4.3 大学离散数学课件(英文版)
合集下载
离散数学课件(英文版)----Equivalence(II)
Ex. (x,y)R (y,z)R (x,z)R (x,x)R etc.
A1
A It is straight to prove that R is reflexible, symmetric and transitive, so, it is an equivalence relation.
Symmetry
Let A={1,2,3}, RAA {(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)} symmetric. {(1,2),(2,3),(2,2),(3,1)} antisymmetric. {(1,2),(2,3),(3,1)} antisymmetric and asymmetric. {(11),(2,2)} symmetric and antisymmetric. symmetric and antisymmetric, and asymmetric!
• R is reflexive relation on A if and only if IAR
Visualized Reflexivity
A={a,b,c} a
1 0 0 1 1 1 MR 0 1 1
b
c
Symmetry
Relation R on A is Symmetric if whenever (a,b)R, then (b,a)R Antisymmetric if whenever (a,b)R and (b,a)R then a=b. Asymmetric if whenever (a,b)R then (b,a)R (Note: neither anti- nor a-symmetry is the negative of symmetry)
A1
A It is straight to prove that R is reflexible, symmetric and transitive, so, it is an equivalence relation.
Symmetry
Let A={1,2,3}, RAA {(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)} symmetric. {(1,2),(2,3),(2,2),(3,1)} antisymmetric. {(1,2),(2,3),(3,1)} antisymmetric and asymmetric. {(11),(2,2)} symmetric and antisymmetric. symmetric and antisymmetric, and asymmetric!
• R is reflexive relation on A if and only if IAR
Visualized Reflexivity
A={a,b,c} a
1 0 0 1 1 1 MR 0 1 1
b
c
Symmetry
Relation R on A is Symmetric if whenever (a,b)R, then (b,a)R Antisymmetric if whenever (a,b)R and (b,a)R then a=b. Asymmetric if whenever (a,b)R then (b,a)R (Note: neither anti- nor a-symmetry is the negative of symmetry)
离散数学ppt课件
02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。
离散数学英文版PPT
g Policy
• • • • There is a midterm exam in week 7 or 8 There is a non-comprehensive final exam (week 15) There is a small programming in Visual Basic project Grading
Attendance Policy
• A student is expected to attend each class session on a regular and punctual basis • Students will be allowed to be late OR absent during the semester no more than three (3) times. Students who exceed these limits may be withdrawn from the course, or given an F grade
• Prerequisite: MATH 170 Calculus I and CSCI 185 Programming II • Description: An introduction to discrete structures with applications to computing problems. Topics include logic, sets, functions, relations, proof techniques and algorithmic analysis. Graph theory and trees may be studied as well
Homework Assignments or Exercises
• • • • There is a midterm exam in week 7 or 8 There is a non-comprehensive final exam (week 15) There is a small programming in Visual Basic project Grading
Attendance Policy
• A student is expected to attend each class session on a regular and punctual basis • Students will be allowed to be late OR absent during the semester no more than three (3) times. Students who exceed these limits may be withdrawn from the course, or given an F grade
• Prerequisite: MATH 170 Calculus I and CSCI 185 Programming II • Description: An introduction to discrete structures with applications to computing problems. Topics include logic, sets, functions, relations, proof techniques and algorithmic analysis. Graph theory and trees may be studied as well
Homework Assignments or Exercises
离散数学讲义FiniteStatemachine
a finite set S of states, a finite input alphabet I, a finite output alphabet O, a transition function f that assigns to each state and input pair a new state, an output function g that assigns to each state and input pair an output, initial state s0
Finite-state automata
The language recognized by M is the set of all strings that are recognized by M, denoted by L(M)
Two finite-state automata is called equivalent if they recognize the same language
Homework
Page756 1(b), 2(c), 9, 14 ver5
Page802, 1(b), 2(c), 11, 18 ver6
Finite-state machine with no output
There are other types of finite-state machines that are specially designed for recognizing languages. Instead of producing output, these machines have final states. A string is recognized if and only if it takes the starting state to one of the final states.
