有B淋巴细胞的不断分泌抗体的能力。
根据克隆选择学说,由于每个致敏的B淋巴细胞只能针对同一抗原决定簇产生同种的、完全一样的抗体,所以经过克隆化的杂交瘤细胞就能够分泌对某一抗原决定簇具有特异性的单克隆抗体。
这就是单克隆抗体制备的基本原理。
2. 单克隆抗体技术的诞生、发展和展望1975年,George Kohler 和 Cesar Milstein在Nature上发表了一篇文章,第一次描述了一种获得单克隆抗体的方法。
他们所创立单克隆抗体技术给免疫学乃至整个生物医学领域带来了一次巨大的革命。
Kohler 和Milstein 也因此而荣获1984年诺贝尔奖。
单克隆抗体技术诞生后,立即引起了许多研究者的注意,人们纷纷投入这一崭新领域的研究。
经过多年的发展,到二十世纪八十年代中期,单克隆抗体技术已日臻完善,单克隆抗体也开始广泛应用于生物医学研究和生物技术的各个领域,以及临床诊断和治疗的许多领域。
最初,单克隆抗体技术是以小鼠-小鼠杂交瘤为研究的中心而发展起来的。
由于小鼠源性的单克隆抗体在生产与应用中有其内在的缺点,八十年代后,小鼠-大鼠、大鼠-大鼠、小鼠-人以及人-人杂交瘤技术也被尝试并取得了不同程度的成功,有力地推动了单克隆抗体技术的发展和生物医学研究的深入。
尽管早有准备,单克隆抗体技术的影响之深远还是大大超出了人们的预想:在八十年代中到九十年代末的短短十多年中,为了满足临床诊断和治疗的需要,双特异性抗体技术及人-鼠嵌合抗体技术、人源化抗体技术、小分子抗体技术、植物基因工程抗体技术、抗体酶技术、抗体库(噬菌体显示)技术、外因鼠(XenoMouse)技术等基因工程抗体技术在经典单克隆抗体技术的基础上也被创立并得到了突飞猛进的发展。
单克隆抗体研制最详细步骤
单克隆抗体研制最详细步骤一、单克隆抗体的概念抗体是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。
常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。
一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。
即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。
因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。
由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。
因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。
随着杂交瘤技术的诞生,这一目标得以实现。
1975年,Kohler和Milstein建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤细胞融合,形成B细胞杂交瘤。
这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。
通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体(monoclonal antibody),简称单抗。
与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。
单抗技术的问世,不仅带来了免疫学领域里的一次革命,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。
Kohler和Milstein两人由此杰出贡献而荣获1984年度诺贝尔生理学和医学奖。
二、杂交瘤技术(一)杂交瘤技术的诞生淋巴细胞杂交瘤技术的诞生是几十年来免疫学在理论和技术两方面发展的必然结果,抗体生成的克隆选择学说、抗体基因的研究、抗体结构与生物合成以及其多样性产生机制的揭示等,为杂交瘤技术提供了必要理论基础,同时,骨髓瘤细胞的体外培养、细胞融合与杂交细胞的筛选等提供了技术贮备。
利用杂交瘤技术制备单克隆抗体的基本原理
利用杂交瘤技术制备单克隆抗体的基本原理介绍在生物医学研究和临床诊断中,单克隆抗体作为一种重要的实验工具和治疗药物被广泛应用。
其中,利用杂交瘤技术制备的单克隆抗体具有高特异性和高亲和力的特点,成为研究人员的首选。
本文将介绍利用杂交瘤技术制备单克隆抗体的基本原理。
杂交瘤技术概述杂交瘤技术是一种将体外培养的B细胞(淋巴细胞瘤)与骨髓瘤细胞融合,从而形成能够长期生长并分泌抗体的细胞株的方法。
这种技术利用了淋巴细胞瘤的抗体产生能力和骨髓瘤细胞的无限生长能力,使得细胞株能够持续产生具有特定结构和功能的单克隆抗体。
杂交瘤技术的步骤利用杂交瘤技术制备单克隆抗体一般包括以下几个步骤:1. 免疫原注射首先,在动物体内注射免疫原,激发机体产生特异性抗体。
免疫原可以是蛋白质、多肽、糖类、脂质等。
免疫原的选择要根据研究目的和所需抗体的特异性来确定。
2. B细胞提取从动物体内采集淋巴组织,提取出具有特异性抗体的B细胞。
B细胞是产生抗体的主要细胞类型,其具有表面上能与抗原结合的B细胞受体(BCR)。
3. 骨髓瘤细胞准备获得与B细胞体表BCR相对应的骨髓瘤细胞株。
骨髓瘤是一种恶性浆细胞增生性疾病,该病的细胞具有无限生长的能力。
4. 细胞融合将提取的B细胞与骨髓瘤细胞进行体外融合,形成杂交瘤细胞。
融合细胞的过程一般利用聚乙二醇(PEG)或电脉冲等方法实现。
5. 杂交瘤细胞筛选将杂交瘤细胞进行培养,并添加合适的选择性培养基,筛选出能够分泌特异性抗体的单个细胞克隆。
6. 单克隆抗体制备从筛选出的单个细胞克隆中,取出细胞进行进一步培养和扩增。
细胞培养过程中,单克隆细胞会不断分裂和分泌抗体,从而得到大量的单克隆抗体。
制备单克隆抗体的原理利用杂交瘤技术制备单克隆抗体的原理主要基于两个关键特性:1. B细胞多样性B细胞具有多样的B细胞受体,这使得它们能够识别和结合各种不同的抗原。
当机体暴露于免疫原时,B细胞会通过BCR与特异性抗原结合,并启动免疫反应。
杂交瘤技术制备单克隆抗体
杂交瘤技术制备单克隆抗体来源:1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。
这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。
免疫细胞化学的技术关键之一是制备特异性强、亲合力大、滴度高的特异性抗体,由于每种抗原都有几个抗原决定簇,用它免疫动物将产生对各个决定簇的抗体,即多克隆抗体。
单克隆抗体则是由一个产生抗体的细胞与一个骨髓瘤细胞融合而形成的杂交廇细胞经无性繁殖而来的细胞群所产生的,所以它的免疫球蛋白属同一类型,质地纯一,而且它是针对某一抗原决定簇的,因此特异性强,亲合性也一致。
单克隆抗体(McAb)的特性和常规血清抗体的特性比较见2-3。
表2—3 单克隆抗体(McAb)和常规免疫血清抗体的特性比较单克隆抗体制备的一般流程如下:单克隆抗体的制备方法如下。
(一)动物的选择与免疫1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。
目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。
2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。
一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。
(1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。