Finite-state automata
The language recognized by M is the set of all strings that are recognized by M, denoted by L(M)
Two finite-state automata is called equivalent if they recognize the same language
Homework
Page756 1(b), 2(c), 9, 14 ver5
Page802, 1(b), 2(c), 11, 18 ver6
Finite-state machine with no output
There are other types of finite-state machines that are specially designed for recognizing languages. Instead of producing output, these machines have final states. A string is recognized if and only if it takes the starting state to one of the final states.
离散数学英文课件 群论 Groups (II)
Cyclic group
Corollary 6 The generators of Zn are the integers r such that 1=<r < n and gcd(r, n) = 1. Example Let us examine the group Z16. The numbers 1, 3, 5, 7, 9, 11,13, and 15 are the elements of Z16 that are relatively prime to 16. Each of these elements generates Z16. For example, 1*9 = 9 2*9 = 2 3*9 = 11 4*9 = 4 5*9 = 13 6*9 = 6 7*9 = 15 8*9 = 8 9*9 = 1 10*9 = 10 11*9 = 3 12*9 = 12 13*9 = 5 14*9 = 14 15*9 = 7:
Subgroups of Cyclic Groups
Theorem 2: Every subgroup of a cyclic group is cyclic.
Proof. Let G be a cyclic group generated by a and suppose that H is a subgroup of G. If H = {e}, then trivially H is cyclic. Suppose that H contains some other element g distinct from the identity. Then g can be written as an for some integer n. We can assume that n > 0. Let m be the smallest natural number such that am ∈H. Such an m exists by the Principle of Well-Ordering. We claim that h = am is a generator for H. We must show that every h’ ∈ H can be written as a power of h. Since h’ ∈ H and H is a subgroup of G, h’ = ak for some positive integer k. Using the division algorithm, we can find numbers q and r such that k = mq + r where 0 =<r < m; hence, ak = amq+r = (am)qar = hqar: So ar = akh-q. Since ak and h-q are in H, ar must also be in H. However, m was the smallest positive number such that am was in H; consequently, r = 0 and so k = mq. Therefore, h’ = ak = amq = hq and H is generated by h.
离散数学 课件 the_third_course
P 附加前提 目的导出矛盾 P T 2 I 1 P T 4 E T 5I T 36 I
矛盾
得证
1-8
* *
命题演算的推理理论
补充:例 设A , B 分别是命题公式A和B的对偶式,则下列各式是否成立?
1A*
A B则A B
* *
2 若A 4 A*
1)真值表法:列出所有真值取值,看蕴含式是否成立,真值取值情况。 2)直接法:利用P规则和T规则,得到一组序列B1 , B2 , Bn C。 3)间接法:也就是证H1 , H 2 , H n , C是不相容的,即H1 H 2 H n C是永 假的(这是反证法的依据) 间接法的另一种情况是:H1 H 2 H n R C (结论是一个条件式) 我们可以把条件式转化为非条件式R C同样可 利用前面两种方法来证明几个前提是否能蕴含 R C,但我们这里介绍另一种方法。
定理:在真值表中,一个公式的真值为F的指派所对应的大项的
1-7
对偶与范式
合取,即为此公式的主合取范式。 我们求主析取范式时是将所有值为T的指派对应的小项析取;这里 求主合取范式是将所有取值为F的所有可能值列出来、取合取。 (析取与合取对偶) 要注意大项的写法不同于小项,另外列真值表必须注意次序,先列 T,后列F
1-7
( P Q ) ( P R )
对偶与范式
(( P Q ) P ) (( P Q) R )
( P P) (Q P) ( P R) (Q R)
(Q P) ( P R) (Q R)
(Q P ( R R )) ( P R (Q Q )) (Q R ( P P )) (Q P R ) (Q P R ) ( P R Q ) ( P R Q ) (Q R P ) (Q R P ) ( P Q R ) ( P Q R ) ( P Q R ) ( P Q R )
离散数学英文课件:DM_lecture1_2Propositional Equivalence
Hui Gao
Discrete Mathematics
8
More Equivalence Laws
Distributive: p(qr) (pq)(pr) p(qr) (pq)(pr)
De Morgan’s: (p1p2…pn) (p1p2…pn) (p1p2…pn) (p1p2…pn)
Ex. p p [What is its truth table?] A contradiction is a compound proposition that
is false no matter what! Ex. p p [Truth table?] Other compound props. are contingencies.