常用佐剂:福氏完全佐剂、福氏不完全佐剂。
初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点)↓3周后第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml)↓3周后第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价)↓2~3周加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射)↓3天后取脾融合目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。
单抗制备
杂交瘤技术制备单克隆抗体的主要步骤包括:(1)抗原制备;(2)免疫动物;(3)免疫脾细胞和骨髓瘤细胞的制备;(4)细胞融合;(5)杂交瘤细胞的选择培养;(6)杂交瘤细胞的筛选;(7)杂交瘤细胞的克隆化;(8)单克隆抗体的检定;(9)分泌单克隆抗体杂交瘤细胞系的建立;(10)单克隆抗体的大量制备。
下面简要介绍单克隆抗体的制备过程:1、免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的过程。
一般选用6-8周龄雌性Balb/c小鼠,按照预先制定的免疫方案进行免疫注射。
抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。
2、细胞融合采用眼球摘除放血法处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。
将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。
在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。
3、选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT 选择性培养基。
在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。
未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。
只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤鸟嘌呤磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。
4、杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。
通常采用有限稀释法进行杂交瘤细胞的克隆化培养。
采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。
经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。
杂交瘤技术制备单克隆抗体
杂交瘤技术制备单克隆抗体1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。
这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。
免疫细胞化学的技术关键之一是制备特异性强、亲合力大、滴度高的特异性抗体,由于每种抗原都有几个抗原决定簇,用它免疫动物将产生对各个决定簇的抗体,即多克隆抗体。
单克隆抗体则是由一个产生抗体的细胞与一个骨髓瘤细胞融合而形成的杂交廇细胞经无性繁殖而来的细胞群所产生的,所以它的免疫球蛋白属同一类型,质地纯一,而且它是针对某一抗原决定簇的,因此特异性强,亲合性也一致。
单克隆抗体(McAb)的特性和常规血清抗体的特性比较见2-3。
表2—3 单克隆抗体(McAb)和常规免疫血清抗体的特性比较单克隆抗体制备的一般流程如下:单克隆抗体的制备方法如下。
(一)动物的选择与免疫1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。
目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。
2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。
一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。
(1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。
常用佐剂:福氏完全佐剂、福氏不完全佐剂。
初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点)↓3周后第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml)↓3周后第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价)↓2~3周加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射)↓3天后取脾融合目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。
单克隆抗体制备流程
单克隆抗体制备流程首先,在单克隆抗体制备之前,需要选择一个适当的抗原。
抗原可以是蛋白质、多肽、糖类或其他小分子。
选取抗原时,需要考虑抗原的表达水平、抗原的免疫原性以及抗原的稳定性等因素。
接下来,选择一个合适的实验动物进行免疫。
常用的实验动物有兔子和小鼠。
在免疫之前,需要先给实验动物注射适量的佐剂,以增强免疫效果。
通常,实验动物会被多次免疫,每次免疫之间有一段时间的间隔。
在实验动物免疫一段时间后,可以进行细胞融合以产生混杂瘤细胞。
混杂瘤细胞通常是由B细胞和骨髓瘤细胞融合而成,对于小鼠骨髓瘤细胞,常用的有SP2/0和NS0细胞系。
融合的方法主要有两种:一种是将免疫细胞和骨髓瘤细胞混合,然后使用聚乙二醇(PEG)进行融合;另一种是使用电击脉冲进行细胞融合。
融合细胞会经过适当的培养条件进行筛选和扩增。
在融合细胞扩增过程中,会进行筛选以保证融合细胞是产生单克隆抗体的。
最常用的筛选方法是酶联免疫吸附测定(ELISA)。
抗原会被固定在微孔板上,然后将培养液中的细胞涂覆在孔中。
如果其中一孔中有抗体分泌,则抗原会被结合,并且可以通过添加辣根过氧化物酶(HRP)标记的二抗和基质来检测抗体的存在。
经过筛选和鉴定后,选择一个或多个产生单克隆抗体的细胞进行单克隆扩增。
单克隆扩增时,可以通过细胞有限稀释法以及酵母酶聚合酶链式反应(YAC-PCR)等方法进行。
最后,可以通过收集上述单克隆细胞的上清液或细胞提取物来得到单克隆抗体。
上清液或细胞提取物中的抗体可以通过纯化方法,如蛋白A/G 亲和层析或蛋白L亲和层析等,得到纯化的单克隆抗体。
综上所述,单克隆抗体的制备流程包括抗原选择、免疫动物、细胞融合、筛选和克隆等步骤。
通过这些步骤,可以获得单克隆抗体用于科学研究和临床应用。
简述杂交瘤技术制备单克隆抗体的基本流程
通过杂交瘤技术创建单克隆抗体的第一步就像给一只老鼠一个特殊的任务——成为超级抗体生产商!我们从给老鼠注射抗原开始,就像送它去执行一个秘密任务,寻找和摧毁敌人。
这个"免疫"过程让老鼠的免疫系统都爆发了,就像超级英雄准备拯救这一天一样,它开始产生抗原抗体,准备战胜坏蛋!