Equivalence Laws - Examples
Identity:
pT p pF p
Domination: pT T pF F
Idempotent: pp p pp p
Double negation: p p
Commutative: pq qp pq qp
Associative: (pq)r p(qr) (pq)r p(qr)
Equivalent expressions can always be substituted for each other in a more complex expression - useful for simplification.
Hui Gao
Discrete Mathematics
7
Assume (p q) F, then (p q) T, then p q T, then p=F and q=F, then pq =F.
《高等数学课件-全英文版(英语思维篇)》
Fundamental Theorem of Calculus
Discover the Fundamental Theorem of Calculus and its significance in integration.
Riemann Sums
Explore Riemann sums as a method for approximating definite integrals.
Functions and Graphs
Types of Functions
Discover the different types of functions and their graphical representations.
Graph Plotting
Learn how to plot and analyze functions using mathematical tools and software.
Differentiation
1
Derivative Definition
Learn the definition and basic rules
Chain Rule
2
of differentiation.
Discover how to differentiate
composite functions using the
Work and Energy
Explore how integration is used to calculate work and energy in various scenarios.
Differential Equations
1
Introduction to Differential
Discover the Fundamental Theorem of Calculus and its significance in integration.
Riemann Sums
Explore Riemann sums as a method for approximating definite integrals.
Functions and Graphs
Types of Functions
Discover the different types of functions and their graphical representations.
Graph Plotting
Learn how to plot and analyze functions using mathematical tools and software.
Differentiation
1
Derivative Definition
Learn the definition and basic rules
Chain Rule
2
of differentiation.
Discover how to differentiate
composite functions using the
Work and Energy
Explore how integration is used to calculate work and energy in various scenarios.
Differential Equations
1
Introduction to Differential
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
离散数学lecture3
´q
Name Addition Simplification p qµ qµ p Conjunction Modus tollens
q p
´p
´p
qµ qµ qµ
´
´q
rµ q rµ
´p
r µ Hypothetical syllogism Disjunctive syllogism
´p
p p
´p
q
r
Resolution
批注本地保存成功开通会员云端永久保存去开通
Discrete Mathematics Thomas Honold Formal Proofs
Discrete Mathematics
Thomas Honold
Institute of Information and Communication Engineering Zhejiang University
Discrete Mathematics Thomas Honold Formal Proofs
Further Rules of Inference
Making the life a lot easier Rule p µ p q p q µ p p q µ p q q p q µ p p q q r µ p r p q p µ q p q p r µ q r Tautology p p p q p q
Discrete Mathematics Thomas Honold Formal Proofs
Introduction
Fermat’s Last Theorem (FLT)
There do not exist positive integers n x y z with n xn · yn zn 3 and
Name Addition Simplification p qµ qµ p Conjunction Modus tollens
q p
´p
´p
qµ qµ qµ
´
´q
rµ q rµ
´p
r µ Hypothetical syllogism Disjunctive syllogism
´p
p p
´p
q
r
Resolution
批注本地保存成功开通会员云端永久保存去开通
Discrete Mathematics Thomas Honold Formal Proofs
Discrete Mathematics
Thomas Honold
Institute of Information and Communication Engineering Zhejiang University
Discrete Mathematics Thomas Honold Formal Proofs
Further Rules of Inference
Making the life a lot easier Rule p µ p q p q µ p p q µ p q q p q µ p p q q r µ p r p q p µ q p q p r µ q r Tautology p p p q p q
Discrete Mathematics Thomas Honold Formal Proofs
Introduction
Fermat’s Last Theorem (FLT)
There do not exist positive integers n x y z with n xn · yn zn 3 and
离散数学课件(英文版)----Counting精选 课件
... <0,1> <1,1> <2,1> <3,1> ... <0,2> <1,2> <2,2> ... <0,3> <1,3>
Hale Waihona Puke <0,4><0,0>, <0,1>, <1,0>, <0,2>, <1,1>, <2,0>, <0,3>, ......
So, the set of rational numbers is countable.
as a sequence, { r1, r2, r3, ... } • (3) Assume, for example, that the decimal expansions of
the beginning of the sequence are as follows. r1 = 0 . 0 1 0 5 1 1 0 ... r2 = 0 . 4 1 3 2 0 4 3 ... r3 = 0 . 8 2 4 5 0 2 6 ... r4 = 0 . 2 3 3 0 1 2 6 ... r5 = 0 . 4 1 0 7 2 4 6 ... r6 = 0 . 9 9 3 7 8 3 8 ... r7 = 0 . 0 1 0 5 1 3 0 ...
– If the list goes on forever, it is infinite.
Proof of Countability
• The set of all integers is countable.
– We can arrange all integer in a linear list as follows: 0,-1,1,-2,2,-3,3,... that is: positive k is the (2k+1)th element, and negative k is the 2kth element in the list.
Hale Waihona Puke <0,4><0,0>, <0,1>, <1,0>, <0,2>, <1,1>, <2,0>, <0,3>, ......
So, the set of rational numbers is countable.
as a sequence, { r1, r2, r3, ... } • (3) Assume, for example, that the decimal expansions of
the beginning of the sequence are as follows. r1 = 0 . 0 1 0 5 1 1 0 ... r2 = 0 . 4 1 3 2 0 4 3 ... r3 = 0 . 8 2 4 5 0 2 6 ... r4 = 0 . 2 3 3 0 1 2 6 ... r5 = 0 . 4 1 0 7 2 4 6 ... r6 = 0 . 9 9 3 7 8 3 8 ... r7 = 0 . 0 1 0 5 1 3 0 ...
– If the list goes on forever, it is infinite.
Proof of Countability
• The set of all integers is countable.
– We can arrange all integer in a linear list as follows: 0,-1,1,-2,2,-3,3,... that is: positive k is the (2k+1)th element, and negative k is the 2kth element in the list.
《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散数学课件(英文版)----Semigroup
离散数学课件英文版semigroup离散数学课件离散数学离散数学及其应用离散数学符号离散数学复习资料离散数学试题离散数学pdf离散数学吧离散数学知识点总结离散数学重点
ห้องสมุดไป่ตู้Algebraic Systems and Groups
Lecture 13 Discrete Mathematical Structures
If “” is associative, then x1x2x3… xn can be computed by any order of among the (n-1) operations, with the constraint that the order of all operands are not changed.
If S has a left identity and a right identity as well, then they must be equal, and this element is also an identity of the system: e l = e l e r= e r If existing, the identity of an algebraic system is unique: e 1= e 1e 2= e 2
Association
What a pity!
Semigroup
Axiom of semigroup
– Association
An example ({1,2},*), * defined as follows:
For any x,y∈{1,2}, x*y=y Proof: it should be proved that for any x,y,z in {1,2}, (x*y)*z = x* (y*z)
ห้องสมุดไป่ตู้Algebraic Systems and Groups
Lecture 13 Discrete Mathematical Structures
If “” is associative, then x1x2x3… xn can be computed by any order of among the (n-1) operations, with the constraint that the order of all operands are not changed.
If S has a left identity and a right identity as well, then they must be equal, and this element is also an identity of the system: e l = e l e r= e r If existing, the identity of an algebraic system is unique: e 1= e 1e 2= e 2
Association
What a pity!