是时候让那些脾细胞从免疫鼠!脾脏就像B细胞的聚会中心,抗体产生岩星。
之后,我们将把这些脾脏细胞与肌瘤细胞结合,这些细胞基本上是细胞世界的不朽的阴茎。
这种聚变将产生杂交质瘤细胞,超级细胞具有产生抗体和永远分裂的力量。
这就像创造了一个超级英雄团队为了对付坏人,但在细胞层面!让核聚变的乐趣开始吧!
接下来令人兴奋的一步是把我们的杂交瘤细胞进行测试,看看哪些细胞具有产生抗体的超能力,这些抗原是激光聚焦于我们的目标抗原。
这些超级巨星细胞然后在实验室里被踢回并放松,在那里它们可以像小的抗体工厂一样,把数吨的单克隆抗体挤出。
一旦我们得到了一大批这些强大的抗体,我们可以给他们一个温泉日并净化它们,让他们都准备好在诊断测试中或作为治疗的英雄。
说到生化的冒险!。
(整理)单克隆抗体的制备技术和纯化及鉴定
单克隆抗体的制备技术和纯化及鉴定一、实验目的:单克隆抗体制备是细胞免疫学的一个重要里程碑,它涵盖了细胞培养、细胞融合、免疫动物和抗体效价检测等各个方面内容。
了解单克隆抗体制备的原理、主要步骤和方法。
二、实验原理:骨髓瘤细胞在体外培养能大量无限增殖,但不能分泌特异性抗体;而抗原免疫的B淋巴细胞能产生特异性抗体,但在体外不能无限增殖。
将免疫脾细胞与骨髓瘤细胞融合后形成的杂交瘤细胞,继承了两个亲代细胞的特性,既具有骨髓瘤细胞能无限制增殖的特性,又具有免疫B细胞合成和分泌特异性抗体的能力。
经在HAT培养基[含有次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷(T)]中进行选择性培养,未融合的脾细胞因不能在体外长期存活而死亡;未融合的骨髓瘤细胞合成DNA的主要途径被培养基中的氨基蝶呤阻断,又因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶(HGPRT),不能利用培养基中的次黄嘌呤完成DNA的合成过程而死亡。
只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,因此能在HAT培养基中存活和增殖。
经过克隆选择,可筛选出能产生特异性单克隆抗体的杂交瘤细胞,在体内或体外培养,即可无限制地大量制备单克隆抗体。
三、试剂与器材:细胞培养板、解剖器械、平皿、酶标仪、加样器、细胞计数板、CO2培养箱、倒置显微镜等。
四、操作方法:1、抗原制备;一般而言,抗原的纯度不很重要,特别是免疫原性较强的抗原。
A.可溶性抗原(蛋白质)以1mg/ml~5mg/ml的溶液加等量的弗氏完全佐剂乳化,分多点小鼠皮下注射,总量为0.3ml~0.6ml,间隔3~5周再同样注射一次,10天后,断尾取血一滴,测抗体效价,选滴度高的小鼠做融合试验。
一个月后可以经静脉(尾静脉)给予无佐剂抗原0.2ml~0.4ml,3~4天后,杀死小鼠取脾做融合用。
B. 颗粒性抗原如抗原来源方便,可以不加佐剂而增加免疫次数,缩短间隔时间。
例如用羊红血球免疫小白鼠,以1%浓度每只皮下注射0.2ml,每周2次,共免疫5~8次,取脾前3天,再免疫一次即可。
单克隆抗体技术
单克隆抗体技术用细胞融合技术将免疫的B淋巴细胞和骨髓瘤细胞融合成杂交瘤细胞﹐通过筛选﹐经单个细胞无性繁殖(克隆化)后使每个克隆能持续地产生只作用于某一个抗原决定簇的抗体的技术。
单克隆抗体简称单抗(McAb)﹐由于具有特异性﹑均一性﹑高效性和无限供应性﹐以及能利用不纯的抗原制备纯的单一的抗体等特点﹐在免疫学﹑医学﹑生物学等领域的基础研究和临床医学上﹐对疾病(包括癌症)的诊断﹑预防和治疗等方面﹐均显示出巨大的生命力。
脊椎动物身体受到外来抗原的刺激后﹐通过液体免疫系统产生出抗体──免疫球蛋白﹐分布于血清中﹐但由于抗原分子表面有许多不同的抗原决定簇﹐每一个抗原决定簇只能刺激机体中相应的B 淋巴细胞产生相应种类的抗体。
而一种抗体只能和它相对应的抗原决定簇结合﹐所以﹐带有多种抗原决定簇的抗原免疫动物﹐其血清中会出现多种抗体的混合物﹐因而抗体的特异性﹑均一性﹑有效性都很低﹐并且产量也有限。
这样的抗体产物即使用物理化学和生物化学手段也难以分离和纯化﹐因而不能适应医学和生物学对单一纯抗体的需求。