Semigroup
Axiom of semigroup
– Association
An example ({1,2},*), * defined as follows:
For any x,y∈{1,2}, x*y=y Proof: it should be proved that for any x,y,z in {1,2}, (x*y)*z = x* (y*z)
离散数学课件(英文版)----Function
Try to prove it What is ({<x,y>|x,y∈R, y=x+1})? R×{-1}
x-y>,
:N×N→N, (<x,y>) = | x2-y2|
(N×{0}) ={ n2|n∈N}, -1({0}) ={<n,n>|n∈N}
Characteristic Function of Set
A’ B’ B A
f
Special Types of Functions
Surjection
:A→B is a surjection or “onto” iff. Ran()=B, iff. y∈B, x∈A, such that f(x)=y
Injection (one-to-one)
:A→B is one-to-one iff. y∈Ran(f), there is at most one x∈A, such that f(x)=y iff. x1,x2∈A, if x1≠x2, then (x1) ≠(x2) iff. x1,x2∈A, if (x1) =(x2),then x1=x2
Note: if <x,y>∈f, then <x,y>∈f and <x,x>∈1A if <x,y>∈ f °1A,则<t,y>∈ f , 且<x,t>∈1A, 则t=x, 所以<x,y>∈f .
Invertible Function
The inverse relation of f :A→B is not necessarily a function, even though f is.
If |A|>|B| then 0 else |A|!*|A|C|B|
x-y>,
:N×N→N, (<x,y>) = | x2-y2|
(N×{0}) ={ n2|n∈N}, -1({0}) ={<n,n>|n∈N}
Characteristic Function of Set
A’ B’ B A
f
Special Types of Functions
Surjection
:A→B is a surjection or “onto” iff. Ran()=B, iff. y∈B, x∈A, such that f(x)=y
Injection (one-to-one)
:A→B is one-to-one iff. y∈Ran(f), there is at most one x∈A, such that f(x)=y iff. x1,x2∈A, if x1≠x2, then (x1) ≠(x2) iff. x1,x2∈A, if (x1) =(x2),then x1=x2
Note: if <x,y>∈f, then <x,y>∈f and <x,x>∈1A if <x,y>∈ f °1A,则<t,y>∈ f , 且<x,t>∈1A, 则t=x, 所以<x,y>∈f .
Invertible Function
The inverse relation of f :A→B is not necessarily a function, even though f is.
If |A|>|B| then 0 else |A|!*|A|C|B|
离散数学课件第一章
图的连通性
04
CHAPTER
逻辑基础
命题逻辑中的基本概念包括命题、真值和逻辑运算,通过这些基本概念可以表达和推理复杂的命题关系。
命题逻辑在计算机科学、人工智能、自动化等领域有广泛应用,是形式化方法的重要基础。
命题逻辑是研究命题之间关系的逻辑分支,主要涉及命题的否定、合取、析取、蕴含等基本运算。
命题逻辑
详细描述
集合的运算包括并集、交集、差集等。并集是指两个或多个集合合并为一个新的集合,包含所有元素;交集是指两个或多个集合中共有的元素组成的集合;差集是指从一个集合中去掉另一个集合中的元素后剩余的元素组成的集合。这些运算在离散数学中有着广泛的应用。
总结词
集合的运算
集合的基数是指集合中元素的个数,通常用大写字母表示。
鸽巢原理
THANKS
感谢您的观看。
集合论
图论是研究图(由节点和边构成的结构)的数学分支,它广泛应用于计算机科学和工程学科。
图论
逻辑是离散数学的另一个重要分支,它研究推理的形式和规则,是计算机科学和人工智能的基础。
逻辑
组合数学是研究计数、排列和组合问题的数学分支,它在计算机科学和统计学中有重要的应用。
组合数学
离散数学的研究内容
02
CHAPTER
离散数学课件第一章
目录
绪论 集合论基础 图论基础 逻辑基础 组合数学基础
01
CHAPTER
绪论
离散数学是研究离散对象(如集合、图、树等)的数学分支,它不涉及连续的量或函数。
离散数学的定义
离散数学的起源
离散数学的特点
离散数学的起源可以追溯到古代数学,如欧几里得几何和数论。
离散数学强调结构、关系和组合,而不是连续性和微积分。
GraphTheory离散数学图论双语
v is an odd vertex if deg(v) is odd. v is an even vertex if deg(v) is even.
Ch1-15 Copyright 黃鈴玲
Handshaking theorem
Theorem 1.1 (Handshaking theorem)
e=uv (e joins u and v) (e is incident with u, e is incident with v)
Ch1-7 Copyright 黃鈴玲
Graphs types
loop
multiedges, parallel edges
undirected graph:
• (simple) graph: loop (), multiedge ()
Ch1-1 Copyright 黃鈴玲
Graph Theory 的起源
1736, Euler solved the Königsberg Bridge Problem (七橋問題)
Q: 是否存在一 種走法,可以走 過每座橋一次, 並回到起點?
(Ch7 Euler graph)
Ch1-2 Copyright 黃鈴玲
Ch1-9 Copyright 黃鈴玲
Application of graphs
一群人間兩兩互相認識或不認識(i.e., 沒有A認識B但 B不認識A的情形),在安排一張圓桌的晚餐座位時, 是否存在一種排法能讓坐在一起的人都相互認識?
eg.
Tom, Dick know Sue, Linda.
Harry knows Dick and Linda.
• multigraph: loop (), multiedge ()
Ch1-15 Copyright 黃鈴玲
Handshaking theorem
Theorem 1.1 (Handshaking theorem)
e=uv (e joins u and v) (e is incident with u, e is incident with v)
Ch1-7 Copyright 黃鈴玲
Graphs types
loop
multiedges, parallel edges
undirected graph:
• (simple) graph: loop (), multiedge ()
Ch1-1 Copyright 黃鈴玲
Graph Theory 的起源
1736, Euler solved the Königsberg Bridge Problem (七橋問題)
Q: 是否存在一 種走法,可以走 過每座橋一次, 並回到起點?
(Ch7 Euler graph)
Ch1-2 Copyright 黃鈴玲
Ch1-9 Copyright 黃鈴玲
Application of graphs
一群人間兩兩互相認識或不認識(i.e., 沒有A認識B但 B不認識A的情形),在安排一張圓桌的晚餐座位時, 是否存在一種排法能讓坐在一起的人都相互認識?
eg.
Tom, Dick know Sue, Linda.
Harry knows Dick and Linda.
• multigraph: loop (), multiedge ()
离散数学课件(英文版)----Graph
A D C A D
C
B
B
Graph and Diagram
Graph G is a triple: G =〈VG, EG, 〉
VG and EG are sets,satisgying VGEG=φ, :EG {{vi, vj}| vi, vj∈VG} Note: {vi, vj}={vj, vi} A graph can be represented conveniently by some diagram: : each element of VG as a dot, the vertex, and each element of EG as a line segment, the edge, between vertices. So, VG is called the set of vertices, and EG, the set of edges.
i i =1
The number of vertices with odd degree must be even.
Complete Graph
A graph is a complete graph if and only if any two of its vertices are adjacent.
Subgraph
Let G=<V,E>, G’=<V’,E’>, if V’V, E’E, then G’is called a subgraph of G. If V’V, or E’E, then G’ is a proper subgraph. If V’=V, then G’ is a spanning subgraph.
Determination of Euler Graph
C
B
B
Graph and Diagram
Graph G is a triple: G =〈VG, EG, 〉
VG and EG are sets,satisgying VGEG=φ, :EG {{vi, vj}| vi, vj∈VG} Note: {vi, vj}={vj, vi} A graph can be represented conveniently by some diagram: : each element of VG as a dot, the vertex, and each element of EG as a line segment, the edge, between vertices. So, VG is called the set of vertices, and EG, the set of edges.
i i =1
The number of vertices with odd degree must be even.
Complete Graph
A graph is a complete graph if and only if any two of its vertices are adjacent.
Subgraph
Let G=<V,E>, G’=<V’,E’>, if V’V, E’E, then G’is called a subgraph of G. If V’V, or E’E, then G’ is a proper subgraph. If V’=V, then G’ is a spanning subgraph.