发展简史20世纪60年代初有人观察到小鼠和大鼠体细胞融合后可得到杂交细胞﹔70年代初又有人建立了小鼠骨髓瘤细胞系﹔1973年C.米尔斯坦等人在研究抗体合成的遗传机制时发现融合细胞的“共显性”﹐即来自两个亲本的信息在子代身上均能显现﹔这个发现使G.克勒和 C.米尔斯坦在1975年成功地建立了淋巴细胞杂交瘤技术。
此后﹐世界各国科学家用这个技术研制出数以千计的单抗。
目前已实现商品化生产。
基本步骤细胞融合将鼠或人(目前多用小鼠)的处于对数生长期的骨髓瘤细胞(浆细胞的肿瘤细胞)与经过免疫的同系动物的脾细胞(脾是大量B淋巴细胞的来源)在有促融合剂聚乙二醇的情况下混合﹐使之彼此融合。
杂交瘤的选择将融合后的细胞分放到含HA T(次黄嘌呤﹑氨基喋呤和胸腺嘧啶核)选择性培养液中﹐在96孔或24孔组织培养板中培养。
由于氨基喋呤(aminopterin)能阻断核酸生物合成的主要途径﹐而骨髓瘤细胞又缺少次黄嘌呤鸟嘌呤磷酸核糖转移(HGPRT)或胸腺嘧啶核激(TK)﹐因而不能利用外源的次黄嘌呤和胸腺嘧啶核通过补救旁路进行核酸合成。
单克隆抗体的制备技术
单克隆抗体的制备技术单克隆抗体是一种特定的抗体,由同一种克隆的B细胞产生,并具有相同的抗原结合特异性。
这种抗体制备技术是通过将B细胞与瘤细胞融合而形成的杂交瘤细胞来实现的。
以下是关于单克隆抗体制备技术的详细解释。
1. 免疫原制备:要制备单克隆抗体,首先需要准备免疫原。
免疫原可以是蛋白质、多肽、糖脂或其他小分子化合物。
免疫原的选择基于所需抗体的特异性。
一般来说,免疫原应具有较高的纯度,并且能够激发免疫系统产生特定的抗体。
2. 免疫动物免疫:接下来,将免疫原注射到实验动物体内,以激发其免疫系统产生抗体。
常用的实验动物包括小鼠、大鼠或兔子。
在注射过程中,免疫原通常与佐剂混合以增强免疫反应。
注射免疫通常在一段时间内进行多次,以确保充分激发免疫系统产生抗体。
3. B细胞的筛选和融合:在动物免疫后,从其脾脏或骨髓中收集B细胞。
这些B细胞是产生抗体的主要细胞类型。
通过在培养基中培养,可以增加B细胞的数量。
然后,将这些B细胞与一种名为骨髓瘤细胞的癌细胞融合。
这种骨髓瘤细胞有着无限增殖的能力,而B细胞则提供了抗体生产所需的特定性。
4. 杂交瘤细胞的筛选:融合后的细胞形成了杂交瘤细胞。
这些细胞具有两个来源的特性,具有骨髓瘤细胞的无限增殖能力和B细胞的抗体产生能力。
为了筛选出产生特定抗体的杂交瘤细胞,可以使用细胞培养基中的特定抗原进行筛选。
只有与特定抗原结合的杂交瘤细胞才能存活和增殖。
5. 克隆的建立:经过筛选后,单个杂交瘤细胞被分离并单独培养,以建立纯化的单个细胞克隆。
这些克隆细胞会持续产生与免疫原结合的特定抗体。
这些单克隆抗体可以通过培养细胞并收集培养上清液来获取。
6. 单克隆抗体的纯化和特性分析:单克隆抗体的纯化是将其从其他细胞产物和杂质中分离出来。
这通常包括离心、过滤和亲和层析等步骤。
纯化后的抗体可以进行各种特性分析,如亲和性测定、特异性测定和功能性分析等。
这些测试可以验证抗体的特异性和效能。
总结:单克隆抗体的制备技术是一种通过将免疫的动物B细胞与骨髓瘤细胞融合形成杂交瘤细胞的方法。
简述单克隆抗体技术的基本原理
简述单克隆抗体技术的基本原理单克隆抗体技术是生物技术领域的一项重要技术,在医药研发、诊断和治疗等方面都有着广泛的应用和前景。
单克隆抗体技术的基本原理是通过选择一种特定的免疫细胞,获取它产生的特异性抗体并使其进行不限制性复制,最终获得具有高度特异性和稳定性的单克隆抗体。
下面将详细介绍单克隆抗体技术的基本原理,包括鼠源性、嵌合型和人源性单克隆抗体技术,以及单克隆抗体生产的流程和应用。
一、鼠源性单克隆抗体鼠源性单克隆抗体是最早使用的单克隆抗体,其制备原理是将鼠类动物免疫一种抗原,收集其脾细胞,将其与骨髓瘤细胞融合,产生杂交瘤细胞,然后将杂交瘤细胞单克隆化,即从杂交瘤中分离出单个克隆细胞并培养扩大。
鼠源性单克隆抗体的优点是制备简单、产量高,但由于小鼠免疫系统与人类的巨大差异,鼠源性抗体往往容易引起免疫原性反应,从而限制了其在临床应用中的使用。
二、嵌合型单克隆抗体为了克服鼠源性单克隆抗体的局限性,研究人员提出了嵌合型单克隆抗体技术。
嵌合型单克隆抗体是由人源性的Fc区和鼠源性的可变区域组成,它可以确保高度特异性和稳定性的又可以降低免疫原性反应。
嵌合型单克隆抗体的制备方法是将人源性的IgG1的Fc片段与包含鼠源性单克隆抗体的可变区域进行基因重组,最终获得嵌合型单克隆抗体。
嵌合型单克隆抗体优点是高度特异性和稳定性、免疫原性反应小。
嵌合型单克隆抗体的制备过程较为复杂,且其效价可能比鼠源性单克隆抗体略低。
随着生物技术的不断发展,研究人员逐渐开始研制具有人源性的单克隆抗体,其能够更加充分地体现在人体内生物学免疫动态,从而降低了潜在的体内免疫原性反应。
人源性单克隆抗体制备方法有两种,一种是在小鼠背景中将人源性单克隆抗体进行筛选和生产,另一种是通过人免疫系统获得人源性单克隆抗体。
人免疫系统产生抗体的原理与小鼠类似,但需要额外进行一系列的筛选和优化步骤,以保证细胞系的干净和稳定性。
由于人源性单克隆抗体与人体内的免疫系统具有良好的兼容性和相似性,因此在临床应用中具有极高的价值。
生物制药技术中的抗体工程与单克隆抗体制备
生物制药技术中的抗体工程与单克隆抗体制备抗体工程和单克隆抗体制备在生物制药技术中扮演着重要的角色。
抗体(antibody)是一种由免疫细胞产生的蛋白质,可以识别和结合特定的抗原物质。
由于抗体在免疫反应中的关键作用,人们开始研究如何利用抗体在生物药物的制备和治疗中发挥作用。
抗体工程是一项利用基因工程技术改变抗体的结构和功能的研究。
通过抗体工程,可以生成具有特定特性和增强效力的抗体。
抗体工程的目标包括增强抗体的亲和力、稳定性和特异性,以及减少免疫原性和毒性反应。
这些目标的实现通过调整抗体的结构和序列来实现。
单克隆抗体是指一类只对特定抗原物质产生单一免疫应答的抗体。
单克隆抗体制备是一项技术,通过体外细胞培养和单克隆抗体蛋白质纯化,大规模制备单克隆抗体。
这些抗体可以用于药物治疗、疾病诊断和生物学研究等领域。
抗体工程和单克隆抗体制备的关键步骤包括抗原刺激、混合免疫细胞、克隆和筛选。
首先,抗原刺激是引发免疫反应的关键步骤。
研究人员将特定抗原物质注入动物体内,触发机体对该抗原的免疫反应。
在免疫细胞的参与下,机体开始产生抗体以应对抗原。
其次,混合免疫细胞是为了将大量产生抗体的细胞筛选出来。
研究人员将免疫细胞提取并混合在一起,形成融合细胞。
这些融合细胞能够集成母细胞的抗体产生功能。
然后,克隆是将这些融合细胞进行分离和培养,使其每一个细胞单元都能够独立地产生抗体。
研究人员使用稀释法或分选法将单个融合细胞分离出来,并将其分布在培养皿中,以便继续繁殖。
最后,筛选是为了筛选出具有特定特性的单克隆抗体。
研究人员使用特定的抗原进行筛选,以确定哪些单克隆细胞能够产生与抗原结合的抗体。
这些具备标记的抗体则被挑选出来进行纯化和进一步的功能评估。
抗体工程和单克隆抗体制备的发展为生物制药技术带来了重要的突破。
通过抗体工程,科学家们可以针对特定疾病制备定制的抗体药物。
这些药物具有更高的亲和力和特异性,能够更有效地靶向疾病相关的分子。
例如,单克隆抗体药物已在癌症治疗中取得了显著的成功,成为现代抗癌疗法的重要组成部分。
免疫血清制备及单克隆抗体制备技术
免疫血清制备及单克隆抗体制备技术下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!而且本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!免疫血清制备及单克隆抗体制备技术。
引言免疫血清和单克隆抗体是生物医学领域中的重要工具,它们在疾病诊断、治疗和基础科学研究中发挥着关键作用。
杂交瘤技术制备单克隆抗体
A蛋白-Sepharose CL 4B
02
亲和层析法
三、单克隆抗体的应用
检验医学诊断试剂 病原微生物抗原抗体的检测 肿瘤抗原的检测 免疫细胞及其亚群的检测 激素测定 细胞因子的测定 蛋白质的提纯 肿瘤的导向治疗和放射免疫显像技术
单击此处添加副标题内容
THANKS!