Determination of Euler Graph
离散数学课件ppt
随机性与概率
随机性表示试验结果的不 确定性,概率则表示随机 事件发生的可能性大小。
统计数据的收集和整理
数据来源
数据质量
数据可以来源于调查、实验、观测、 查阅文献等多种途径。
数据质量包括数据的准确性、可靠性 、完整性等方面,是数据分析的前提 和基础。
数据整理
数据整理包括数据的分类、排序、分 组、编码等步骤,以便更好地进行数 据分析。
必然事件
概率值为1的事件。
03
04
不可能事件
概率值为0的事件。
互斥事件
两个或多个事件不能同时发生 。
概率的加法原理和乘法原理
加法原理
对于任意两个互斥事件A和B,有 P(A∪B)=P(A)+P(B)。
乘法原理
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率和独立性
要点一
条件概率
离散数学课件
目录 CONTENTS
• 离散数学简介 • 集合论基础 • 图论基础 • 离散概率论基础 • 离散统计学基础 • 离散数学中的问题求解方法
01
离散数学简介
离散数学的起源
19世纪初
集合论的提出为离散数学的起源 奠定了基础。
20世纪中叶
随着计算机科学的兴起,离散数 学逐渐受到重视和应用。
子集、超集和补集
总结词
子集、超集和补集是集合论中的重要概念,它们描述了集合之间的关系。
详细描述
子集是指一个集合中的所有元素都属于另一个集合,超集是指一个集合包含另一 个集合的所有元素,补集是指属于某个集合但不属于其子集的元素组成的集合。
集合的运算性质
总结词
集合的运算性质包括并集、交集、差集等,这些运算描述了 集合之间的组合关系。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Example:
Consider the digraph of Figure 4.4. Vertex 1 has in-degree 3 and out-degree 2. Also consider the digraph shown in Figure 4.5.Vertex 3 has indegree 4 and out-degree 2, while vertex 4 has indegree 0 and out-degree 1.
abcd
SIon-lduegtrieoe n 2 3 1 1
The digraph of R is Out-degree 1 1 3 2
shown in Figure 4.6. The
following table gives the
b
in-degrees and out-
degrees of all vertices. Note that the sum of all
a
c
in-degrees must equal the
sum of all out-degrees.
d
Figure 4.6
Example:
Let A={1,4,5}, and let R be given by the digraph Shown in Figure 4.7. Find MR and R.
The Digraph of a Relation
关系的有向图 If A is a finite set and R is a relation on A, we can also represent R pictorially as follows. Draw a small circle for each element of A and label the circle with the corresponding element of A. These circles are called vertices. Draw an arrow, called an edge, from vertex ai to vertex aj if and only if ai R aj .The resulting pictorial representation of R is called a directed graph or digraph of R.
Sometimes, when we want to emphasize the geometric nature of some property of R, we may refer to the pairs of R themselves as edges and the elements of A as vertices.
2
1
3
4
Figure 4.5
An important concept for relations is inspired by the visual form of digraphs. If R is a relation on a set A and a∈A, then the in-degree of a (relative to the relation R) is the number of b∈A such that (b, a)∈R. The outdegree of a is the number of b∈A such that (a, b)∈R.
If R is a relation on A, the edges in the digraph of R correspond exactly to the pairs in R, and the vertices correspond exactly to the elements of the set A.
Example: Find the relation determined by Figure 4.5.
Solution
Since ai R aj if there is an edge from ai to aj ,we have
R={(1,1),(1,3),(2,3),(3,2), (3,3),4,3)}.
Example: Let A={1, 2, 3, 4} R={(1,1),(1,2),(2,1),(2,2),(2,3),(2,4), (3,4),(4,1)}.
Then the digraph of R is as shown in Figure 4.4.
2
13ຫໍສະໝຸດ 4Figure 4.4
A collection of vertices with edges between some of the vertices determines a relation in natural manner.
Example: Let A={a, b, c, d }, and let R be the relation
on A that has the matrix
1 0 0 0
MR
0 1 1 1
0 1
0 0
0
1
0
1
Construct the digraph of R, and list in-degrees And out-degrees of all vertices.
What this means, in terms of the digraph of R, is that the in-degree of a vertex of the number of edges terminating at the vertex. The out –degree of a vertex is the number of edges leaving the vertex. Note that the out-degree of a is |R(a)|.
Solution
1
4
5
Figure 4.7
0 1 1
MR 1 1 0 ,
0 1 1
R={(1,4),(1,5),(4,1),(4,4),(5,4), (5,5)}