HAT培养基: H(Hypoxanthine):次黄嘌呤 A(Aminopterin):氨基喋呤;叶酸拮抗物,阻断DNA合成主要途径 T(Thymidine):胸腺嘧啶核苷;“核苷酸前体”,供细胞通过替代途径合成DNA
HAT选择培养基的原理
淋巴细胞:不能生长,5~7天死亡;DNA合成的主要途径被A阻断
01
不需任何特殊设备
02
克隆出现效率高
03
实验室常用方法
04
方法:
05
细胞悬液通过系列稀释
06
每个培养孔含0.5~1个细胞
07
有限稀释法
在没有建立一个稳定分泌抗体的细胞系时,细胞培养过程中随时可能发生细胞污染,分泌抗体能力丧失等 “慢冻”:分步冷冻,30℃→-70℃→液氮 “快融”:取出立即浸入37℃~40℃水浴中,使其迅速融化、复苏
细胞融合
培养骨髓瘤细胞:
对数生长期
浑圆、透亮、均一、排列整齐
避免细胞返祖:定期用8-AG处理细胞 1-2×107
免疫脾细胞的制备: 1-2×108 无菌手术
常用小鼠腹腔巨噬细胞,5-8×106
分泌细胞生长因子
吞噬衰老细胞和微生物
存活一般不超2周,不影响杂交瘤细胞的纯化
01
02
03
04
饲养细胞:
01
骨髓瘤细胞:不能生长,5~7天死亡;HGPRT缺乏,DNA合成的替代途径受阻
单克隆抗体测序流程
单克隆抗体测序流程单克隆抗体是一种具有高度特异性和亲和力的新型药物,被广泛应用于癌症、自身免疫疾病、传染病等多个领域。
单克隆抗体测序技术是一种用于分离和鉴定单克隆抗体的技术,主要涉及到高通量测序、杂交技术、蛋白质分离和分析技术等。
1. 细胞培养和DNA提取单克隆抗体的来源一般是由嗜中性粒细胞抗原(Neutrophil Antigen)刺激引起的淋巴细胞,因此首先需要从外周血中分离出淋巴细胞并培养。
随后使用基因组DNA提取试剂盒从淋巴细胞中提取DNA,获得种子信息库。
在其中,单个B细胞的DNA序列用于序列分析,以制备单克隆抗体。
2. VDJ基因扩增采用PCR技术扩增VDJ(可变、多样、连接)区片段,这是编码可变区域、多样区域和连接区域的DNA片段,也是单克隆抗体的信息基础。
3. 文库构建将VDJ片段插入到合适的文库载体中,可使重链和轻链得到合理地组合,在表达细胞中进行快速集成,再次通过Western blot检测表达的单克隆抗体。
4. 测序使用Illumina高通量测序平台对文库构建物的VDJ序列进行测序,并得到高质量序列数据。
5. 数据分析通过对高质量序列数据的DNA序列信息的比对和分析,可以得到单克隆抗体的信息,包括VDJ基因库种子信息的识别、单克隆抗体的重链/轻链等,以及筛选捕获的特异性单克隆抗体的信息。
此外,还可以使用商业软件工具,比如IMGT、IgBLAST等,对测序数据进行人工或自动处理。
6. 预测单克隆抗体的亲合力可以通过预测单个B细胞的亲和力来鉴定单克隆抗体。
当计算出重链/轻链的亲和力时,对高亲和力分子进行后续分析,如结构分析,鉴别单克隆抗体的立体构象,并找到最适合目标的特定重链/轻链的组合。
该技术具有以下优点:1. 能够鉴定大量的单克隆抗体。
2. 可以快速而准确地分析单克隆抗体的性能。
3. 通过基因测序可使单克隆抗体的开发更具灵活性和精度。
4. 可拓展,具有高通量测序和高全长单克隆抗体的样品数据计算和分析功能。
简述单克隆抗体技术的原理及应用
简述单克隆抗体技术的原理及应用
单克隆抗体技术是一种通过克隆并大量复制一种具有特定抗原结合能力的抗体,从而得到大量高质量的抗体产品的技术。
单克隆抗体技术的原理主要分为以下几个步骤:
1. 免疫动物:首先需要将目标抗原注射到实验动物中,以激发其免疫反应。
2. B细胞的融合:从免疫动物的脾脏或淋巴结中提取抗体产生的B细胞,与癌细胞(如骨髓瘤细胞)融合形成杂交瘤细胞(hybridoma)。
3. 杂交瘤筛选:通过培养和筛选,筛选出能够合成目标抗体的杂交瘤细胞。
4. 克隆:将筛选出的单个杂交瘤细胞直接放置于一个单独的培养皿中,进行单克隆培养。
5. 收获单克隆抗体:收集单克隆细胞培养物中培养出的抗体。
单克隆抗体技术的应用非常广泛,包括:
1. 生命科学研究:用于研究特定分子的功能、调控及相互作用。
2. 临床诊断:用于检测和测量某些疾病标志物,如肿瘤标志物、病毒感染标志物等。
3. 生物药物开发:用于生产大规模的、高质量的抗体药物,如单抗、Fc融合蛋白等。
4. 免疫治疗:用于治疗和预防一些疾病,如癌症、自身免疫性疾病等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免疫成功的标志是在融合时脾脏能够提 供处于增殖状态的特异性B细胞,此时血 清中抗体效价不一定最高。
可溶性抗原10-15ug/100ul+等量弗氏完 全佐剂注射小鼠腹腔2-4周后加强免疫 (量减半,改用不完全佐剂,可反复多 次)冲击免疫(融合前3天进行)
抗体的人源化技术进展:
• 单克隆抗体在世界生物工程制药业的支柱产品之一。 • 单抗将发展成为一大类独立医药产品。 • 鼠源性单克隆抗体将逐渐被人源化抗体所替代: 原因:1.鼠源性单克隆抗体与人补体成分结合能力低,
2.CDC作用相应较弱,对肿瘤细胞的杀伤能力较弱; 3.与NK等免疫细胞表面Fc受体亲和力弱,介导的ADCC作用较弱; 4.鼠源抗体半衰期短,发挥ADCC与CDC作用的时间较短; 5.鼠单克隆抗体具有免疫原性,宿主易产生抗抗体引起过敏反应。
鼠抗体人源化的构建方法:
嵌合抗体:利用DNA重组技术将鼠单抗的轻、重链可变区基因插入含有人抗体
恒定区的表达载体中,转化哺乳动物细胞表达出人鼠嵌合抗体,其人源化程度 达到70%左右,完整地保留了异源单抗的可变区,最大限度地保持了其亲和活性 ,降低了免疫原性。但由于人鼠嵌合抗体仍然保留了30%的鼠源性,可诱发人抗 小鼠反应HAMA。
表面重塑抗体:对鼠抗体表面氨基酸残基进行人源化改造。该方法的原则是仅
替换与人抗体SAR差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选 用与人抗体表面残基相似的氨基酸替换:互补决定区(CDR)构象的残基尽量不 替换。
重构抗体:由异源抗体中与抗原结合相关的残基与人抗体重新拼接构建的,包
括CDR区移植,部分CDR移植和特定决定区(SDR)转移。
转染色体牛:
产生人Ig 转染色体牛的构建过程仍旧利用MMCT法,将构建的含有人Ig 轻重链基因片段的人人工染色体(HAC),导入牛胚胎成纤维细胞,进一步 发育成转染色体牛。
产生人Ig 转染色体牛的构建特点在于:
(1)由于牛胚胎干细胞不能成功建系, 因此将人人工染色体导入牛胚胎成 纤维细胞;
(2)转染色体牛用核移植的方法来建立;
抗体库技术:用细菌克隆取代B细胞克隆表达 抗体,不经细胞融合,甚至不经免疫,制备针 对任何抗原的单克隆抗体。
单克隆抗体药物概况
单克隆抗体(MAB)是近年来复合年增长率最大的
一蛋白类药物,2001年全球销售额增长了57.3%,接 近30亿美元。在这类产品中开发主要集中在癌症治疗 药物方面。预计到2010年用于癌症治疗的单克隆抗体 将占其销售总额的54.7%。据预测,单克隆抗体将会 以复合年增长率16.3%的速度增长,到2010年达到 121.39亿美元的市场规模。其中,治疗癌症的单克隆 抗体市场规模将达66.36亿美元。
单克隆抗体制备平台建立
尹芝南 美国耶鲁大学医学院副教授 南开大学生命科学学院院长
基本概念
抗原决定镞(抗原表位) 细胞克隆 多克隆抗体 单克隆抗体
Antigenic determinant
是指抗原分子中决定抗原特异性的 特殊化学基团,又称表位(epitope).
细胞克隆: 由一个细胞增殖而成的细胞集团
全人源化抗体
完全人抗体的形成始于二十世纪九十年代,目前获得全人源化抗体方法有抗体库 筛选技术、基因工程小鼠制备全人抗体、转染色体牛。
2.1 抗体库筛选技术:
抗体库筛选技术主要包括噬菌体抗体库和核糖体展示技术。
噬菌体抗体库技术:从免疫或未被免疫的B细胞中分离抗体可变区基
因;PCR 扩增抗体全套基因片段(如VH、VL),将体外扩增的VH、V基因Ⅲ(g3) 或基因Ⅷ(g8) 的先导系列的紧靠下游,使 外源基因表达的多肽以融合蛋白的形式展示在外壳蛋白gp Ⅲ或gp Ⅷ的N 端。用固相化抗原经“亲和结合—洗脱—扩增”数个循环直接、方便、 简捷、高效地筛选出表达特异性好、亲和力强的抗体噬菌体库。
转基因小鼠:将人抗体生产基因转入小鼠,以替换小鼠的抗体生成基
因。转基因小鼠制备人抗体的优点是,其功效优于其它生产抗人体蛋白单 抗技术。不足之处:(1)转基因通常有体细胞突变和其它独特的序列,导 致不十分完全的人序列;(2)由于抗体是在小鼠体内装配,因而产生的单 抗具有鼠糖基化模式,所以这些单抗最终并不是全人的;(3)转基因小鼠 表达的人Ig多样性较少,而且在同一小鼠中不能够产生IgG各亚类。
克隆化方法:有限稀释法、软琼脂平板法、显 微克隆法
阳性杂交瘤细胞应及时冻存,防染色体丢失、 变异及污染
单抗生产的方法:
动物体内诱生法:小鼠腹腔注射降植丸 或液体石蜡,1周后腹腔注射杂交瘤细胞, 7-10天后出现腹水,无菌采集。
单抗纯化方法:
盐析 凝胶过滤 离子交换层析 亲和层析法 辛酸沉淀法
基因工程小鼠制备全人抗体
全人抗体的基因工程小鼠包括人外周血淋巴细胞-严重联合免疫缺陷小鼠 (hu-PBL-SCID小鼠)、转基因小鼠和转染色体小鼠制备人抗体技术。
Hu-PBL-SCID小鼠是将已产生一定免疫反应的供者或癌症患者的人的外周 血淋巴细胞移植于严重联合免疫缺陷小鼠(SCID),经抗原免疫后可获得人 源抗体。
Ab4
Ab3
Ab2
普通抗血清(多克隆抗体) Ab4
骨髓瘤小鼠
脾
取腹水
B 细
骨髓瘤细胞
胞
+ PEG, 融合
杂交瘤细胞
HAT培养, 稀释
Ab1
单克隆A抗b3体 Ab4
杂交瘤技术的理论基础
淋巴细胞产生抗体的克隆选择学说,即 一种克隆只产生一种抗体
细胞融合技术产生的杂交瘤细胞可以保 持双方亲代细胞的特性
转染色体小鼠:通过微细胞介导法(MMCT方法)将人14号染 色体上产生IgH 的胚系片段和2号染色体上5~50 Mb 的κ轻 链片段转染到ES细胞,获得小鼠经人血清白蛋白免疫之后, 可产生抗人血清白蛋白的人Ig,再次免疫后IgM产生。由转染 色体技术得到的小鼠,表达的人IgG各亚类的量与人血清中表 达的IgG各亚类类同,且可同时在一个转基因小鼠内表达;但 是,转染色体小鼠导入的人Ig 片断虽然比较大,但其表达的 人Ig量却比较低。
单克隆抗体特性
理化性状高度均一,生物活性专一,只 与一种抗原表位发生反应,特异性强, 纯度高,易于实验标准化和大量制备
单克隆抗体在医学中的应用
检验医学诊断试剂 (1)病原微生物抗原抗体的检测 (2)肿瘤抗原的检测 (3)免疫细胞及其亚群的检测 (4)激素测定 (5)细胞因子的测定 蛋白质的提纯 肿瘤的导向治疗和放射免疫显像技术
(3)由于牛胚胎成纤维细胞仅能够存活35代,含有人HAC 的微细胞与牛胚 胎成纤维细胞融合后,牛胎儿成纤维细胞只能再存活7d,因此必须经过2 次筛选,确保HAC在转染色体牛体内的高存留率。转染色体牛生产人多 抗,可以在短时间内大量获得,所以,转染色体牛获得的人多抗可以在一 定程度上弥补转染色体小鼠的不足,应付突发事件的发生。
Thanks
Thanks for attention
Dec.5.2007
摄于新疆喀纳斯湖2005.8.18
骨髓瘤细胞系选择要点:
稳定易培养、自身不分泌Ig、融合率高、 HGPRT缺陷株
常用骨髓瘤细胞系:NS1、SP2/0、X63 等。 保存:防止突变、定期筛选(8-氮鸟嘌呤)
防止支原体污染(胎牛血清)
融合时保证骨髓瘤细胞处于对数生长期,良好 的形态,活细胞计数高于95%
融合比例 脾细胞:骨髓瘤细胞=3:1许多环 节需要加饲养细胞,如:在杂交瘤细胞筛选、 克隆化和扩大培养过程中
脾
抗原免疫的脾细胞(B细胞) 小鼠骨髓瘤细胞(B细胞恶性肿瘤)
1.抗体分秘(IgG+)
1.具永生性
2.HGPRT+在HAT生长
2. 8AG筛选出HGPTP-株
PEG 融合 HAT筛选
脾-骨髓瘤细胞(杂交瘤细胞)
(HGPRT+、Ig+)
融合的结果及命运
未融合的骨髓瘤细胞
杂交瘤细胞
常用的饲养细胞有:小鼠腹腔巨噬细胞
饲养细胞一般在融合前一天制备
免疫脾细胞:处于免疫状态脾脏中B淋巴 母细胞-浆母细胞。一般取最后一次加强 免疫3天后的脾脏。
融合比例:
骨髓瘤细胞:脾细胞=1:5或1:10
融合剂:40%PEG(分子量1000-2000)
融合24小时后加HAT培养液 2周后 改用HT培养液2周后,改用一般培养液
基因工程抗体与抗体库技术
单抗体内应用和疗效受限原因: 1.鼠源性单抗对人体有较强的免疫原性 2.注入人体的单抗在肿瘤部位的摄取量
甚少 3.生产成本高,难于普及应用
人杂交瘤技术未获真正突破原因:
融合率低、建株难、不稳定、产量低、人体不 能随意免疫
基因工程抗体:用基因工程技术改造现有优良 的鼠单抗基因,着眼点在于尽量减少抗体中的 鼠源成分,但又尽量保留原有的抗体特异性。
Polyclonal antibody,PcAb:针对多种抗 原决定簇的混合抗体
Monoclonal antibody,McAb:由单个B细胞 克隆产生的针对单一抗原决定簇的同源 抗体
单 克 隆 抗 体 和 多 克 隆 抗 体 产 生 区 别Ab1 Ab3
抗血清
选用6-12周龄Balb/c小鼠
颗粒性抗原免疫性较强,不加佐剂就可获得很 好的免疫效果
可溶性抗原免疫原性弱,一般要加佐剂
目前,用于可溶性抗原(特别是一些弱抗原)的 免疫方案也不断有所更新,如①将可溶性抗原 颗粒化或固相化,一方面增强了抗原的免疫原 性,另一方面可降低抗原的使用量。②改变抗 原注入的途径,基础免疫可直接采用脾内注射。 ③使用细胞因子作为佐剂,提高机体的免疫应 答水平,促进免疫细胞对抗原反应性。